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On the Measurement of Criterion Noise in Signal Detection Theory:
The Case of Recognition Memory
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Traditional approaches within the framework of signal detection theory (SDT; Green & Swets, 1966),
especially in the field of recognition memory, assume that the positioning of response criteria is not a
noisy process. Recent work (Benjamin, Diaz, & Wee, 2009; Mueller & Weidemann, 2008) has
challenged this assumption, arguing not only for the existence of criterion noise but also for its large
magnitude and substantive contribution to individuals’ performance. A review of these recent approaches
for the measurement of criterion noise in SDT identifies several shortcomings and confoundings. A
reanalysis of Benjamin et al.’s (2009) data sets as well as the results from a new experimental method
indicate that the different forms of criterion noise proposed in the recognition memory literature are of
very low magnitudes, and they do not provide a significant improvement over the account already given

by traditional SDT without criterion noise.
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Signal detection theory (SDT; Green & Swets, 1966) represents
one of the most successful mathematical models in psychology,
with implementations ranging from fields such as perception (e.g.,
Swets, Tanner, & Birdsall, 1961), recognition memory (e.g.,
Wixted, 2007), categorization (e.g., Maddox & Bohil, 1998), rea-
soning (e.g., Dube, Rotello, & Heit, 2010), and decision making
(e.g., Pleskac, 2007). Comprehensive introductions to the SDT
framework can be found in Macmillan and Creelman (2005) and
Wickens (2002).

In very general terms, the SDT framework can be stated as
follows: Consider a decision maker who observes enumerable
events, defined as trials, in which a specific class of stimulus is
presented (target trials) or no stimulus from that class is presented
(distractor trials). For every trial, an evidence value concerning its
nature (target trial vs. distractor trial) is available to the decision
maker. Evidence is defined as a continuous random variable, with
distinct probability distributions for the different kinds of trials.
The decision maker translates the evidence values into discrete
observable responses by establishing response criteria along the
evidence scale. These response criteria define the different ranges
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of evidence values that are mapped onto each available response
alternative (e.g., “target” vs. “distractor”). The characteristics of
the evidence distributions in conjunction with the established
response criteria result in a predicted probability distribution for
the observed responses.

One of the most common assumptions in the SDT framework is
that the positioning of response criteria along the evidence scale
does not randomly vary across trials, that is, that response criteria
are stationary unless consciously and purposely shifted by the
decision maker. This invariance assumption contrasts with the
variability that is assumed for stimulus-related (representational)
processes and is somewhat implausible given the difficulties in-
herent in maintaining and updating response criteria positions
(e.g., Verde & Rotello, 2004) and the response dependencies that
have repeatedly been observed (e.g., Gilden & Wilson, 1995;
Mueller & Weidemann, 2008; Treisman & Williams, 1984), sug-
gesting a trial-by-trial adjustment of response criteria. Also, this
invariance assumption contrasts with the assumptions made by
more complex models, such as the Ratcliff diffusion model (Rat-
cliff, 1978), that simultaneously account for accuracy and response
time performance and that allow random changes in response-bias
parameters on a trial-by-trial basis as well (see also Ratcliff &
Starns, 2009). Despite its plausibility, the variability of response
criteria—usually referred to as criterion noise—has proved to be
extremely difficult to assess empirically in the SDT framework
given that its inclusion almost invariably results in an unidentified
model (Mueller & Weidemann, 2008; Rosner & Kochanski, 2009).
Figure 1 provides a generic depiction of the SDT model in the
presence and absence of the criteria invariance assumption. The
terms criterion noise and criteria variability are used interchange-
ably.

Note that the notion of criteria variability that is addressed here
concerns random changes in criteria positioning that result from
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Figure 1.

General illustration of the signal detection theory model under different assumptions regarding

stimulus evidence and response criteria. The black lines depict the evidence for the different stimulus classes,
whereas the gray lines depict the different response criteria. In Panels A and B, stimulus evidence is assumed
to vary according to defined probability distributions, whereas in Panel C, it is assumed to have no variance.
Regarding response criteria, in Panel A, they are assumed to be fixed to specific values, whereas in Panels B and
C, they are assumed to vary according to defined probability distributions.

the latter being assumed to be a noisy process, so that discussions
regarding its evaluation and plausibility do not encompass the
changes in response criteria (or the absence of such changes) that
are observed when participants are tested with different types of
stimuli or in different test contexts (e.g., Benjamin & Bawa, 2004;
S. D. Brown & Steyvers, 2005; Morrell, Gaitan, & Wixted, 2002;
Singer & Wixted, 2006; Stretch & Wixted, 1998). These two kinds
of criterion differences are related (for a detailed discussion, see
Benjamin, Diaz, & Wee, 2009) but ultimately concern distinct
phenomena (stimulus or context-based changes vs. random
changes). To avoid confusion, changes in response criteria caused
by the testing of different types of stimuli or different test contexts
are referred throughout this article as criteria shifts.

The presence of criteria variability can severely distort the
description of observed performance if left unaccounted (see Ben-
jamin et al., 2009; Malmberg & Xu, 2006; Mueller & Weidemann,
2008; Ratcliff, McKoon, & Tindall, 1994; Treisman, 1987), a
possibility that has serious implications for the various fields that
rely on SDT but especially for the field of recognition memory in
which most of the work produced relied and continues to rely on
receiver operating characteristic (ROC) functions obtained through
the use of a confidence rating scale (for reviews, see Wixted, 2007;
Yonelinas & Parks, 2007). ROC functions consist of the sets of
responses (hit and false alarm rates) that are predicted for differ-
ently positioned response criteria (see Wickens, 2002). Benjamin
et al. (2009) and Mueller and Weidemann (2008) demonstrate how
criteria variability can distort ROCs in different manners, leading
to potentially erroneous interpretations of results.

