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In many real life decisions, options are distributed in space and time,
making it necessary to search sequentially through them, often with-
out a chance to return to a rejected option. The optimal strategy in
these tasks is to choose the first option that is above a threshold
that depends on the current position in the sequence. The implicit
decision making strategies by humans vary but largely diverge from
this optimal strategy. The reasons for this divergence remain un-
known. We present a new model of human stopping decisions in
sequential decision making tasks based on a linear threshold heuris-
tic. The first two studies demonstrate that the linear threshold model
accounts better for sequential decision making than existing models.
Moreover, we show that the model accurately predicts participants’
search behavior in different environments. In the third study, we con-
firm that the model generalizes to a real-world problem, thus pro-
viding an important step towards understanding human sequential
decision making.
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Decisions that arise in everyday life often have to be made1

when options are presented sequentially. For example, search-2

ing for a parking spot, deciding when to take a vacation day, or3

finding a partner, all require that the decision maker accepts4

or rejects an option without knowing if future options will be5

more attractive. Decisions in such problems involve a trade-off6

between accepting a possibly suboptimal option prematurely7

and rejecting the current offer out of false hopes for better8

options in the future.9

Despite the importance of such decisions, relatively little10

work has been made toward characterizing the process by11

which humans decide to stop searching in natural settings of12

this task.13

Earlier research has focused on a simplified version of opti-14

mal stopping problems, the so-called secretary problem, where15

only the rank of the option relative to those already seen is16

shown (1–3) and only the overall best alternative is rewarded.17

In the secretary problem, the optimal strategy is to ascertain18

the maximum of the first 37% options and choose the next op-19

tion that exceeds this threshold (4). Empirical studies suggest20

that in general people follow a similar strategy but usually21

set the cut-off (i.e., from which point on they will accept an22

option that exceeds the previous options) earlier than the 37%23

prescribed by the optimal solution (1, 5).24

Some studies have investigated tasks closer to real sequen-25

tial choice problems by presenting the actual value of the26

option to the decision makers (6–10). In this version, the27

optimal is based on calculating the probability of winning on28

the later positions. From this probability, a threshold is calcu-29

lated for each option in the sequence as described by Gilbert30

and Mosteller (4, Section 3). Lee (6) estimated a family of31

threshold-based models and showed that most participants 32

decreased their choice thresholds as sequences progress. Al- 33

though people are overall quite heterogeneous in their search 34

behavior, they tend to cluster around the optimal solution 35

(7, 8). Importantly, these studies still kept the restriction that 36

only the best alternative is rewarded—a payoff function that 37

does not correspond well with everyday experiences. Humans 38

do find a mate, an apartment to live, or a ticket to fly to their 39

vacation destination, and thus receive some payoff, even if that 40

may not be the highest possible payoff. 41

In the present research, we propose a model of human 42

decision making in optimal stopping problems using payoffs 43

that are based on the actual values. In this variant of the 44

search problem, the optimal decision thresholds are calculated 45

based on the expected reward of the remaining options ((4, 46

Section 5b) and SI Appendix, Text A). This leads to a decision 47

threshold that changes notably nonlinear over the sequence. 48

In contrast, we propose that people rely on a mental short- 49

cut and adapt their thresholds linearly over the sequence. We 50

show that a model with this linearity assumption accurately 51

captures when people stop search and accept an option, even 52

in a real-world setting. Furthermore, this model allows us 53

to predict under which conditions people search more or less 54

than the optimal model, making it a useful tool to understand 55

human sequential decision making. 56

We first sketch a family of cognitive models for describing 57

behavior in optimal stopping problems. We then present re- 58

sults from three behavioral experiments that provide evidence 59

for the validity of the linear model in a laboratory setting as 60

well as in a real-world scenario. 61
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Computational models. We explain the computational models62

