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Abstract
In an optimal stopping problem, people encounter a sequence
of options and are tasked with choosing the best one; once an
option is rejected, it is no longer available. Recent studies of
optimal stopping suggest that people compare the current op-
tion with an internal threshold and accept it when the option
exceeds the threshold. In contrast, we propose that humans de-
cide to accept or reject an option based on an estimate of the
probability that a better option will be observed in the future.
We develop a computational model that formalizes this idea,
and compare the model to the optimal policy in two experi-
ments. Our model provides a better account of the data than
the optimal model. In particular, our model explains how the
distributional structure of option values affects stopping behav-
ior, providing a step towards a more complete psychological
theory of optimal stopping.
Keywords: optimal stopping; cognitive modeling; sequential
decision making; probabilistic choice behavior

Introduction
Choosing the best option from a sequence is a common prob-
lem in everyday life: whenever we search for a job, an apart-
ment or a partner, we may decide to accept or reject the
present option without knowing whether future options will
be more attractive. In economics, this class of decision prob-
lems is referred to as “optimal stopping” or “secretary prob-
lems” (Gilbert & Mosteller, 1966; Seale & Rapoport, 1997).
Decisions in such problems involve a trade-off between ac-
cepting a subprime option prematurely and the danger of re-
jecting the best offer out of false hopes for better options in
the future. Importantly, the mathematically optimal solutions
for different versions of the secretary problems are generally
known (Gilbert & Mosteller, 1966).

A number of studies have examined two versions of this
problem: rank order and full information. On the rank-order
version of the problem (e.g., Seale & Rapoport, 1997; Bear-
den, Rapoport, & Murphy, 2006) only the rank of the option

relative to those already seen is shown. In the full-information
version of the task, the actual value of the option is presented
(e.g., Lee, 2006; Guan & Lee, in press). In this manuscript we
focus on the full information version of the optimal stopping
task. As an illustration, imagine a person who wants to find
the cheapest airplane ticket, and offers vary in price from day
to day. The person is checking the actual price every day and
has to decide to accept or reject the ticket without having the
option to go back to a previously rejected offer. Moreover, the
search is limited in time because the ticket has to be bought
before the beginning of the trip. For this version, the optimal
solution is based on calculating the expected reward of the
remaining outcomes. From this expected reward, a threshold
is calculated for each option in the sequence. This threshold
is monotonically increasing when finding the minimum (as in
our example) or monotonically decreasing when finding the
maximum. If the value of the current option goes below (for
mimimum) or exceeds (for maximum) the threshold, the op-
tion should be chosen.

Previous studies (Lee, 2006; Guan, Lee, & Vandekerck-
hove, 2015; Guan & Lee, in press; von Helversen & Mata,
2012) found evidence that people use thresholds that change
over the position in an optimal stopping problem to make de-
cisions. Based on this finding, Guan and Lee (in press) con-
structed a descriptive model in which the thresholds on each
position were inferred on the level of individuals in order to
test whether people use different thresholds in changing envi-
ronments. One important finding from this line of research is
that the empirical thresholds indeed decrease monotonically
as the sequence progresses, as prescribed by the optimal so-
lution. However, many participants were systematically bi-
ased away from the optimal threshold. Finally, Guan and Lee
(in press) showed that the threshold depends on the nature of
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the environment: participants were generally more accurate
when rewards were generated from a distribution skewed to-
wards large rewards, consistent with a model in which thresh-
olds are higher for large-reward environments.

These descriptive models have provided important insights
into the dynamics of sequential choices but have neglected
the underlying psychological processes that guide human de-
cisions in such tasks. The goal of this study is to develop
a new approximately normative model for optimal stopping
that provides a psychological explanation for choice behavior
given the distribution from which the options are sampled,
the current value, and the number of remaining choices. This
model is loosely based on the optimal solution, which utilizes
the same information. However, in contrast to the optimal so-
lution it is not based on expected reward, but on expected
rank. We assume that individuals decide to accept or reject
each option based on an estimate of how likely it is that a
better option will appear in the remaining choices. Unlike
most earlier models, our rank-based model does not employ
a threshold on reward.

