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a b s t r a c t

Multinomial processing tree (MPT)models are tools for disentangling the contributions of latent cognitive
processes in a given experimental paradigm. The present note analyzes MPT models subject to order
constraints on subsets of its parameters. The constraints that we consider frequently arise in cases where
the response categories are ordered in some sense such as in confidence-rating data, Likert scale data,
where graded guessing tendencies or response biases are created via base-rate or payoff manipulations,
in the analysis of contingency tables with order constraints, and in many other cases. We show how to
construct an MPT model without order constraints that is statistically equivalent to the MPT model with
order constraints. This new closure result extends themathematical analysis of theMPT class, and it offers
an approach to order-restricted inference that extends the approaches discussed by Knapp and Batchelder
(2004). The usefulness of themethod is illustrated bymeans of an analysis of an order-constrained version
of the two-high-threshold model for confidence ratings.

© 2014 Elsevier Inc. All rights reserved.
Multinomial processing tree (MPT) models are used tomeasure
cognitive processes in many areas of psychology (for reviews, see
Batchelder & Riefer, 1999 and Erdfelder et al., 2009). They are
models for categorical data. MPT models are typically tailored
to a given experimental paradigm and specify how the most
important processes assumed to be involved in data generation in
the paradigm interact to produce observable responses.

As an example consider the two-high-threshold model (2HTM;
Snodgrass & Corwin, 1988). The 2HTM is tailored to memory
experiments in which old/new judgments are requested for
previously studied items intermixedwith new items. Inmany such
experiments, participants are also asked to rate their confidence in
each ‘‘old’’ or ‘‘new’’ judgment. Fig. 1 shows a version of the model
for a confidence rating scale with three points, labeled ‘‘high’’,
‘‘medium’’, and ‘‘low’’ (Bröder, Kellen, Schütz, & Rohrmeier, 2013;
Klauer & Kellen, 2011). Responses are mediated via three latent
states, labeled ‘‘detect old’’, ‘‘detect new’’, and ‘‘no detection’’.

Parameters Do and Dn define a stimulus-state mapping. Do is
the probability of entering the ‘‘detect old’’ state for an old item;
Dn of entering the ‘‘detect new’’ state for a new item; the ‘‘no
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detection’’ state is entered with probability 1 − Do and 1 − Dn
for old and new items, respectively. The remaining parameters
define state-response mappings. Given one of the two ‘‘detect’’
states, the old/new judgment is invariably correct as regards the
old versus new status of the test item, and the parameters sl, sm,
and sh (sl + sm + sh = 1) quantify the probabilities of selecting, in
order, the low, medium, and high confidence levels in the old/new
response.2 In the absence of detection, there is a guessing bias
captured by probability parameter g , quantifying the probability
of guessing ‘‘old’’ rather than ‘‘new’’. Given that ‘‘old’’ is guessed,
parameters ol, om, and oh with ol + om + oh = 1 parameterize
the probabilities for the three confidence levels; given that ‘‘new’’
is guessed, nl, nm, and nh parameterize these probabilities.

As can be seen, MPT models assume that observed category
counts arise from processing branches consisting of separate
conditional links or stages. Each branch probability is the product
of its conditional link probabilities, and more than one branch can
terminate in the same observed category (Hu & Batchelder, 1994).

2 There are well-documented response-style effects such as preferring moderate
over extreme responses or vice versa as moderated by contextual and personality
factors (Böckenholt, 2012). In the light of these effects, it is reasonable to assume
that ‘‘detect’’ states are not necessarily always mapped on the highest confidence
level. For reasons of parsimony and model identifiability, we assume in the present
case that the state-response mapping of confidence ratings for ‘‘detect old’’ and
‘‘detect new’’ states is the same (but see Klauer & Kellen, 2010).
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Fig. 1. The 2HTM model for confidence ratings. Response categories are shown in the middle; the tree to the left models processing for old items; the tree to the right for
new items.
In most cases, the models are eventually represented as so-
called binary MPT models (Purdy & Batchelder, 2009), because
many software tools for analyzingMPTmodels require binaryMPT
models as input. In a binary MPT model, exactly two links go out
from each non-terminal node. The two links are labeled by two
parameters that sum to one. One of these is redundant and is
replaced by one minus the other parameter so that the remain-
ing model parameters are functionally independent, each such pa-
rameter ranging from 0 to 1. It is straightforward to transform a
non-binary MPT model into a statistically equivalent binary MPT
model (Hu & Batchelder, 1994). Twomodels are statistically equiv-
alent if they can predict the same sets of response probabilities.