based on a typical optimal stopping problem that we also63

used in our first two experiments. The decision maker (here a64

customer) is planing a vacation and decides to buy the plane65

ticket online. Ticket prices vary randomly from day to day and66

the customer wants to find the cheapest ticket. The customer67

checks the ticket price every day and decides if she wants to68

accept or reject the ticket, without having the option to go69

back in time to a previously rejected offer. Search time is70

limited by her vacation schedule (i.e., 10 decisions per trial)71

and, once accepted, the search ends.72

More formally, we consider a decision maker who encounters73

a sequence of tickets with values denoted by x1, . . . , x10 and74

she wants to find the minimum value in the sequence. If the75

decision maker accepts ticket xi, the sequence terminates and76

she has to pay xi; otherwise, she continues to the next ticket.77

When the last ticket is reached, it must be accepted.78

All models assume that the decision maker relies on a prob-
abilistic threshold to make the decision to accept or reject a
ticket—i.e., ticket xi on position i is compared to a position
dependent threshold ti. This comparison yields an accep-
tance probability θi based on a sigmoid choice function with
sensitivity parameter β and

θi = 1
1 + exp{β(xi − ti)}

. [1]

Small values of β produce more stochasticity in decisions,79

whereas the policy approaches determinism when β →∞.80

We examine the setting of thresholds by comparing the81

performance of four different models.82

• The Independent Threshold Model (ITM) serves as our83

baseline. It assumes no dependency between the thresh-84

olds. It entails N independent threshold parameters85

t1, ..., tN , one for each position in the sequence, where86

the decision maker can decide to accept or reject an of-87

fer (at position N + 1 the ticket must be accepted). The88

thresholds can take any value across positions. The model89

maintains maximal flexibility and provides an upper limit90

how well any threshold model can describe a person’s91

decision given the assumption of a probabilistic threshold.92

• The Linear Threshold Model (LTM) postulates that the
thresholds are constrained by a linear relation to each
other and therefore are completely defined by the first
threshold t0 and the linear increase δ as the sequence
progresses:

ti+1 = ti + δ · i, [2]

This model entails three free parameters, the first thresh-93

old t0, the increase of the threshold δ and the choice94

sensitivity β.95

• The The Biased Optimal Model (BOM) is based on the
Bias-from-Optimal threshold model proposed by Guan
et al. (8), assuming that humans are using thresholds
that deviate systematically from the optimal thresholds..
The optimal thresholds t∗i for each position i are derived
by determining the expected reward of the remaining
options (derivation in (4, Section 5b) and in SI Appendix,
Text A). The model entails a systematic bias parameter γ
that reflects the divergence of the human threshold from
the optimal one. Additionally, the thresholds depend

on a parameter α that determines how much their bias
increases or decreases as the sequence progresses.

ti = t∗i + γ + α · i, [3]