Optimal Model: Expected Reward
We consider a decision maker who encounters a sequence
of options with rewards denoted by x1, . . . ,xN and she wants
to find the minimum value in the sequence. If the decision
maker accepts option i, then the sequence terminates and she
receives xi; otherwise, she continues to the next option. When
the last option N is reached, it must be accepted. The optimal
policy is to choose option i when it goes below a position-
dependent threshold ti (which can be obtained by backward
induction, as described below). As shown by Gilbert and
Mosteller (1966), the optimal policy depends only on the dis-
tribution of rewards and the number of remaining choices. In
order to model possibly stochastic decisions, we relax this
deterministic model uses a logistic sigmoid policy with sen-
sitivity parameter q:

pi =
1

1+ exp{q(xi � ti)}
, (1)

where pi denotes the probability of accepting option i. Small
values of q produce more stochasticity in decisions, whereas
the policy approaches optimality in the limit q ! •.1

The optimal threshold ti is calculated in the following man-
ner: The threshold of the final item is 0, because the rules of
the task stipulate that the final item must be accepted if no
earlier item has been chosen. The thresholds for the previ-
ous items are determined by working backward from the fi-
nal item, using conditional expectations (Gilbert & Mosteller,
1966). First, we calculate the expected value of the final item.
This is the expectation of the overall probability distribution
from which the options are sampled, because the threshold

1It should be noted that the usual formulation of Equation 1 is
in terms of a policy to find the maximum value in a sequence. In
this case, q would have to be multiplied by -1. This also applies to
Equation 2.

of this item is 0. To maximize expected reward, one’s pol-
icy should be to accept a particular option if it is better than
the expected reward if one continues under the optimal pol-
icy. The second-to-last item should be accepted if its value is
greater than the expected value of the final item. This means
that the threshold of the second-to-last item is the expected
value of the last item.

The expected value of the second-to-last item is the ex-
pected value of the part of the probability distribution that is
better (in our case smaller) than the threshold for the second-
to-last item. The probability of this expected value is the
area under the probability distribution that is better than this
threshold. The overall expected reward at the second-to-last
position (and therefore the threshold for the third-to-last item)
is calculated as follows: we multiply the expected value for
the second-to-last item with its probability plus the expected
value of the last item multiplied with its probability (which is
equal to 1 minus the probability of the second-to-last item).
The remaining thresholds are calculated in the same way.

New Model: Expected Probability
Unfortunately, the optimal threshold calculation is computa-
tionally expensive due to its recursive structure. In fact, hu-
man behavior cannot be described adequately by the optimal
solution (e.g., Guan et al., 2015).

We propose to replace the threshold with a different mech-
anism. We argue that the decision maker estimates the prob-
ability t for observing a better option in the future. This es-
timate is used as the basis for a decision variable di. Specifi-
cally, the choice function for the new model is formulated as
follows:

pi =
1

1+ exp{q · (di �0.5)} . (2)

When di > 0.5, the agent believes that it is likely to encounter
a better option and therefore tends to reject the option. When
di < 0.5 the agent believes that it is unlikely to encounter a
better option and therefore tends to accept the option.

In order to calculate di, we first have to compute ti for po-
sition i. As mentioned above, we are using a task where the
goal is to find the smallest value. Therefore we compute ti
as the probability to encounter at least one value that is better
than the current option for the future positions as follows:

ti = Pi(9x j : x j < xi) = 1�
✓

1�F
✓

xi �µ
s

◆◆N�i

, (3)

where N is the number of the total tickets (in our study 10
tickets), and j stands for the positions of the remaining N � i
options. F(•) is the cumulative distribution function (CDF)
for a standard normal (i.e., Gaussian) distribution and µ and s
are the mean and standard deviation of the distribution from
which the options are drawn (in our experiment µ = 180 and
s = 20).