In applications, it is not uncommon that order constraints are
predicted to hold for subsets of the functionally independent pa-
rameters of binaryMPTmodels (Baldi & Batchelder, 2003; Knapp &
Batchelder, 2004), and Knapp and Batchelder have shown that the
model class is closed under one or more non-overlapping linear
orders of parametric constraints. That is, a new non-constrained
binary MPTmodel can be constructed using a different set of func-
tionally independent parameters that is statistically equivalent to
the original model with the order constraints.

Here, we consider a different set of order constraints that regu-
larly arise in applications and that are not covered by Knapp and
Batchelder (2004). The order constraints frequently arise where
response categories are ordered in some sense such as for confi-
dence ratings or Likert scales. They also arise where participants
discriminate between two or more categories of items and the
probabilities of guessing the categories in ‘‘no detection’’ states can
be assumed to be ordered; for example, because base rates or
payoffs systematically differ between the categories. Our results
also apply to the important case of order constraints on the
probabilities of a multinomial or product-multinomial distribu-
tion that is frequently encountered within and outside psychology
(e.g., Agresti & Coull, 2002). We show that an MPT model with the
order constraints can be represented in the form of a statistically
equivalent non-constrainedMPTmodel. This new closure property
contributes to the structural analysis of theMPT class and is imme-
diately useful for analyzing cases inwhich the order constraints are
to be imposed upon the parameters as exemplified below.
Considering, for example, the 2HTM for confidence ratings, a
psychologically plausible constraint on the parameters for the con-
fidence levels in the ‘‘no detection’’ state is that the preference for a
given confidence level should decline from lowest to highest con-
fidence levels, reflecting the respondent’s uncertainty in the ab-
sence of detection: ol ≥ om ≥ oh and nl ≥ nm ≥ nh. Conversely, in
‘‘detect’’ states, the preference for a given confidence level should
increase from lowest to highest confidence, at least for scales with
only a few confidence levels: sl ≤ sm ≤ sh.

Imposing such constraints sharpens the distinctions between
‘‘no detection’’ and ‘‘detect’’ states by highlighting plausible qual-
itative differences between them. When satisfied by the underly-
ing probability distribution, the constraints contribute to making
the estimation of the parameters Dn and Do of the stimulus-state
mapping more precise, focused, and robust, and they considerably
increase the model’s parsimony as elaborated on below.

These order constraints are imposed on functionally dependent
parameters (e.g., sl, sm, and sh have to sum to 1 and are there-
fore not independent). Hence, they are not covered by Knapp and
Batchelder’s (2004) approach to order constraints for independent
parameters. Nevertheless, it is possible to express them in the lan-
guage of MPT models.

The next section describes how to transform MPT models with
order constraints of this kind into equivalent non-constrained
MPT models.3 Finally, we illustrate the newmethod by comparing
versions of the 2HTM with and without order constraints in terms
of model complexity and in terms of their description of a dataset
by Koen and Yonelinas (2010). The general discussion expands on
the advantages of the new method for estimation and inference
with order-constrained models.

3 The non-constrained MPT models can be transformed into equivalent binary
MPT models in a second step which we do not describe, because it is well known
(Hu & Batchelder, 1994). Furthermore, given the maximum likelihood estimates of
the parameters of the binary MPT model and an estimate of its Fisher information,
maximum likelihood estimates of the parameters of the non-constrained MPT
model aswell as of the parameters of the original order-constrainedMPTmodel and
of their Fisher information matrices (for confidence intervals) can be obtained via
standard methods (Rao, 1973, Chap. 6a) using the first derivatives of the respective
parameter transformation functions that transform these models’ parameters into
each other although there is as of yet no user-friendly software to accomplish this.
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Fig. 2. The tree to the right is a statistically equivalent reparameterization of the
tree to the left for ordered parameters η1 ≥ η2 ≥ · · · ≥ ηk−1 ≥ ηk .