When γ and α are set to 0, the thresholds represent the 96

optimal thresholds that lead to best performance. This 97

model is therefore defined by three free parameters, γ, α 98

and the choice sensitivity β. 99

• The Cut-off Model (CoM) is inspired by the optimal deci- 100

sion rule for the rank information version of the secretary 101

problem where the distribution of the prices is unknown. 102

It assumes that the DM has a fixed cut-off value k that 103

determines how long she explores in the beginning of the 104

sequence. The highest value seen in that initial sample 105

of k tickets is then set as her threshold, and the first 106

value that exceeds this threshold in the remainder of the 107

sequence is chosen. This model has two free parameters, 108

the cut-off value k and the sensitivity parameter β. 109

Models were implemented in a hierarchical-Bayesian statis- 110

tical framework using JAGS (11) (SI Appendix, Text B). 111

Experiment 1. We asked 129 participants to solve a computer- 112

based optimal stopping problem following the ticket-shopping 113

task described above. Tickets were normally distributed with 114

a mean value of $180 and a standard deviation of $20. In the 115

first phase, subjects learned the distribution using a graphical 116

method proposed by (12) (Methods). SI Appendix, Fig. S1A 117

shows that this procedure was successful in ensuring partici- 118

pants learned the distribution. 119

In the second phase, participants performed 200 trials of 120

the ticket-shopping task. In each trial, participants searched 121

through a sequence of ten ticket prices. For each ticket, they 122

could decide to accept or reject it at their own pace. Partici- 123

pants were aware that they could see up to 10 tickets in each 124

trial, and they were always informed about the actual position 125

and the number of remaining tickets (SI Appendix, Fig. S2E 126

for a screen shot). It was not possible to go back to an earlier 127

option after it was initially declined. If they reached the last 128

ticket (10th) they were forced to choose this ticket. When 129

participants accepted the ticket, they received feedback about 130

how much they could have saved if they had chosen the best 131

ticket in the sequence. Performance was incentivized based on 132

the value of the chosen ticket (Methods). 133

Behavioral results. Subjects earned on average 17.1 points (SD: 134

4.2) in each trial (maximum points = 20), which represents 135

a 6% loss on optimal earnings. Participants’ marginal accept 136

probabilities steadily increased as the sequence progressed 137

(Fig. 1A, black line), but differed systematically from the opti- 138

mal agent’s accept probability (Fig. 1A, yellow line). On the 139

second-to-last (9th) position, participants accepted the ticket 140

only with a 28%, 95%-CI [26%, 29%], probability, whereas 141

following the optimal policy would result in a significantly 142

higher acceptance rate of 50%. 143

Overall, subjects stopped earlier than optimal. The average 144

position at which a ticket was accepted was 4.7 (SD: 2.9), 145

whereas an optimal agent would have stopped at an average 146

stopping position of 5.2 (SD: 2.8). However, a closer look at 147

Fig. 1A reveals that whether subjects accept too early or too 148

late depends on the position: on earlier positions they accept 149

options although they should continue to search, whereas, if 150
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Fig. 1. (A) Probability to accept a ticket on each position across all prices. The dark line represents participant’s frequency to accept, the dashed yellow line an optimal agent‘s
probability to accept. (B) Participants’ probability to accept. Each line represents ticket prices ranging from the first quantile to the fifth quantile. Q1: Tickets in first quantile, Q2:
Tickets ranging from the first to the second quantile etc. The size of circles correspond to the number of data points on each position. (C) Estimated thresholds for the ITM with
9 free threshold parameters (solid blue line), the LTM with 2 free threshold parameters (dashed red line) and the BOM with 2 free threshold parameters (dash-dotted yellow line)
(D) Posterior predictive mean and 95% HDI of the LTM (dashed red line) and the BOM (dash-dotted yellow line) for Q1 to Q5, as indicated in (B). Data: solid black lines