To gain more modeling flexibility, we introduce a parame-
ter a to account for individual differences in scaling the prob-
ability ti. Therefore, we calculate the rescaled probability as
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follows:

di =

8
<

:

0 , ti ·a < 0
ti ·a , 0 < ti ·a < 1

1 , ti ·a > 1
(4)

We illustrate the effect of the parameter a in Figure 1. The
dashed line for a = 1 shows di for each position, given that
the actual value is 167 and the remaining options are sam-
pled from a normal distribution with mean 180 and standard
deviation 20. Individuals that underestimate this probability
tend to stop earlier (a < 1) and people that overestimate the
probability (a > 1) stop later in the sequence.
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Figure 1: di (rescaled probability of observing a better option)
for a = 1 (in this case, di = ti), and for a = 1.5 (dotted line)
and a= 0.5 on each position with current ticket value 167 and
normal distribution with mean 180 and standard deviation 20.

Figure 2: Screenshot of the ticket-shopping task.

Experiment 1
The goal of Experiment 1 was to obtain a data set which could
be used to compare the expected probability model with the
optimal threshold model within a full information optimal
stopping task. One novel feature of our experimental design
was that we included a within-subjects manipulation of po-
sition for a specific value within a fixed sequence of tickets.
This allowed us to look at the probabilistic choice behavior
for one and the same value across positions.

We asked participants to solve an optimal stopping prob-
lem in the form of a computer-based ticket-shopping task.
Participants were told that they are planning a plane trip and
need to buy a ticket. Ticket values were presented sequen-
tially and the goal was to find the cheapest ticket. Once they
rejected a ticket, they could not return to this option. The in-
terface provided feedback about the rank of the chosen ticket
and a cumulative count of the collected points that had been
made for all of the completed trials (see Figure 2). Before
participants had to perform the shopping task, they learned
the distribution of values from which the tickets were drawn.

Materials and Methods
Participants We recruited 69 participants (mean age: 31
years, range: 19-62) on Amazon Mechanical Turk to partic-
ipate in the experiment. Participants gave informed consent,
and the Harvard Committee on the Use of Human Subjects
approved the experiment. Participants were excluded from
analysis if they accepted the first option in the sequence in
more than 95% of the trials since this would show that they
did not search at all. After applying these criteria, we in-
cluded data from 60 participants in the subsequent analysis.

Procedure In the first phase of the experiment, participants
experienced the distribution of the values. The procedure was
as follows: Participants encountered sequentially 50 ticket
values drawn from a normal distribution with mean 180 and
standard deviation 20. After every ten tickets participants had
to guess the value of the next ticket. This question was added
to ensure that participants learn the distribution and the cor-
rect answer to this question was the mean of the previous ten
tickets. After each guess participants were told the correct
response. At the end of the learning phase participants were
asked to complete a histogram (by dragging the bars) for ad-
ditional 100 tickets that could be drawn from the same distri-
bution. Participants received feedback by observing the cor-
rect distribution superimposed over their estimate (Goldstein,
2014). Visual inspection of the performance in the histogram
task suggested that participants learned the target distribution
fairly well.

In the second phase of the experiment participants per-
formed the ticket-shopping task. It started with a practice trial
followed by 120 test trials. In each trial participants searched
through a sequence of ten ticket values. For each ticket, they
could decide to accept or reject it at their own speed. Peo-
ple were aware that they could see up to 10 tickets in each
trial and they were always informed about the actual posi-
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tion and the number of remaining tickets (see Figure 2 for a
screen shot). It was not possible to go back to an earlier op-
tion after it was initially declined. Once they reached the last
ticket (10th) they were forced to choose this ticket. When par-
ticipants accepted the ticket, they received explicit feedback
about its rank and the points earned. Then participant moved
to next sequence of tickets.

Participants were paid according to their performance.
They received 3 points if they chose the best ticket (Rank 1)
and 1 point for the second, third, and forth-best ticket (Rank
2, 3, 4). Participants received a base payment of $4 and
earned between $0 and $6 additionally depending on their
performance in the task.

Within-Subjects Manipulation We manipulated 80 out of
120 sequences as follows: The rank order of the sequence
was kept constant and also the values were almost identical
within a range of ±1 point (see Table 1). Then we inserted
the value of 167 on position 3 (for 20 sequences), on position
5 (for 20 sequences), on position 7 (for 20 sequence) and on
position 9 (for 20 sequences) (see Table 1). In the following
we restrict our analysis to the responses to the tickets with
value 167 in the manipulated sequences. The remaining 40
sequences were chosen randomly to distract the participants
from the regularity of the 80 manipulated sequences.