The present article is organized as follows: First, the challenges
for the SDT framework raised by the studies of Balakrishnan
(1998, 1999) and Van Zandt (2000) are described, challenges that
motivated a reassessment of the assumption of criteria invariance
and the development of models with the specific goal of measuring
criterion noise. Moreover, the two SDT accounts dedicated to the

measurement of criterion noise in recognition memory, namely the
models proposed by Mueller and Weidemann (2008) and Benja-
min et al. (2009), are reviewed and evaluated. Their advantages
and limitations are thoroughly discussed as they provide guidelines
for what SDT accounts of criterion noise should achieve. An
alternative account to the one by Benjamin et al. is then proposed
along with an experiment that exemplifies its use. Furthermore,
the sensitivity of both Benjamin et al.’s approach and the
present one is evaluated, revealing the strong limitations that
the measurement of criterion noise in the context of recognition
memory is subjected to.

Relating Criterion Noise and Violations of SDT:
The Decision Noise Model (DNM)

Although the issue of criteria variability in SDT was extensively
studied in the past (e.g., Treisman, 1987; for a review, see Benja-
min et al., 2009), it received very little attention in the field of
recognition memory. The impact of criterion noise on individuals’
performance became a concern in this field when it assumed a
central role in the explanation of supposed violations of SDT
assumptions reported in the field of visual perception by
Balakrishnan (1998, 1999) and in recognition memory by Van
Zandt (2000).

Balakrishnan (1998, 1999) investigated one of the fundamental
assumptions of SDT, that individuals evaluate the evidence value
of presented stimuli and can assess the likelihood of a stimulus
belonging to a specific stimulus class given the perceived evi-
dence. When responses are collected by means of a bipolar rating
scale, the relative proportions of rating response m for stimulus
classes A and B can be used to calculate the log-likelihood ratio of
a stimulus belonging to either class given rating response “m,”

P(stimulus = A|“m”
LL = l()g<P(stimulus = B|“m”)

). Values below 0 indicate that it
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is more likely that a stimulus belongs to class B, whereas values
above 0 indicate a greater likelihood that the item belongs to class
A. When LL = 0, it is equally likely that the stimulus belongs to
either class. When considering an unbiased decision maker with an
above-chance performance, LL should be above 0 for response
ratings associated with classification “A” and should be below 0
for response ratings associated with classification “B.” In conse-
quence, for an unbiased decision maker, the two response ratings
adjacent to the scale midpoint (e.g., in a 6-point scale, these would
be the ratings “3” and “4”) should define an interval that includes
the point of equal likelihood (LL = 0). When responses are biased,
this interval should not include the value 0, as for both response
ratings adjacent to the scale midpoint LL < 0 or LL > 0, depending
on the direction of the response bias. The latter prediction stems
from the notion that when responses are biased, the classification
criterion is attached to an evidence value for which one stimulus
class is more likely than the other.'

Balakrishnan (1998, 1999) tested this prediction of SDT using a
perceptual task in which participants had to correctly classify one
of two possible stimuli (two horizontal lines of different lengths)
as either “short” or “long” using a confidence scale. Response bias
was manipulated by means of either a base rate or a payoff
manipulation. Results indicated that despite the bias manipulation
and the indication of biased responding by standard SDT mea-
sures, the interval defined by the least confidence ratings still
included the point of equal likelihood, suggesting that the re-
sponses were still unbiased. Balakrishnan claimed that these re-
sults demonstrate that the classical SDT framework is fundamen-
tally flawed and that alternative modeling approaches that
contemplate the judgments’ response times need to be considered
to obtain an appropriate characterization of individuals’ perfor-
mance. Despite several criticisms of Balakrishnan’s claims (Korn-
brot, 2006; Treisman, 2002; but see Balakrishnan & MacDonald,
2002), no SDT model was proposed that could account for the
observed data.

In the field of recognition memory, Van Zandt (2000) tested the
closely related assumption that when manipulating response bias,
the different response criteria are established on a common evi-
dence axis. If this assumption holds, then the ROCs obtained for
each bias condition should perfectly overlap. Participants were
tested across five bias conditions, either by manipulating item base
rates or payoffs. In each condition, participants gave their re-
sponses using a confidence scale. The obtained ROCs did not
overlap as expected, and the parameter estimates indicated a con-
sistent change in target variance. More specifically, as the bias to
respond “Old” increased, the variance of evidence values for
targets became significantly smaller. Similarly to Balakrishnan
(1998, 1999); Van Zandt (2000) argued that these violations of
SDT assumptions indicate the need to move away from this
classical approach and toward more complex models that contem-
plate response times as well, namely sequential sampling models
(e.g., Ratcliff, 1978). Overall, these results from the fields of
perception and memory represented a major challenge for the SDT
approach.

To account for these violations of SDT, Mueller and Weide-
mann (2008) proposed the DNM, a SDT model that distinguishes
three sources of variability: stimulus, representational, and criteria
variability.” Let S indicate stimulus class, with S =  used to denote
target stimuli and § = d distractor stimuli.

In the DNM, the stimulus distributions are defined as Gaussian
distributions whose parameters (means and standard-deviations)
exactly correspond to the different stimulus classes’ objective
characteristics:

fs ~ N(ws, o) (1)

For example, Mueller and Weidemann (2008) reported an experi-
ment in which participants had to indicate the category that presented
stimuli (sets of asterisks) belonged to, with both stimulus categories
being defined by Gaussian distributions with established parameter
values (e.g., i, = 54, o, = 5, and p, = 46, o, = 5).

Representational variability describes the noisy processes that
operate during stimulus encoding and introduce additional vari-
ability to the cognitive representation of the stimulus. By defini-
tion, this variability is assumed to be unbiased and normally
distributed, so f,,,, ~ N(0, o,,,). The convolution of the stimulus
and representational variability distributions results in the distri-
butions of evidence for stimuli (eg) that characterize the SDT
model:

Jes~fs @ frop @)

where ® denotes the convolution operator.