they get to position 7, they continue searching even for options151

that should be accepted according to the optimal policy.152

Fig. 1B shows the accept probabilities conditional on ticket153

prices, split into the first five quantile ranges Q1 - Q5 (out154

of a total of ten quantile ranges). Qi is defined as the range155

of ticket prices from the 0.ith to the (0.i− 0.1)th quantile of156

the ticket price distribution. In this experiment, the ticket157

distribution corresponds to a Gaussian distribution with mean158

180 and standard deviation of 20. Accept probabilities for159

Q4 and Q5 did not reach 50% at position 9, in contrast to160

the optimal strategy that predicts much higher acceptance161

probabilities at this position.162

Our models did not assume any learning over trials. This163

assumption was supported by an analysis of performance across164

trials. A linear mixed model on points per trial with trial165

number as fixed effect and by-participant random intercepts166

and random slopes for trial number showed no significant effect167

of trial number, F (1, 64.00) = 0.02, p = 0.88.168

Modeling results and discussion. First, we checked whether169

the key assumptions of the modeling framework were sup-170

ported. We calculated, per participant and model, posterior171

predictive p-values (ppp) that compared misfit (i.e., deviance)172

of the observed data with misfit of synthetic generated data173

from the model. For the baseline model, ITM, this analysis174

indicated that the absolute fit was very good, and a proba-175

bilistic threshold adequately describes participants’ responses;176

ppp < .05 for only 8% of participants (SI Appendix, Fig. S3A).177

For the vast majority of participants the observed misfit was178

consistent with the assumptions of the ITM plus sampling 179

variability. 180

The performance of the LTM was almost identical to the 181

ITM, suggesting that the considerably more parsimonious 182

LTM (three free parameters for LTM compared to ten for 183

ITM) adequately describes behaviour in optimal stopping 184

tasks. The distribution of ppp-values of the LTM was almost 185

identical to the ITM (SI Appendix, Fig. S3A-B). Fig. 1D 186

provides qualitative evidence of the agreement between LTM 187

and data; the LTM adequately predicts accept probabilities 188

for each quantile at every position (see SI Appendix, Fig. S4 189

for agreement between ITM and data). Fig. 1C compares the 190

recovered thresholds of ITM and LTM and shows that the 191

ITM thresholds essentially form a straight line lying exactly 192

on top of the LTM thresholds. 193

The absolute fit of the BOM is clearly worse than for 194

ITM/LTM; ppp < .05 for 35% of participants (SI Appendix, 195

Fig. S3C). The source for this increased misfit can be seen 196

in Fig. 1D. Only for Q1 and early positions of Q4 and Q5 197

did the BOM provide an adequate account. Furthermore, the 198

recovered thresholds (Fig. 1C) of the BOM clearly differ from 199

the ITM in almost all positions. Results of the CoM are not 200

shown explicitly as its performance was extremely poor. All 201

ppp = 0; there was not a single posterior sample for which the 202

observed misfit of the CoM was smaller than for synthetic data 203

generated from the CoM. Furthermore, choices were essentially 204

random for CoM with βCoM = 0.02 [0.01, 0.06] (for the other 205

models, β ≈ 0.21). 206

Participants differed in their first threshold and slope pa- 207
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Fig. 2. Results of experiment 2: Empirical data appear in black lines and the posterior predictive means of the LTM in red lines. Bars represent the 95% HDI. The different lines
represent the tickets ranging in from the Q1 to Q5. Q1: Tickets in first quantile, Q2: Tickets between the first and second quantile etc. (A) Condition 1: Tickets are left skewed
distributed (PERT(40,195,200)) corresponding to a scare environment. (B) Condition 2: Tickets are normally distributed (PERT(90,140,190)). (C) Condition 3: Tickets are right
skewed distributed (PERT(120,125,400)) corresponding to a plentiful environment.