Results
Manipulation Check We asked participants at the end of
the experiment if they noticed anything special about the se-
quences. Only four participants reported to have noted some-
thing, but it was not related to our within-subjects manipula-
tion.

Observable behavior Figure 3 shows the choice probabili-
ties for each individual when the value 167 was on position 3,
5, 7, and 9. The data suggest that participants decided prob-
abilistically on each position, and the probability of choosing
the same value increased with position.

To test this hypothesis quantitatively, we used a binomial
generalized linear mixed model for the individual choices
with fixed-effect for position (as categorical variable) and by-
participant random intercepts, random slopes for the fixed-
effect, and correlation among random terms. The model re-
vealed a significant effect of position, c2(3) = 83.44, p <
.0001. The estimated marginal means (EMM) for the differ-
ent positions exhibited a clearly increasing pattern: EMM3
= 53%, 95%-CI [43%, 63%], EMM5 = 69%, [61%, 76%],
EMM7 = 88%, [84%, 91%], and EMM9 = 99%, [97%, 99%].

Table 1: Manipulated Sequences in Experiment 1

1 2 3 4 5 6 7 8 9 10
174 186 167 211 178 181 187 195 209 157
175 186 192 210 167 180 188 193 210 158
175 185 191 211 179 181 167 194 209 157
174 187 191 210 178 180 187 195 167 158

Note. Values in bold were manipulated across sequences.

Table 2: Modeling Results of Experiment 1

Model Param Estimate BIC

Optimal q 0.04 (0.002,0.13) 4279

Expected Probability q 15.6 (8.7�16.3) 3200
a 0.59 (0.56�0.66)

Note. The value in the estimate column is the median across
participants, values in parentheses give the interquartile range.
Param = Parameter.

However, Figure 3 also shows that there was considerable
inter-individual variability in the slope of the increase.

Modeling Results Next we fit the two models to the data
using maximum-likelihood estimation. The optimal model
had one free parameter, q, and the expected probability model
had two free parameters, q and a. We applied the model
to the individual-level data with 80 data points per partici-
pant. Figure 3 shows the model predictions derived from the
individual-level maximum-likelihood parameter estimates of
both models.

Inspection of Figure 3 reveals a close fit between observed
and predicted data for the expected options model. In con-
trast, the predictions for the optimal model are in many cases
quite far from the observed data. Furthermore, in some cases
the optimal model even makes the clearly false prediction that
the probability to accept 167 decreases along positions. This
occurred when q took on negative values. Overall, the Figure
3 shows that the participants’ behavior is clearly not optimal
and that the expected probability model provides a consider-
ably better account than the optimal model.

The impression that the expected probability model pro-
vides a better account than the optimal model was corrobo-
rated by an analysis using the Bayesian information criterion
(BIC) presented in Table 2: the difference in BIC was over
1000. Table 2 also shows the median parameter estimates
for both models. For the expected probability model, we ob-
served a median a = 0.59, which shows that participants dis-
counted the probability for observing a better option.

Experiment 2
The goal of Experiment 2 was to collect a data set that would
allow us to test the out-of-sample predictive ability of the two
models. To this end we ran an experiment that was almost
identical to Experiment 1 on a new set of participants with
the only difference that we replaced the ticket value that was
repeated across sequences from 167 to 170. The mean and
standard deviation of the generating distribution remained at
180 and 20, respectively.

Materials and Methods
Participants 70 participants (mean age: 33 years, range:
20–71) were recruited on Amazon Mechanical Turk. Using
the same criteria as in Experiment 1 we excluded two partici-
pants and the following analysis is based on the remaining 68
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Figure 3: Individual choice probabilities and model fits for Experiment 1. Each panel shows the data from one participant. The
points show the choice probability on position 3, 5, 7, and 9 for a ticket with a value of 167. The solid lines show the predictions
of the expected probability model. The dashed lines show the predictions of the optimal model.

participants. As in Experiment 1, the visual inspection of the
performance in the histogram task showed no gross violations
from the target distribution.

Results
Manipulation Check 6 participants reported to have noted
something, but as in Experiment 1 reported irrelevant details
unrelated to our within-subjects manipulation.