Criteria variability describes changes of criterion positions
across trials, which are assumed to be independent, each following
a Gaussian distribution. This variability can be further subdivided
into classification noise (the variability of the binary classification
criterion, which sets the boundary between category A and cate-
gory B responses) and confidence noise (the variability of confi-
dence criteria that delimits the response regions on the confidence
scale). Concerning the parameters for the response criteria distri-
butions, two variance parameters are assumed, one assigned to the
classification criterion (o) and the other to the confidence
criteria (0. Also, Mueller and Weidemann (2008) additionally
assumed that confidence criterion means are symmetrically dis-
tributed around the classification criterion (see Mueller & Weide-
mann, 2008, Appendix A).

In the DNM, the perceived evidence values are compared to
response criteria in a sequential and conditional manner: Let c,,
with m = —M,..., =1, 0, 1,..., M denote the 2M + 1)
response criteria that map perceived evidence values onto confi-
dence responses (R) on a (2M + 2)-point rating scale. In this scale,
R = 1and R = 2M + 2 correspond to judgments with maximum
confidence that an item is a distractor or a target, respectively.?

First, the evidence provided by a stimulus is compared to the
classification criterion c,. If the evidence value is smaller than ¢,
then it is compared sequentially with nominally below criteria

! Additional conditions need to hold to make these predictions, such as
that the interval between response criteria adjacent to the criterion respon-
sible for the binary classification needs to be rather small (see Balakrish-
nan, 1999). The discussion of these conditions is beyond the scope of this
article.

2 Mueller and Weidemann (2008) used the terms “distal stimulus distri-
bution” and “perceptual variability.” Instead, we use the terms “stimulus
distribution” and “representational variability,” respectively.

3 Although we only address the model for confidence scales with an
even number of points, the model can be adapted to scales with an odd
number of points (see Mueller & Weidemann, 2008, p. 491).
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(e.g., c_,, c_,, and so forth) until a criterion that is smaller than the
evidence is observed, producing the rating response corresponding
to that criterion. If the evidence is lower than all sampled criteria,
then response rating 1 is given. On the other hand, if the evidence
is larger than ¢, then the evidence is sequentially compared with
the nominally above criteria (e.g., ¢,, ¢,, and so forth) until a
criterion value that is larger than the evidence is met, leading to the
rating response associated with that criterion. When the evidence
value is larger than all sampled criteria, response rating (2M + 2)
is produced.

The probability of a response rating i given the presentation of
a stimulus from class S is given by:

Pm=u$=fmuﬂhl—mynw

m=0

P(R = ilS) = f Lo @F, 0 [] (=F,(x)dx

m=i—M—1
for2=i=M+1

i—M=2

P(R = i|S) = f Lo —F, , ) [] F, () dx

m=0

forM+2=<=i=2M+ 1

P(R=2M +2|S) = f fs O] TF. () dx

m=0

where

mm=fm@a

— o0

The specification of these three sources of variability (stimulus,
representational, and criterion variabilities) provides a comprehen-
sive characterization of processes within the SDT framework that
can be used to explain results that so far were considered to be
incompatible with SDT. Unfortunately, this detailed account
comes with a cost, as in its original form the model is not
identified, leading to the need of imposing parameter restrictions.
The model becomes identified by setting the representational vari-
ability parameter o,,, equal to zero. A consequence of this restric-
tion is that the evidence distributions directly correspond to the
stimulus distributions, which are in turn specified by the experi-
mental settings.

This state-of-affairs can be relatively inconsequential for some
instances but can be problematic in others. For instance, for the
experiment reported by Mueller and Weidemann (2008), as well as
Balakrishnan’s (1998, 1999) data sets, the stimulus distributions
are fully specified a priori, meaning that restriction of the repre-
sentational variability parameter to zero still does not compromise
the identifiability of the ratio between classification and confi-
dence noise, a central aspect in the account of Balakrishnan’s
results. A different picture emerges in the case of the recognition
memory data of Van Zandt (2000). Items presented in research on
recognition memory are merely classified as previously studied or

not studied, meaning that there is no a priori information on
within-category variability that can be assigned to the stimulus
distributions given that the stimulus variability is a latent charac-
teristic. Contrary to the case of perception, in which it is possible
within certain limits to describe the relationship between stimuli
and their evoked internal responses (e.g., Lu & Dosher, 2008), for
higher-order cognitive domains such as recognition memory, there
is no ready manner in which to establish a link between stimuli and
internal evidence values. The solution found by Mueller and
Weidemann for these cases was to fix the stimulus means to
arbitrary means (e.g., m, = 45 and n, = 54) and to assume
extremely low, virtually inexistent standard deviations (e.g., 0, =
o, = .01). These restrictions effectively eliminate any overlap
between evidence distributions and concentrate most probability
mass within a small interval, and approximate the use of Dirac
delta functions as evidence distributions (85). The Dirac delta
function is a density function that places all probability mass on a
single point, therefore not having any variance or spread (see
Rosner & Kochanski, 2009). The restriction of the evidence dis-
tributions to single points leads to a simplified model:

PR=15) = []e.,
m=0

0

) ] 6., for2=i=m+1,

m=i—M—1

PR=iS)=(1-0

Ci-M-2.

i—M=2

P(R = l‘S) = (l - ec,—Mﬂ)(l - efo) H ecm

m=1

forM+2=i=2M+1,

and

P(R=2M+2|5)=(1-6,)]]0

m=1

Cm

where

4&5ﬂ)m§0

ey,

ecm - —
(I)<P«s M) =0

g,

Cm

with ®(+) denoting the cumulative density function of the standard
normal distribution. A depiction of the restricted DNM model is
provided in Panel C of Figure 1. Parameter 6, designates the
probability that the sampled classification criterion is larger than a
stimulus evidence value. Each parameter 6, with m > 0 quantifies
the probability that confidence criterion m is smaller than a stim-
ulus evidence value. Conversely, parameters 6, with m < 0 each
correspond to the probability that confidence criterion m is larger
than the stimulus evidence value.