rameters estimated by the LTM. However, all slope parameters208

are larger than 0 indicating that all participants increased the209

thresholds over the sequence (see also SI Appendix, Text C).210

These results suggest that humans use a linear threshold211

when searching for the best option. In the present tests we212

found that the human performance is only 6% off from the213

performance of an optimal agent, indicating that the linear214

strategy performs quite well. Therefore, using linear thresholds215

could be an ecologically sensible adaptation to sequential216

choice tasks. However, it could also mean that the LTMs good217

performance might not generalize to new task environments,218

in which the linear model performs less well – an ability that219

would be crucial for the LTM to be a useful model of human220

behavior.221

Search behavior in Experiment 1 indicated that people de-222

viate from the optimal model depending on the price structure223

of the sequence: In trials with good options in the beginning224

people tended to accept them too early. However, in trials with225

few or no good options they continued search longer than the226

optimal model prescribed (SI Appendix, Fig. S5). Accordingly,227

in tasks with plenty of good options people might search less228

than optimal. However, in tasks in which good options are229

rare they might be tempted to search too long.230

To find out and further predict how people will adapt to231

the tasks, we conducted a simulation study comparing the232

optimal solution with a best performing linear model (using233

a grid search to find the best performing parameter values234

for the linear model) and an empirical study manipulating235

the distributions of ticket prices across three conditions: (1)236

a left skewed distribution simulating a scarce environment,237

(2) a normal distribution, (3) a right skewed distribution238

simulating an environment with plentiful desirable alternatives.239

As illustrated in SI Appendix, Fig. S6B, the simulation study240

showed that the optimal model predicts more search in a241

plentiful environment, whereas a linear model predicts more242

search in the scarce environment. Furthermore, the linear243

model predicts a stronger decline in performance in the scarce244

environment than the optimal model (SI Appendix, Fig. S6A).245

Experiment 2. To show that the LTM can capture people’s246

choice behavior across different tasks and allows us to predict247

when people will search too much or too little we conducted 248

a second experiment changing the distribution of options. 249

We manipulated the different task environments by sampling 250

tickets from (1) a left skewed (PERT∗(40,195,200)), (2) a 251

normal (PERT(90,140,190)) or (3) a right skewed distribution 252

(PERT(120,125,400)), representing a scarce, a normal and a 253

plentiful environment, respectively (SI Appendix, Fig. S1B-D, 254

red lines). Each participant was assigned to only one condition. 255

The final sample included 172 participants. The procedure 256

was identical to Experiment 1, consisting of a learning phase, 257

where participants got acquainted with the distribution (SI 258

Appendix, Fig. S1B-D, participant’s estimate in black lines), 259

and a testing phase. In the testing phase, participants had to 260

choose the lowest-priced ticket out of a sequence of 10 tickets 261

with 200 trials (Methods). 262

Behavioral results. Participants’ performance increased from 263

the left-skewed (scarce) environment to the right-skewed (plen- 264

tiful) environment (F (2, 268) = 114, p < .0001). As predicted 265

by the best performing linear model, the loss compared to 266

optimal performance was largest in the left-skewed condition, 267

where only few good tickets occur (SI Appendix, Fig. S6A). 268

The average search length decreased from the left skewed 269

scarce environment to the right skewed plentiful environment, 270

F (2, 268) = 11.5, p < .0001. This pattern also follows the pre- 271

dictions of the best performing linear model in the simulation 272

study but is in contrast to the optimal model’s predictions 273

(SI Appendix, Fig. S6B). Specifically, in the left skewed en- 274

vironment, where good tickets occur very rarely participants 275

searched too long compared to an optimal agent, whereas in 276

the environment where good tickets are abundant, participants 277

ended their search too early compared to the optimal strategy. 278

Modeling Results and Discussion. Modeling results replicate 279

the results from Experiment 1 and indicate that the LTM but 280

not the BOM performed extremely well (ppp < .05 for 7% 281

to 10% of participants across the three conditions for LTM, 282

∗The PERT distribution is a special case of the beta distribution defined by the minimum (a), most
likely (b) and maximum (c) values that a variable can take and an additional assumption that its

expected value is µ =
a + 4b + c

6
.
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but ppp < .05 for 20% to 55% of participants for BOM, SI283