1. Order constraints on multinomial probabilities

We consider a basic subtree with a root, no other non-terminal
node, and two ormore links going out from its root as shownon the
left side of Fig. 2. This subtree might occur at one or more places in
the tree representation of the complete model. With regard to the
overall MPT model, its terminal nodes A1, . . . , Ak represent either
other subtrees or observable categories. For example, the subtree
with three links labeled by parameters sl, sm, and sh in the above
2HTM occurs at two places in the processing tree representation
(see Fig. 1).

Our basic result describes how to represent a linear order η1 ≥

η2 ≥ · · · ≥ ηk on the parameters of the subtree by means
of a statistically equivalent MPT model without order constraints
on the parameters. As shown in Fig. 2 the solution is to replace
each occurrence of the subtree in question by the subtree on
the right side in Fig. 2. Replacement means that the tree on the
right side replaces the subtree on the left side wherever it occurs
in the processing-tree representation. Furthermore, whatever is
appended at the terminal node Aj of an occurrence of the original
subtree is appended in the replacing subtree wherever a terminal
node labeledAj occurs. As for the reparameterizations inKnapp and
Batchelder (2004) this regularly implies an increase in the size of
the processing tree.

We prove the following two theorems:

Theorem 1. For the tree shown on the right side of Fig. 2 and any set
of non-negative parameters λi, i = 1, . . . , k, with

k
i=1 λi = 1, the

probabilities of outcomes Ai are ordered as P(A1) ≥ P(A2) ≥ · · · ≥

P(Ak).

Theorem 1 states that the tree indeed imposes an order con-
straint on its k outcome probabilities. Theorem2 complements this
by showing that any ordered set of probabilities can be represented
in this form:

Theorem 2. For any set of ordered probabilities ηi with η1 ≥ η2 ≥

· · · ≥ ηk,


i ηi = 1, there exist non-negative values λi, i =

1, . . . , k with


i λi = 1 such that the outcome probabilities of the
tree on the right side of Fig. 2 are given by P(Ai) = ηi, i = 1, . . . , k.
Fig. 3. The tree to the right is a statistically equivalent reparameterization of the
tree to the left, if


i ηi =

3
i=1 θi =

6
i=4 θi = 1.

Proof of Theorem 1. Note that the outcome probabilities of the
tree on the right side of Fig. 2 are mixtures with mixture coeffi-
cients λj. The first mixture component is given by the probability
distribution with P(A1) = 1 and P(Aj) = 0, j > 1; the second
by P(A1) = P(A2) = 1/2 and P(Aj) = 0, j > 2; the last by
P(Aj) = 1/k for all j. Eachmixture component satisfies the inequal-
ities, P(Aj) ≥ P(Aj+1), j = 1, . . . , k − 1. This completes the proof.

Proof of Theorem 2. Define mixture coefficients λj as follows:

λk = kηk and λj = j(ηj − ηj+1), j = 1, . . . , k − 1. (1)

By the premises of Theorem 2, it is immediate that λj ≥ 0. It is
furthermore easy to see via simple manipulations that

k
j=1 λj =k

j=1 ηj = 1 and that ηj =
k

i=j
λi
i . Hence, P(Aj) =

k
i=j

λi
i =

ηj, j = k, k − 1, . . . , 1. This completes the proof.

2. Extensions

In this section, we consider linear-order constraints on only a
subset of the ηi, non-overlapping linear-order constraints on the
ηi, more general partial orders, and all such orders for k = 3 and
k = 4.

2.1. Linear orders on subsets and multiple non-overlapping linear
orders

Theorems 1 and 2 cover the case of a total order on all k param-
eters ηi. It is straightforward to extend the results to the case of a
partial linear order on only a subset of the ηi. For example, assume
k = 6 and that the constraint η1 ≥ η2 ≥ η3 is to be imposed. It is
easy to see that this translates into the constraint θ1 ≥ θ2 ≥ θ3 in
the reparameterization depicted in Fig. 3, where θ1 + θ2 + θ3 = 1
so that Theorems 1 and 2 apply.

The reparameterization in Fig. 3 also shows how two or more
non-overlapping linear-order constraints can be imposed upon the
ηi with


i ηi = 1. For example, if in addition η4 ≥ η5 ≥ η6 is to

be imposed, this could be implemented by imposing the constraint
θ4 ≥ θ5 ≥ θ6, where θ4 + θ5 + θ6 = 1, in terms of the parameters
θi in Fig. 3.