Although it specifies a well differentiated set of processes that
underlie individuals’ performance, the particular DNM that is
ultimately fitted to the data thereby assumes that performance is
driven by evidence-response mapping processes. Whereas tradi-
tional SDT assumes that there is evidence variability within stim-
ulus classes and no variability in evidence-response mapping pro-
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cesses, the restricted DNM adopts the completely opposite
approach as the only parameters that are to be estimated concern
response criteria. In fact, the restricted DNM becomes a discrete-
state model that can be specified within the multinomial process-
ing tree model class (Klauer, 2010).

The restricted DNM was fitted to data from the experiment
reported by Mueller and Weidemann (2008), as well as from the
previous studies by Balakrishnan (1998, 1999) and Van Zandt
(2000), providing a satisfactory account. Whereas for the first two
cases the evidence distributions were fixed to correspond to the
respective stimulus distributions, in the latter case the evidence
distributions were set to arbitrary values that effectively assumed
no overlap, as discussed previously. As predicted by Mueller and
Weidemann, when criteria variability exists and classification
noise is much smaller than confidence noise, supposed violations
of SDT principles such as the ones reported by both Balakrishnan
and Van Zandt can effectively be described by the model. Al-
though the model restrictions do not provide a joint assessment of
the variability of both mnesic and response processes, the overall
results demonstrate the important role that response processes can
have on individuals’ performance and the risks these processes
pose in terms of model performance if unaccounted for.

Despite the merits of the DNM, it is important to highlight its
shortcomings: First, the model cannot provide separate measures
for the variability of stimulus and response processes, as one of
them has to be fixed a priori. The account provided by Mueller and
Weidemann (2008) precludes the measurement of mnesic pro-
cesses, as the data are described solely by means of response
variability processes. Although the original goal of the DNM was
to demonstrate how response processes could account for apparent
violations of SDT principles, the model is ultimately not able to
provide an account of how the different memory and response
processes contribute to the observed responses, limiting its future
use.

Furthermore, the validity of resulting parameter estimates is not
fully ascertained, as differences in classification and criterion noise
estimates can be obtained even in the absence of any kind of
criteria variability. Consider a recognition memory experiment in
which individuals respond to 100 target trials and 100 distractor
trials using a 6-point scale. Given the unidentifiability of DNM, we
follow Mueller and Weidemann (2008) and fix target and distrac-
tor values, assuming that there is no stimulus-related variability
(fix p, and p, to arbitrary values, with o, = o, = 0). In this
context, consider an individual data set, whose response frequen-
cies directly follow (no sampling variability introduced) an equal-
variance signal detection model (n, = 1, p, = —1,0,=0,=1)
with symmetrical, equally spaced response criteria (¢ = {—1.50,
—0.75, 0.00, 0.75, 1.50}) and without criterion noise.

For such data, the restricted DNM (with p, = 54, p, = 45)
provides a virtually perfect fit (G*(5) = 0.08), with maximum
likelihood parameter estimates for classification and confidence
noise standard deviations of 4.50 and 7.54, respectively. Further-
more, restricting the classification and confidence noise parame-
ters to be equal results in a significant increase of badness of fit
(AG*(1) = 6.29, p < .05).

If the variances for target and distractor evidence distributions
differ, the differences between criterion parameter estimates be-
come even more extreme. Consider the previous data-generating
model with the only change that o, = 1.25, a value close to the

ones typically encountered in the literature (e.g., Ratcliff et al.,
1994). The goodness-of-fit deteriorates, with G*(5) = 1.52 (p =
.91), with estimates of classification and confidence noise standard
deviations of 5.00 and 9.11, respectively. Again, fixing both cri-
terion noise parameters to be equal leads to a statistically signifi-
cant detriment of the model’s goodness-of-fit (AG*(1) = 7.71, p <
.01).

This means that for cases in which the data-generating models
are as simple as they can be within the SDT framework, with no
criteria variability being present, the restricted DNM parameter
estimates indicate (statistically significant) differences between
classification and confidence noise, differences that are similar to
the ones reported by Mueller and Weidemann (2008). This result
raises questions regarding the validity of the parameter estimates:
If such differences between classification and confidence noise
result from simple examples in which no criteria variability is
present at all, then it is not clear how much trust one can place on
parameter estimates obtained from real data sets whose generating
processes are unknown and in all likelihood more complex. To
make matters clear: The issue here is not the large values of criteria
variability, as they result from model restrictions that force the
observed results to be accounted by criteria variability processes,
but the differences in the parameter estimates of classification and
confidence noise that emerge even in cases where no criterion
noise is present.

Overall, the account of recognition memory data provided by
the restricted DNM has several shortcomings: Although it provides
an explanation for the apparent violation of SDT assumptions and
highlights the importance of response-related processes, the model
cannot separate the contributions of representational (e.g., mnesic,
perceptual) and response variabilities, and its parameter estimates
do not seem to provide a valid account of data-generating pro-
cesses defined within the SDT framework. Still, the model’s merits
and shortcomings are informative regarding the features that are
expected from a SDT model that can account for the variability of
response criteria.

Measuring Both Mnesic and Response Variability: The
Ensemble Recognition Approach

In an extensive and careful review of the literature, Benjamin et
al. (2009) discussed the theoretical importance of SDT models
incorporating criterion noise and proposed a recognition memory
paradigm that allows for the measurement of the variability in both
mnesic and response processes. The proposed paradigm, termed
the ensemble recognition task, consists of the presentation of test
items in groups or ensembles of variable size, with items within
one group being either all old or all new. Assuming that individ-
uals integrate the evidence provided by the different items within
an ensemble into a single evidence value (consequently affecting
the shape of the target and distractor distributions), and assuming
furthermore that criterion noise is unaffected by differences in
ensemble size, it becomes possible to obtain separate estimates of
these two sources of variability. Three models with different
information integration rules were considered by Benjamin et al.:
An averaging rule model, a summation rule model, and a maxi-
mum rule model (the OR model). The first two models represent
possible ways of integrating evidence (thus permitting the estima-
tion of criterion noise), whereas the third assumes that the items



462 KELLEN, KLAUER, AND SINGMANN

within an ensemble are evaluated separately. The measurement of
the variability in both mnesic and response processes becomes
possible because the information integration rules cause the evi-
dence distributions to change across ensembles in a very specific
manner (see Figure 2 for a depiction of the averaging model).
These predicted changes permit the estimation of criterion noise,
as the presence of criteria variability will affect them.