Appendix, Fig. S7). The observed accept probabilities (Fig. 2A-284

C, black lines, where each line represents a ticket price within285

the specified quantile range) are adequately described by LTM286

predictions (red lines) on almost all positions and in all three287

environments. Moreover, the threshold parameters for the288

ITM are again on top of the threshold parameters estimated289

by the LTM in all the three environmental conditions (SI290

Appendix, Fig. S8A-C).291

These results indicate that humans use a linear threshold in292

optimal stopping problems, independent of the distributional293

characters of the task. However, this does not mean that people294

do not adapt to the task at all. Participants are responsive295

to task features and adapt their first threshold and the slope296

to the distributional characteristics of the task within the297

constraints of the linear model (SI Appendix, Fig. S8A-C).298

Experiment 1 and 2 show that the linear model reflects a ro-299

bust psychological process when deciding between sequentially300

presented options. However, in both experiments deciders were301

explicitly trained on the distribution of options, something302

not common in real life decision making. The next experiment303

tests if the linear strategy can also explain choices in a realistic304

optimal stopping task where initial learning is omitted.305

Experiment 3. The decision maker’s goal is to buy online prod-306

ucts at the lowest rate where prices for this product are pre-307

sented sequentially. We selected commodity products from308

different categories (e.g food, leisure, kitchen tools) and col-309

lected for each product a set of prices from Amazon.com. Only310

products with approximately normal price distributions were311

selected for a final set of 60 products (SI Appendix, Table312

S1). In the experiment, prices were sampled from a normal313

distribution, with a mean and standard deviation estimated314

from the real prices. All participants worked on 120 trials,315

divided into two blocks of 60 trials. In these two blocks, the316

60 products were displayed in a random order (each product317

was encountered twice). Participants were aware that they318

could see up to 10 prices in each trial, and we indicated the319

average price of each product on the screen to reflect that320

people often have an idea of familiar products’ prizes and to321

minimize individual differences in these. 322

Behavioral Results. Data from 95 participants were analyzed 323

and replicated the results from Experiments 1 and 2 (nor- 324

mal distribution condition). Again, participants accepted too 325

early, on average at position 4.6 (SD: 2.9). Comparing the 326

performance in detail to the optimal strategy showed that (SI 327

Appendix, Fig. S9) participants accepted too frequently at 328

the beginning of the sequence (i.e., too low threshold) and 329

searched too long towards the end of the sequence (i.e., too 330

high threshold). We again found no evidence for learning 331

across trials (linear mixed model on points per trial with trial 332

number as fixed effect and by-participant random intercepts 333

and random slopes for trial number showed no significant effect 334

of trial number F (1, 94) = 0.13, p = 0.72). 335

Modeling Results. To deal with the prices’ variability we nor- 336

malized all values using mean and SD prior to fitting our 337

models. We could replicate the results from Experiment 1 and 338

2, despite the fact that participants did not explicitly learn the 339

product’s prices beforehand: The LTM (10% of ppp < .05, SI 340

Appendix, Fig. S10A), but not the BOM (31% of ppp < .05, SI 341

Appendix, Fig. S10C), was able to capture the observed accept 342

probabilities accurately on each position and for each quantile 343

(Fig. 3B&C). Furthermore, threshold parameters estimated by 344

the LTM were very similar to threshold parameters estimated 345

by the ITM (SI Appendix, Fig. S11). 346

Discussion. In this paper, we designed a variant of an optimal 347

stopping task that allowed us to quantitatively characterize 348

the deviations of human behaviour from optimality. We found 349

that humans apply a simplifying strategy, where thresholds are 350

linearly increased over time. We implemented this assumption 351

in a computational framework and demonstrated that this 352

model not only provided an excellent fit to the data, it also 353

outperformed other models found in the optimal stopping liter- 354

ature. Furthermore, the linear threshold assumption makes a 355

non-trivial prediction about search length, which we confirmed 356

experimentally: Humans stop earlier in environments with 357

many desirable alternatives compared to scarce environments. 358
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Fig. 3. (A) Screenshot of the product purchasing task. (B and C) Results of experiment 3: (B) Empirical data appear in solid black lines and the posterior predictive means of
the LTM in dashed red lines. (C) Empirical data appear in solid black lines and the posterior predictive means of the BOM in dashed yellow lines. Bars represent the 95% HDI.
The different lines represent the product prices ranging from the first quantile to the fifth quantile. Q1: Product prices in first quantile, Q2: Product prices between the first and
second quantile, Q3: Product prices ranging from second to third quantile, etc.
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These results contrast with the prediction from the optimal359