2.2. General partial orders

More general partial orders can often be treated by the follow-
ing idea. The probability distributions η = (η1, . . . , ηk) that sat-
isfy a set of linear inequality constraints form a convex polytope.
Specifically, they can exhaustively be represented as mixtures of
certain fixed probability distributions η1, η2, . . . , ηl that we refer
to as vertices. For small problems, the vertices can be found graph-
ically; in complex cases, linear programming algorithms can be
used.
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For example, for the linear order with η1 ≥ η2 ≥ · · · ≥ ηk,
the vertices are given by the above-mentioned k mixture compo-
nents, η1 = (1, 0, . . . , 0), η2 = (1/2, 1/2, 0, . . . , 0), . . . , ηk =

(1/k, . . . , 1/k), and the model parameters λj of the non-
constrainedMPTmodel expressing the order constraint are simply
themixtureweights. The subtree followingλj codes the probability
distribution specified in vertex ηj.

2.3. Partial orders with k = 3

This immediately solves the case of orderings among k
parameters that can be represented by k vertices. Consider, for
example, k = 3, and the orderingη1 ≤ η2 andη1 ≤ η3. This defines
a convex polytope with the three vertices η1 = (0, 0, 1), η2 =

(0, 1, 0), and η3 = (1/3, 1/3, 1/3). Hence, a non-constrained
MPT model representing the order restrictions has three mixture
coefficients λi, i = 1, . . . , 3, as parameters. Each λi is linked to a
subtree coding the respective probability distributions ηi.

In other cases, more than k vertices are required. For example,
the ordering η1 ≥ η2, η1 ≥ η3 defines a polytope with four
vertices, η1 = (1, 0, 0), η2 = (1/2, 1/2, 0), η3 = (1/2, 0, 1/2),
and η4 = (1/3, 1/3, 1/3). Using four mixture coefficients λi to
represent the order-constrained MPT model as a non-constrained
MPT model is possible, but results in an overparameterized
model. This means that certain analyses and inferences available
for MPT models without overparameterization cannot be done.
For example, although it is possible to determine the model’s
maximum log-likelihood and G2 goodness-of-fit statistic and to
bootstrap its distribution (e.g., Singmann & Kellen, 2013), it will
not be possible to determine unique parameter estimates.

For the present example, it can however be shown that
representing the four mixture coefficients λi by two independent
parameters θ1 and θ2 with 0 ≤ θi ≤ 1 such that λ1 = (1 −

θ1)(1 − θ2), λ2 = θ1(1 − θ2), λ3 = (1 − θ1)θ2, and λ4 = θ1θ2 is
sufficient to span the entire polytope defined by the above vertices
(see Appendix). This immediately leads to a non-redundant
parameterization using two independent parameters θ1 and θ2.

But an analogous construction does not in general guarantee
this in other cases. Nevertheless, for most purposes it is sufficient
that a non-redundant parameterization is found that covers the
point of maximum likelihood (as determined, for example, via
estimating the overparameterized model in a first step) and its
local environment. This is usually not difficult to achieve departing
from the vertex representation.

2.4. Partial orders with k = 4

Tables 1 and 2 show the vertex representations of the possible
partial orders involving four outcomes A, B, C, and D as shown in
Fig. 4. The online supplemental material (see Appendix B) sketches
a heuristic for determining non-redundant parameterizations of
the mixture coefficients in these and more complex cases.

3. Application: order constraints on the 2HTM

As already noted, the 2HTM distinguishes ‘‘detect’’ states and a
‘‘no detection’’ state. These are latent states, and a state-response
mapping is required to link the states to the observable responses.
Bröder et al. (2013) and Klauer and Kellen (2011) proposed rela-
tively unrestricted state-response mapping in which it is possible,
for example, that extreme confidence ratings would be preferred
in a ‘‘no detection’’ state and that low confidence ratings would be
preferred in a ‘‘detect’’ state. This has prompted criticisms to the
effect that the models deal with rating scales in an arbitrary and
post-hoc manner (e.g., Dubé, Rotello, & Pazzaglia, 2013, Pazzaglia,
Table 1
Vertices for the patterns in Fig. 4.