Restricted versions of these models were also considered, by
assuming the absence of criterion noise, and/or that mean response
criteria did not shift across the different ensemble sizes. The latter
restriction stems from previous work that shows that individuals
do not shift their response criteria when tested with different types
of items or in different test conditions, despite the fact that those
changes would be beneficial and that individuals are encouraged to
shift them (e.g., Benjamin & Bawa, 2004; Morrell et al., 2002;
Singer & Wixted, 2006; Stretch & Wixted, 1998).

The model with the best performance, namely a model that
assumes an averaging rule and that mean response criteria do not
shift across ensembles, suggests that criterion noise variability is
extremely high when compared to the variability of target and
distractor distributions. Accordingly, the descriptions of underly-
ing processes that have been obtained so far by means of SDT
models without criterion noise would be severely distorted.

The proposed paradigm and its associated models represent an
important contribution to the field of recognition memory, as this
is the first approach in the field that effectively allows for the
variability of memory and response processes to be jointly esti-
mated. The ability to account for possible distortions caused by
criterion noise represents a major advantage, having the potential
to provide new insights regarding the underlying processes and

leading to reinterpretations of several phenomena that have been
extensively studied in this field (for reviews, see Malmberg, 2008;
Wixted, 2007; Yonelinas & Parks, 2007).

Nevertheless, there are several issues with the model analyses
conducted by Benjamin et al. (2009) that question the reported
conclusions. The issues are as follows: (1) The restriction of
response criteria across ensembles is problematic given its impli-
cations in terms of model predictions, (2) the evidence for criterion
noise provided by Benjamin et al. is heavily influenced by these
response criteria restrictions, (3) the inspection of the parameter
estimates for these restricted models indicate their implausibility,
and (4) the data reported by Benjamin et al. are not undisputedly
in favor of models that include criterion noise.

SDT Models for the Ensemble Recognition Task

Let & denote the ensemble size condition, n,, the corresponding
ensemble size, and ¢, ; denote the ith response criteria (with i =
1,...,I) in ensemble condition A. Note that in the absence of
criterion noise, parameters c,, ; denote the position of the response
criteria, whereas in the presence of criterion noise, they denote
their mean positions. Also, note that the response criteria are based
on confidence rating responses from a (I + 1)-point scale, with
confidence levels separated by response criteria. Furthermore, let
(w,, 0,) and (.4, 0, represent the mean and standard deviation for
the target and distractor evidence distributions, respectively, and
o, the standard deviation of the response criteria (the criterion
noise). There are two important differences from the DNM: (a)
The parameters of the evidence distributions refer to the represen-
tational processes and are not determined by objective character-

/N

__

Ensemble Size
H 1@ 204

/N

O~

Figure 2. Depiction of the changes in the ensemble evidence distributions across ensemble sizes, as predicted

by the averaging model.
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istics of the stimuli; and (b) the response criteria are not evaluated
sequentially, and only one criteria variability parameter is as-
sumed. Without loss of generality, it is assumed that p, = 0 and
o, = 1. Note that p,, 0. = 0, and o, > 0. Finally, let R denote the
confidence rating response, with R = 1 and R = I + 1 denoting the
maximum confidence responses that the stimulus is a distractor
and a target, respectively.

Two kinds of parameter restrictions were considered: (1) that
criterion noise is non-existent (o, = 0) and (2) that (mean) re-
sponse criteria are fixed across ensemble size conditions (¢, ; =
Cy; = ... = cy,; forall i).

The averaging model is defined as follows:

— ¢
P(R=i+1]5) = & 2L 3)
o s
—+ o
n,
The summation model:
Myls = Cpi
PR=i+1|5) = | ——= 4
w=ivim=of Gt @

Unlike in Equation 3, when (mean) response criteria are not
allowed to shift across ensemble sizes, the mean of the distractor
distribution () in Equation 4 cannot be fixed to 0 without loss of
generality. The reason for this stems from the fact that for the
summation model, increases in ensemble size lead to changes in
the positioning of both target and distractor distributions relative to
the response criteria. If one assumes that the response criteria are
constant across ensembles, the value to which p, is fixed deter-
mines the model’s predictions, as further explained below. This
problematic issue led Benjamin et al. (2009) to not consider a
summation model in which mean response criteria do not shift
across ensemble sizes (although a model in which response criteria
shift by a factor of n,, across ensemble sizes is considered in their
Appendix C).

Note that if one assumes that criterion noise is non-existent
(o. = 0) and that no restriction is imposed on response criteria,
then the averaging and summation models become the same model
(see Benjamin et al., 2009, p. 96).

Given that in this case, both averaging and summation rules are
indistinguishable, this restricted model is referred to as the inte-
gration model.

The OR model precludes the existence of criterion noise and
assumes that instead of integrating the evidence provided by the
items in the ensembles, individuals evaluate items separately,
responding according to the maximum evidence value provided by
a single element:

c i— np
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Exploring and Adjusting the Parameterization of the
Summation Model

As previously discussed, Benjamin et al. (2009) did not consider
a summation model that assumes fixed mean response criteria
across ensemble sizes. This means that among the candidate mod-
els, the averaging model was the only model with criterion noise
in which the response-criteria shift restriction was evaluated. The

reason for this omission rests on the fact that for the summation
model increases in ensemble size lead to changes in the positioning
of both target and distractor distributions relative to the response
criteria, so that when response criteria are not allowed to shift
across ensembles, the value to which ., is fixed has a critical role
in determining the model’s predictions.

If ., = 0, then the model predicts positive shifts (by a factor of
n,) of the target distribution while the distractor distribution re-
mains stationary. Also, both distributions’ variances increase
(which occurs for this and the other parameterizations). This leads
to the prediction that an increase of ensemble size should result in
an increase of hits and the extremity of their associated ratings, but
also in a greater proportion of false alarms as well as more extreme
confidence ratings in distractor rejection, given the increase in
distractor variance.