model. Finally, in a online product purchase paradigm we360

could show that our model generalizes to real-world sequential361

choice problems. Understanding how humans make sequential362

decisions will help quantify the conditions under which people363

may succeed or fail in such tasks.364

But why are humans relying on a linear strategy in adapt-365

ing their thresholds when an optimal policy is nonlinear? For366

one, our findings correspond well with recent studies demon-367

strating that human choice behavior in related explore-exploit368

paradigms is well described by a linear threshold rule (13, 14).369

But a human linearity bias seems to be more general. Indeed,370

a tendency to assume linear relationships has been reported371

in a range of domains such as function learning (15, 16) and372

reasoning (17–19). Crucially, simple strategies do not neces-373

sarily perform badly. In particular in uncertain and complex374

environments, simple heuristics can be efficient and powerful375

tools if they are adapted to the structure of the environment376

(20, 21). In this context, linearity could be considered as an377

adaptation of the human mind to its environment.378

Materials and Methods379

380

Participants. We recruited 438 participants (272 females; age range:381

18-62; N1 = 144, N2left = 92, N2normal = 110, N2right = 92,382

N3 = 100 in Experiments 1, 2 and 3, respectively) on Amazon383

Mechanical Turk to participate in the experiments. Participants384

gave informed consent, and the Harvard Committee on the Use385

of Human Subjects approved the experiments. Participants were386

excluded from analysis if they accepted the first option in a trial387

in more than 95% of the trials. After applying these criteria, we388

included data from 499 participants in the subsequent analysis389

(N1 = 129,N2left = 86,N2normal = 102,N2right = 84,N3 = 95).390

Task. In Exp. 1 and 2, participants performed the same online ticket391

shopping task that consisted of a learning and a testing phase. In the392

learning phase, participants experienced the distribution from which393

the ticket prices were drawn. In Exp. 1, the distribution from which394

the values were sampled was normal with N (µ = 180, σ = 20). The395

procedure was as follows (SI Appendix, Fig. S2A-D): Participants396

encountered sequentially 50 ticket prices drawn from the predefined397

distribution. After every ten tickets, participants had to guess the398

average value of the tickets seen so far. After each guess, participants399

were told the correct response. At the end of the learning phase400

participants were asked to complete a histogram (by dragging the401

bars) for an additional 100 tickets that were drawn from the same402

predefined distribution. Participants received feedback by observing403

the correct distribution superimposed over their estimate (12).404

In Exp. 2, we used three conditions to realize three dif-405

ferent distributional environments, a left skewed distribution,406

PERT(40,195,200), a normal distribution, PERT(90,140,190), and407

a right skewed distribution, PERT(120,125,400). The procedure of408

the learning phase was identical to Exp. 1, except that we removed409

the section about reporting the mean for the skewed distributions410

(SI Appendix, Fig. S2B). Visual inspection of the performance in411

the histogram task suggested that participants learned the target412

distributions well (SI Appendix, Fig. S1).413

In the second phase of Exp. 1 and 2, participants performed the414

ticket-shopping task. It started with a practice trial followed by 200415

test trials. In each trial participants searched through a sequence of416

10 ticket prices randomly drawn from the predefined distribution.417

For each ticket, they could decide to accept or reject it at their own418

speed. People were aware that they could see up to 10 tickets in419

each trial and they were always informed about the actual position420

and the number of remaining tickets (SI Appendix, Fig. S2E). It421

was not possible to go back to an earlier option after it was initially422

declined. If they reached the last (10th) ticket they were forced423

to accept this ticket. When participants accepted the ticket, they424

received explicit feedback about how much they could have saved425

by choosing the lowest-priced ticket in the sequence (SI Appendix, 426

Fig. S2F). 427

Participants were paid according to their performance. In each
of the 200 trials there was a maximum of 20 points to earn. The
participants received the maximum number of 20 points if they
chose the lowest-priced ticket and 0 points for the worst ticket in
the sequence. The payoff for a ticket that lied between the lowest-
priced and the highest-priced was calculated proportional to the
distance to the lowest-priced ticket in the sequence. The exact
calculation for the points in each trial i was as follows:

pointsi =
20 · (ticketmax − ticketchosen)

ticketmax − ticketmin
, [4]

where ticketmax represents the most expensive ticket in the sequence 428

and ticketmin the cheapest ticket in the sequence. Participants 429

received a base payment of $4 and earned between $0 and $4 430

additionally depending on their performance. 431

In Exp. 3, participants performed an online product shopping 432

task that started with a practice trial followed by 120 test trials 433

divided into two blocks containing the same sixty products. In each 434

trial, they encountered a product and searched trough a sequence of 435

ten prices. Prices were randomly drawn from a normal distribution 436

with a mean and standard deviation estimated from realistic prices 437

collected from Amazon.com. Participants received a base payment 438

of $2 and a performance contingent bonus between $0 and $4. 439

Data Availability. Data and modeling scripts are available on the 440

Open Science Framework: https://osf.io/wqth3/. 441
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