Pattern Category Vertices
1 2 3 4 5 6 7 8

I A 1 1/2 1/3 1/4
B 0 1/2 1/3 1/4
C 0 0 1/3 1/4
D 0 0 0 1/4

II A 1 0 0 1/4
B 0 1 0 1/4
C 0 0 1 1/4
D 0 0 0 1/4

III A 1 0 1/3 1/4
B 0 1 1/3 1/4
C 0 0 1/3 1/4
D 0 0 0 1/4

IV A 1 0 1/2 1/4
B 0 1 1/2 1/4
C 0 0 0 1/4
D 0 0 0 1/4

V A 1 1/2 1/2 1/3 1/4
B 0 1/2 0 1/3 1/4
C 0 0 1/2 1/3 1/4
D 0 0 0 0 1/4

VI A 1 1/2 1/3 1/3 1/4
B 0 1/2 1/3 1/3 1/4
C 0 0 1/3 0 1/4
D 0 0 0 1/3 1/4

VII A 1 0 1/3 1/3 1/4
B 0 1 1/3 1/3 1/4
C 0 0 1/3 0 1/4
D 0 0 0 1/3 1/4

VIII A 1 0 1/3 0 1/4
B 0 1 1/3 1/2 1/4
C 0 0 1/3 0 1/4
D 0 0 0 1/2 1/4

IX A 1 1/2 1/2 1/3 1/3 1/4
B 0 1/2 0 1/3 1/3 1/4
C 0 0 1/2 1/3 0 1/4
D 0 0 0 0 1/3 1/4

X A 1 1/2 1/2 1/2 1/3 1/3 1/3 1/4
B 0 1/2 0 0 1/3 1/3 0 1/4
C 0 0 1/2 0 1/3 0 1/3 1/4
D 0 0 0 1/2 0 1/3 1/3 1/4

Dube, & Rotello, 2013; see also Batchelder & Alexander, 2013). Ac-
cording to these critics, themodel is overly complex (Dube, Rotello,
& Heit, 2011).

Using the present results, it is possible to define an order-
constrained 2HTM for confidence ratings, 2HTMr , that maps the
‘‘no detection’’ state so that cautious low confidence ratings
receive most probability mass and more extreme confidence
ratings successively less mass. Conversely, for detect states, the
preference for confidence levels increases from low confidence to
high confidence levels in 2HTMr . Specifically, 2HTMr imposes the
constraints that sh ≥ sm ≥ sl for the mapping from ‘‘detect’’ states
to responses, and that ol ≥ om ≥ oh and nl ≥ nm ≥ no for the
mapping of the ‘‘no detection’’ state to responses (see Fig. 1 for the
2HTM). These constraints remove most of the less plausible state-
response mappings that are admissible under the original 2HTM
for confidence ratings. At the same time, they strongly curtail the
mathematical flexibility of the model.

Because these constraints can now be implemented within the
MPT framework, we can use standard MPT software to estimate,
test, and analyze the model. For example, we used the R package
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Table 2
Non-redundant parameterizations of mixture weights for the patterns in Fig. 4.

Vertices Patterns
V VI VIII IX X

1 (1 − θ1)(1 − θ2)(1 − θ3) θ1 θ1 (1 − θ1)(1 − θ2)(1 − θ3) (1− θ1)(1− θ2)(1− θ3)

2 θ1(1 − θ2)(1 − θ3) (1 − θ1)(1 − θ2)(1 − θ3) (1 − θ1)(1 − θ2)(1 − θ3) θ1(1 − θ2)(1 − θ3) θ1(1 − θ2)(1 − θ3)

3 (1 − θ1)θ2(1 − θ3) (1 − θ1)θ2(1 − θ3) (1 − θ1)θ2(1 − θ3) (1 − θ1)θ2(1 − θ3) (1 − θ1)θ2(1 − θ3)

4 θ1θ2(1 − θ3) (1 − θ1)(1 − θ2)θ3 (1 − θ1)(1 − θ2)θ3 θ1θ2(1 − θ3) (1 − θ1)(1 − θ2)θ3

5 θ3 (1 − θ1)θ2θ3 (1 − θ1)θ2θ3 (1 − θ2)θ3 θ1θ2(1 − θ3)