On the other hand, if it is assumed that ., is negative, as it is

P W . .
when p, = 3 and p, = 5 (where . is the distance between the

means of the distributions), then increases in ensemble size would
result in a symmetrical shift of both distributions, leading to an
increase of both hits and correct rejections, as well as a greater
extremity of their associated confidence ratings.

One can also assume that w, is fixed to some arbitrary positive
value, which would translate into an increase in the familiarity for
both distributions as ensemble size increases, leading to greater
proportions of both hits and false alarms, as if participants’ re-
sponses became increasingly liberal.

Among these three possibilities for fixing w, the use of a
negative value, symmetrical to p, can be considered as the most
plausible, as it predicts that larger ensembles lead to greater
accuracy for both studied items and distractors as well as more
extreme confidence ratings associated to the responses given,
which is consistent with computational models of memory that
assume that increases in the evidence available lead to a greater
differentiation between targets and distractors (e.g., Criss &
McClelland, 2006). We include the summation model with this
specific parameterization of target and distractor distributions in
the set of candidate models, as this allows the model to be tested
(in a relatively plausible manner) when assuming fixed response
criteria means across ensemble size. Again, note that this param-
eterization issue only exists when response criteria are restricted.

Same Versus Different Response Criteria Across
Ensemble Sizes

As previously mentioned, in parallel to the question of whether
criterion noise has an important role in adequately describing
recognition memory performance, Benjamin et al. (2009) tested
the possibility that response criteria do not shift across ensemble
sizes, a possibility that stems from previous findings in the liter-
ature indicating the individuals’ reluctance to shift response crite-
ria positions in different test conditions or for different classes of
test items (e.g., strong and weak targets), even when they are
encouraged to do so (e.g., Benjamin & Bawa, 2004; Morrell et al.,
2002; Singer & Wixted, 2006; Stretch & Wixted, 1998). It is
important to note that all the SDT models considered that provide
estimates for criterion noise can do so even when possible differ-
ences in response criteria are permitted. This means that imposing
restrictions on response criteria is not necessary for the assessment
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of criterion noise values. The restriction of response criteria cer-
tainly leads to more parsimonious models, but the parsimony is not
without costs, as explained next.

Restricting (mean) response criteria to not shift across ensem-
bles leads to undesired consequences in terms of model predic-
tions: Benjamin et al. (2009) pointed out the problems that this
restriction raises for the summation model, but they missed the
problems that it also entails for the averaging model. In the
averaging model, changes in ensemble size only affect the vari-
ances of target and distractor distributions, decreasing them as
ensemble size increases. Not allowing response-criteria shifts leads
to the prediction that unless ¢, ; = u, and ¢, ; = ., (Which would
mean that for all ensemble sizes, at least 50% of the target and
distractor trials are expected to be correctly classified with maxi-
mum confidence), the proportion of correct responses made with
maximum confidence decreases as ensemble size increases. In
other words, better evidence leads to less confident responses. For
example, consider averaging model with parameters p, = o, = 1,
o. =0, and ¢,, = 1.50 for all h. The expected proportions of
maximum confidence hits (rating / + 1) for ensembles of size 1,
2, and 4 are .31, .24, and .16, respectively. This strong prediction
is not only implausible, as it not only goes against previous
findings in the literature that show increases in confidence along
with increases in dicriminability (e.g., Ratcliff et al., 1994), but it
is also inconsistent with the data reported by Benjamin et al. (see
Benjamin et al., 2009, Table 1). Unfortunately, unlike in the case
of the summation model, these predictions cannot be dealt with by
an alternative parameterization of the averaging model. In addi-
tion, note that criterion noise counteracts the prediction of less
confident responses. If o. = 0.5 for the example above, the
expected proportions of maximum confidence hits are .33, .28, and
.24 for ensemble sizes 1, 2, and 4, respectively. If . = 1, then the
expected proportions are .36, .34, and .33. When fitting data that
are inconsistent with this model’s prediction—which is the case
with Benjamin et al.’s data sets—the criterion noise parameter
might be inflated to attenuate the discrepancies between model
predictions and observations, with the possibility of distortions in
additional parameters not excluded. Given that this inflation would
result from implausible model predictions enforced by the
response-criteria shift restriction, it is perhaps better to focus the
estimation of criterion noise on cases where no restriction is
imposed, as the restriction will most likely result in the contami-
nation of parameter estimates for the above reasons.

The inflation of the criterion noise parameter due to the
response-criteria shift restriction is further exemplified with a
simulation exercise: Consider the averaging model without crite-
rion noise, with parameters w, = 1 and o, = 1. Additionally,
assume that participants have different response criteria across
ensembles. To avoid choosing arbitrary changes in response cri-
teria, let us assume that response criteria change in a principled
manner, namely according to predefined likelihood ratios, a hy-
pothesis that finds some support within the SDT literature (e.g.,
Glanzer, Hilford, & Maloney, 2009; Hautus, Macmillan, & Ro-
tello, 2008). The log-likelihood ratio values adopted for the re-
sponse criteria are {—0.80, —0.30, 0.00, 0.30, 0.80}.%

The predicted response proportions obtained with these param-
eter values were multiplied by the individuals’ sample size in
Benjamin et al.’s (2009) study and were fitted by the averaging
models that restrict response criteria across ensembles, with and

without criterion noise. The models’ performance is assessed with
corrected Akaike information criterion (A/C,; Burnham & Ander-
son, 2002) and the Bayesian information criterion (BIC; Schwarz,
1978). For the data-generating model, parameter values are per-
fectly recovered (as no sampling variability is introduced) with
AIC, = 37.78 and BIC = 88.28, values that simply correspond to
the penalty factors attributed to the model for its number of
parameters and the sample size. Regarding the models with re-
stricted response criteria, the model with criterion noise performs
the best, with AIC. = 32.94 and BIC = 57.64, but returns highly
distorted (and numerically unstable) parameter estimates (w, =
28.10, o, = 0.01, and o, = 19.32), exemplifying that criterion
noise is inflated when response criteria are fixed across ensemble
sizes. The model without criterion noise performs the worst, as
AIC,. = 43.00 (but BIC = 64.70), although it provides a better
parameter recovery (., = 1.08, o, = 1.00). In addition, this
example also shows that the wrong model can be preferred by the
model selection measures used. Note that other aspects ignored in
this example—such as different generating parameter values, sam-
pling variability, and model misspecification—are likely to lead to
additional complications, which means that these results do not
imply that AIC,. and BIC punishment factors are in general dis-
proportionate for these models.