Modeling Results To assess the predictive ability of the
models we used the median parameter estimates obtained
in Experiment 1 (see Table 2) to generate predictions for
the value 170 at positions 3, 5, 7, and 9 from both models.
These predictions as well as the choice probabilities aggre-
gated across participants are shown in Figure 4. As can be
seen, the expected probability model again provides a rela-
tively accurate account, despite the fact that the parameter
values were derived from a different group of participants and
from options with a slightly different value. For position 3 the
prediction is spot on. For positions 5, 7, and 9 the model pre-
dicts a larger acceptance rate than observed with the differ-
ence increasing across positions. In contrast, the predictions
of the optimal model are again relatively far off, with the only
exception being position 3.

Discussion
The primary goal of this work is to understand the psycho-
logical processes that are involved in the choice behavior in
optimal stopping tasks. We suggest that the decision to ac-
cept or reject is governed by the probability of observing a

better option in the future, and presented a computational
model that translates this probability into choice probabili-
ties. Our model predictions closely matched human choice
probabilities in two experiments. Importantly, the predictions
of the second experiment were generated using parameter val-
ues obtained in the first experiment showing that our model
is able to perform true out-of-sample prediction on the aggre-
gated level.

The important idea of our model is that we re-framed the
processes underlying behavior in optimal stopping tasks in
completely probabilistic terms. Instead of relying on a thresh-
old, individuals are assumed to estimate the probability of
better future options and base their decision on this probabil-
ity. It is a question for future research how this probability
is obtained. One obvious candidate would be sampling from
memory (e.g., Stewart, Chater, & Brown, 2006).

In our study participants learn the distribution of the ticket
values in the first phase of the experiment. We make this
assumption based on the idea that humans facing an optimal
stopping task (e.g. search for cheapest ticket, search for apart-
ment or partner) are usually familiar with the range of the op-
tion’s values they will encounter. In this manner we can also
minimize learning during the task, since tickets encountered
in the training phase are sampled from the same distribution
as in the testing phase. We verified the lack of learning during
the task by comparing the performance in the first half and the
second half of the problems.

Previous studies have found that in the original optimal
stopping problem, people often sample less than what an
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Figure 4: Out-of-sample predictive ability of the expected
probability model (solid line) and optimal model (dashed
line) against the aggregated choice data from Experiment 2.
Parameter values generating the predictions were taken from
Experiment 1 (see Table 2).

optimal strategy would advise depending on whether or not
search costs are assumed (Zwick, Rapoport, Lo, & Muthukr-
ishnan, 2003). This conclusion is consistent with our finding
that participants underestimate the probability for observing a
better option in the future (estimated parameter a < 1 for all
participants, see Table 2 and Figure 1) and therefore accept
too early. Moreover, individual differences in this tendency to
underestimate the probability of finding a better option could
be related to individual differences reported in related fields
such as risk aversion, ambiguity aversion, or delay discount-
ing.

Much of the previous research on optimal stopping prob-
lems has proposed formal models of the decision-making pro-
cess (e.g., Bearden et al., 2006; Gilbert & Mosteller, 1966;
Seale & Rapoport, 1997), although sometimes their evalua-
tion has taken the form of simulation than making inferences
from human data. The threshold model proposed from Guan
and Lee (in press) can describe the individual thresholds for
a problem with a specific length and distribution but makes
strong theoretical assumptions in order to make the determin-
istic threshold model probabilistic. Although these models
give a good insight into the dynamics of the decision making
in optimal stopping problems, they do not allow predictions
for different variants of the problem as e.g. different length
or different distributions. The main difference of our model
from most existing threshold models is that it uses the infor-
mation of the sampling environment and current option and
thus can be used to generate predictions for new environments
and new options such as we did for Experiment 2. Therefore,
our model provides a framework that allows a more princi-

pled approach for studying the effect of various external vari-
ables on behavior in optimal stopping tasks. For example,
one important finding is that explicit search costs lead to ear-
lier stopping (e.g., Seale & Rapoport, 1997). One possibility
is that such cost are reflected in a reduced a parameter. Al-
ternatively, they could require the inclusion of an additional
parameter or processes explicitly accounting for this.
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