6 θ2θ3 θ1(1 − θ2)θ3

7 (1 − θ1)θ2θ3
8 θ1θ2θ3

Note. Patterns I–IV employ four mixture coefficients which are trivial to parameterize with three non-redundant parameters θi with 0 ≤ θi ≤ 1, i = 1, . . . , 3. We believe
that no parameterization exists for pattern VII that exhaustively represents all probability distributions with the order constraints using three non-redundant parameters,
but did not find a proof for the non-existence of such a parameterization. We used numerical methods to ascertain that the parameterizations shown exhaust the space of
probability distributions with the appropriate order constraints for all practical purposes (see online supplemental materials, Appendix B).
Fig. 4. Possible orders with four categories A, B, C, and D. Relations implied by transitivity are not shown.
MPTinR (Singmann & Kellen, 2013) to quantify model flexibility
of the 2HTM and the 2HTMr based on the minimum-description-
length principle (Grünwald, 2007) that takes flexibility due to a
model’s functional form into account, including constraints on
flexibility due to inequality constraints. In the present context,
one representation of the minimum-description-length principle
is given by the Fisher information approximation (FIA) index (but
see Heck, Moshagen, & Erdfelder, 2014). FIA is a model selection
index and describes model flexibility by a penalty that is added
to a likelihood measure of the model’s (mis)fit. The model with
the smallest index value is preferred. Wu, Myung, and Batchelder
(2010a,b) developed methods to compute FIA for binary MPT
models that are implemented in MPTinR.

The penalty term for model flexibility in FIA comprises two ad-
ditive terms. One term depends upon the number of parameters
and the sample size similar to the penalty term in BIC. A second
term quantifiesmodel flexibility due to functional form, and 2HTM
and 2HTMr differ in the size of this penalty term. Using the above
reparameterization and MPTinR, we find the penalties due to flex-
ibility to be −0.01 and −5.22 for 2HTM and 2HTMr , respectively.
Because FIA and the normalized maximum-likelihood index op-
erate on a log-likelihood scale, this means that the loss in good-
ness of fit in terms of G2 (Batchelder & Riefer, 1999) must be larger
than 10.42 = 2[−0.01−(−5.22)] before the parsimonious 2HTMr
should be abandoned in favor of the non-constrained 2HTM. This
demonstrates that the constraints on flexibility imposed by the or-
der constraints are substantial.

For example, reanalyzing data from Koen and Yonelinas (2010,
pure condition), the 2HTMwithout order constraints achieves a G2

statistic of 3.35 and a FIA index of 8.28 (up to an additive constant).
The 2HTMwith order constraints achieves a G2 statistic of 9.95 and
a FIA index of 6.37. Thus, the loss in goodness of fit is outweighed
by the parsimony of the constrainedmodel, and the 2HTMr should
be preferred.

4. Discussion

In this note, we extended Knapp and Batchelder’s (2004) ap-
proach to order constraints in MPT models to the case of or-
der restrictions on non-independent parameters constrained to
sum to one. These restrictions frequently arise in cases where re-
sponse outcomes themselves are ordered in some sense such as in
confidence-rating data, Likert scale data (Böckenholt, 2012; Klauer
& Kellen, 2011) or where graded guessing tendencies or response
biases are created via base-rate or payoff manipulations. Alterna-
tively, the restrictions can directly arise from theoretical predic-
tions (e.g., Ragni, Singmann, & Steinlein, 2014).

The results are useful because they make available the growing
toolbox for statistical analyses of MPT model for the analysis
of order-constrained MPT models. As already exemplified, the
toolbox comprises algorithms and software for the computation
of FIA (Moshagen, 2010; Singmann & Kellen, 2013; Wu et al.,
2010a,b), but also a number of software tools to estimate and fit the
models (see Klauer, Stahl, & Voss, 2012 for a review), algorithms
for Bayesian hierarchical model extensions that capitalize on
the model structure (Klauer, 2010; Matzke, Dolan, Batchelder,
& Wagenmakers, 2013; Smith & Batchelder, 2010), algorithms
and software for hierarchical latent-class extensions of MPT
models in a classical inferential framework (Klauer, 2006; Stahl
& Klauer, 2007), and algorithms for computing Bayes factors
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between competing MPT models (Vandekerckhove, Matzke, &
Wagenmakers, in press).