Overall, the restriction of (mean) response criteria across en-
sembles seems to be an unpromising option, as it leads to implau-
sible model predictions that potentially distort parameter estimates.
Note that this limitation could not be assessed in the results
originally reported, as no parameter estimates for the different
candidate models were provided by Benjamin et al. (2009).

A Reanalysis of Benjamin et al.’s (2009) Data Sets

In the study reported by Benjamin et al. (2009), 19 participants
were tested with the ensemble recognition task, with ensembles of
size 1, 2, and 4. There were 60 trials in each ensemble condition,
equally divided between target and distractor trials. We fitted the
several cases of the averaging, summation, and OR models, for a total
of nine models, using the maximum likelihood method, to the aggre-
gated and individual data sets. Note that analyses of the aggregated
data were not originally reported by Benjamin et al., but we include
them because despite the risks of data distortions (e.g., Estes &
Maddox, 2005), they are useful when assessing parameter estimates
for the different models—estimates that might be distorted for indi-
vidual data sets given the small number of trials (see Cohen, Sanborn,
& Shiffrin, 2008). The model fitting procedures were implemented in
R (R Development Core Team, 2011), and the R scripts are made
available in the supplemental materials. Model performance was
assessed by means of AIC, and BIC. Additionally, we include a
summation model with the response-criteria shift restriction, using the
above-described parameterization.

Regarding model performance results, summed over the 19 indi-
vidual data sets (see Table 1), they are similar to the averaged ones
reported by Benjamin et al. (2009). Model selection measures (AIC,.

“ For the averaging model, if one assumes that o, = 1 and that response criteria
are positioned according to predefined log-likelihood ratios (LL,), it can be shown
by means of simple algebraic manipulations that the positioning of response

o . M LL;
criteria across ensembles is given by C),; = =4 .
2 W,
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Table 1
Goodness-of-Fit and Model Selection Results for Benjamin et al.’s (2009) Data Sets
Individual data sets Aggregated data sets
Restriction type Model G? df AlC, BIC G? df  AIC, BIC
Without mean response criteria restrictions ~ Averaging-o,. 265.34" 228 1,030.06 2,041.33 20.25 12 56.45 166.72
Summation-o,. 266.43° 228 1,031.15 2,042.42 20.63 12 56.83 167.10
Integration 273.38 247 991.16 1,950.70 20.63 13 54.81 158.97
OR 286.60° 247 1,004.38 1,963.93 28.54" 13 62.72 166.88
With mean response criteria restrictions Averaging-o,. 604.88" 418 924.88 1,394.21 93.56" 22 109.60 158.66
Averaging 879.27° 437 1,157.64 1,569.93  386.51" 23 400.54 443.47
Summation-o,. 603.88" 418 923.88 1,393.21 76.23" 22 92.27 141.33
Summation 834.55" 437 1,112.92 1,52522 26852 23 28255 325.48
OR 1,460.36" 437 1,738.735  2,151.03  957.29" 23 971.32 1,014.25

Note.

The values under the label “individual data sets” are the sums of the individuals’ values. These results for the individual data sets thereby represent

a single model with different parameters for each individual. The upper half of the table shows the results when mean response criteria are allowed to vary

between ensemble sizes; the lower half shows the results when mean response criteria are fixed to be equal across ensemble sizes. The affix “-o;

. indicates

the models that assume criterion noise. When mean response criteria are not restricted (upper half), the averaging and summation model without criterion
noise are identical, referred to as the integration model. AIC,. = corrected Akaike information criterion; BIC = Bayesian information criterion; OR model =

the maximum rule model for which criterion noise is per definition absent.
.
p < .05.

and BIC) indicate a preference for models that allow for criterion
noise but do permit response-criteria shifts. Despite being a small
difference, the summation model performs better than the averaging
model, which corroborates the plausibility of the chosen parameter-
ization. However, note that all models with the exception of the
integration model are rejected by the data when using the G? statistic
(p < .05).

Response-criteria shift restriction. The evaluation of the
response-criteria shift restriction indicates mixed results, depending
on the method used and the assumptions regarding criterion noise:
AIC, and BIC tend to indicate a preference for the response-criteria
shift restriction, although this preference is not consistent across
models and levels of data analysis: For the averaging model, when
criterion noise is assumed, the response-criteria shift restriction is
preferred for the individual data sets (AIC,: 15 individuals, BIC: 19
individuals) and summed individual results (AAIC. = —105.17,
ABIC = —647.11), but contradictory preferences are found in the
aggregated data (AAIC,. = 53.15, ABIC = —8.06). A different pattern
of results is found when criterion noise is assumed to be absent, as the
response-criteria shift restriction is preferred less frequently for indi-
vidual data sets (AIC,: 7 individuals, BIC: 16 individuals), contradic-
tory preferences are obtained in the summed individual results
(AAIC, = 166.48, ABIC = —380.77), and a rejection is found in the
aggregate data AAIC, = 345.72, ABIC = 284.50). A similar pattern
of results is obtained with the summation model (see Table 1).