The present results also apply to the important case of order
constraints on the probabilities of an observable multinomial or
product-multinomial distribution, a case with many occurrences
within and outside psychology—for example, in the analysis of
contingency tables with order constraints (Agresti & Coull, 2002).
The case is treated by Robertson, Wright, and Dykstra (1988,
Chap. 5) via their elegant isotonic regression method. Note,
however, that expressing order structures on observable category
probabilities in the MPT framework has the advantage of making
available the above-mentioned tools for estimation and inference
in classical and Bayesian frameworks. As one example, using
MPTinR (Singmann & Kellen, 2013), the distribution of goodness-
of-fit statistic G2 can be assessed via bootstrap methods under the
null hypothesis that the constraints are truly in force, side-stepping
the numerically difficult task to evaluate its asymptotic so-called
χ̄2 distribution.

On the theoretical side, these results contribute to the study of
the class of MPT models. They show that the class is closed under
this further set of order constraints. This flexibility is surprising
given that most other classes of statistical models that we are
aware of would not be invariant under transformations as in Eq.
(1), nor capable of expressing distributions with and without the
present kind of order constraints within the same class of models.
The ability of the model class to encompass the present and other
kinds of meaningful order constraints adds to its usefulness.

Appendix A

We show that each probability distribution on three outcomes
with η1 ≥ η2 and η1 ≥ η3 and

3
i=1 ηi = 1 can be represented

as a mixture with independent parameters θ1, θ2, 0 ≤ θi ≤ 1 as
follows:

η1
η2
η3


= (1 − θ1)(1 − θ2)

1
0
0


+ θ1(1 − θ2)

1/2
1/2
0



+ (1 − θ1)θ2

1/2
0

1/2


+ θ1θ2

1/3
1/3
1/3


.

The proof proceeds by showing that this equation can be solved
for θ1 and θ2 given η1, η2, and η3. Note that η1 − η2 − η3 =

(1 − θ1)(1 − θ2) −
1
3θ1θ2. Setting ∆ = η3 − η2, it follows that

∆ =
1
2 (θ2 − θ1), hence θ2 = 2∆ + θ1. Substituting this in the pre-

vious equation yields: 2η1 − 1 = η1 − η2 − η3 =
1
3 (3 − 6∆ −

2θ1(3 − 2∆) + 2θ2
1 ). Some manipulations show that this is equiv-

alent to [θ1 −
1
2 (3 − 2∆)]2 = [

1
2 (3 − 2∆)]2 + 3(η1 + ∆ − 1).

For this quadratic equation to be solvable in θ1, it needs to be
shown that [

1
2 (3 − 2∆)]2 + 3(η1 + ∆ − 1) ≥ 0. This is equivalent

to [
1
2 + (1 − ∆)]2 ≥ 3(1 − η1 − ∆). Because η1 + η2 + η3 = 1,

this is equivalent to [
1
2 + η1 + 2η2]

2
≥ 6η2. Because η1 ≥ η2, this

is true if [ 12 + 3η2]
2

≥ 6η2. This is equivalent to (3η2 −
1
2 )

2
≥ 0.

Hence, one solution of the above equation is θ1 =
1
2 (3− 2∆)−

[
1
2 (3 − 2∆)]2 − 6η2. We will show that 0 ≤ θ1 ≤ 1. θ1 ≥ 0

is easy to see noting that 1
2 (3 − 2∆) =

1
2 + η1 + 2η2 ≥ 0.

Furthermore, because of this, θ1 ≤ 1 is equivalent to 1
2 + η1 +

2η2 −


( 1
2 + η1 + 2η2)2 − 6η2 ≤ 1 or to η1 + 2η2 −

1
2 ≤

( 1
2 + η1 + 2η2)2 − 6η2. This is trivially true if the term to the left,

η1+2η2−
1
2 , is smaller than zero. If it is non-negative, on the other

hand, this is equivalent to (η1+2η2−
1
2 )

2
≤ ( 1

2 +η1+2η2)
2
−6η2,
which is equivalent to η1 ≥ η2 as simple manipulations show. Be-
cause the equations are symmetrical in θ1 and θ2, interchanging the
roles of θ1 and θ2 and those of η2 and η3 shows that θ2 = θ1 + 2∆
also ranges between 0 and 1. This completes the proof.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jmp.2014.11.001.
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