In contrast, evaluating the differences in goodness-of-fit (AG?) via
null-hypothesis testing results in an overall rejection of the response-
criteria shift restriction, independently of the model: For the averaging
model with and without criterion noise, the restriction was rejected for
nine and 14 individuals, respectively, whereas for the summation
model with and without criterion noise, significant results were ob-
tained for six and 15 individuals, respectively. For both the summed
individual results and the aggregated data set, the response-criteria
shift restriction is rejected in all models (all p < .01).

The evaluation of the response-criteria shift restriction across
ensembles strongly depends on the method used and the adopted
criterion noise assumptions: With criterion noise in the model,

AIC, and BIC prefer the restricted models; without criterion noise,
the pattern is mixed; null-hypothesis tests reject the restriction
consistently. These results, in addition to the problems previously
pointed out suggest that the response-criteria shift restriction
should not be taken into consideration when attempting to measure
criterion noise. As shown below, this restriction plays a funda-
mental role in the conclusions reached by Benjamin et al. (2009).

Evaluation of criterion noise. ~ When testing for the presence
of criterion noise, an interesting pattern of results emerges: The
results favor the inclusion or exclusion of criterion noise, depend-
ing on whether the response-criteria shift restriction is imposed.
This pattern is found independently of the method, model, or level
of data analysis that is adopted. For the case of the averaging
model, when response criteria are not allowed to shift across
ensembles, the inclusion of criterion noise finds support in the
individual data sets (AIC.: 16 individuals, BIC: 15 individuals),
summed individual results (AAIC,. = 232.76 and ABIC = 175.72),
and the aggregate data (AAIC. = 290.94 and ABIC = 284.81). In
contrast, when no response criteria restriction is imposed, criterion
noise does not find any support in the individual data sets (AIC,.:
1 individual, BIC: O individuals), summed individual results
(AAIC, = —38.90 and ABIC = —90.63), or the aggregate data
(AAIC. = —1.64 and ABIC = —17.76).

The same conclusions are reached when using null-hypothesis
testing:> When imposing the response-criteria shift restriction, the

3 In such testing, the null hypothesis (¢, = 0) lies on the boundary of the
alternative hypothesis (o, > 0). In these circumstances, the sampling
distribution of the likelihood-ratio test statistic AG* no longer follows a
X distribution with the appropriate number of degrees of freedom, but a *
distribution, which consists of a weighted mixture of x? distributions with
different number of degrees of freedom (Self & Liang, 1987; Shapiro,

1 1
1985). For a single individual/aggregated data set, X* ~5xg + Exf, whereas

o2 N NN 2 2.
for the summed results of N data sets, x>~ > CACTLE Note that x; is a

distribution that concentrates all probability mass on 0.
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hypothesis (o, = 0) is rejected for 16 individuals, as well as for the
summed results (AG? = 274.16, p < .01) and the aggregate data
(AG? = 276.10, p < .01). When no such restriction is imposed, the
hypothesis (o, = 0) is only rejected for one individual and is not
rejected for the summed results (AG® = 8.04, p = .56) and
aggregate data (AG” = 0.38, p = .27). A similar pattern of results,
both with AIC_/BIC and null-hypothesis testing, is obtained with
the summation model (see Table 1).

From these analyses, it becomes clear that the contribution of
criterion noise reported by Benjamin et al. (2009) is critically
dependent on the presence of the response-criteria shift restriction,
a restriction that is not essential for the effective estimation of
criterion noise, despite being motivated by previous findings (e.g.,
Stretch & Wixted, 1998). To make matters worse, this restriction
leads to a series of complications in both the averaging and
summation models, making its implementation undesirable, as
previously discussed.

Parameter estimates. So far, these models were discussed
in terms of goodness-of-fit results and model parsimony (ac-
cording to AIC, and BIC), disregarding the estimated parameter
values. Note that the purpose of this modeling enterprise is to be
able to obtain separate measurements for the different processes
operating. Given the theoretical meaning that can be attributed
to the parameters (e.g., w, and o,; Wixted, 2007), it is important
to assess their values across the different models and restric-
tions.

The results presented in Table 2 indicate that the response-
criteria shift restriction has a critical role in determining the

Table 2
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best-fitting parameter values. The parameter estimates for the OR
model, as well as for the averaging and summation models without
criterion noise and with response criteria restrictions, are omitted
for the sake of brevity. As can be seen in Table 2, the response-
criteria shift restriction frequently leads to extreme and numeri-
cally unstable values of w,, o, and o.. Note that both o, and o,
estimates are to be directly compared with the standard deviation
of the distractor distribution (o), which is set to 1 for scaling
purposes. These parameter estimates are implausible in terms of
the theoretical meaning given to SDT parameters in the recogni-
tion memory literature (e.g., Wixted, 2007), where the larger
variability is sometimes attributed to variability in the encoding
process itself. If the reported parameter estimates are taken at face
value, then it would mean that a variable encoding process during
study induces a variability in the evidence distribution that is
several orders of magnitude larger than the variability present prior
to study. For example, the o, estimate for participant 7 with the
restricted averaging model is 56.87 times larger than o, This
possibility also fails to find any support in simulations done with
more refined computational models of recognition memory, where
reasonable values of encoding variability lead to much smaller
differences in variability between the two evidence distributions
(e.g., Shiffrin & Steyvers, 1997, p. 149). Additionally, the range of
the parameter estimates is so broad that it is difficult to find any
common scaling among participants. For the restricted averaging
model, p, ranges from 0 to 115.24, and o, ranges from 0.01 to
131.78.

Parameter Estimates for Benjamin et al.’s (2009) Individual and Aggregated Data Sets for Three Selected Models

Averaging model

Summation model

Integration
Not restricted Restricted Not restricted Restricted model
Participant [TH o, T, . o, [ M, o, T, [TH o, [ . o,
1 0.00 1.47 0.00 0.00 2.04 1.09 0.00 6.96 9.61 0.00  54.81 100.55  0.00 1.47
2 0.36 1.46 0.00 9.06 12.81 20.71 929 32,62  41.10 17.86  56.24 74.18  0.36 1.46
3 0.20 1.21 0.00 0.29 1.29 0.68 2.39 9.24 18.65 7.09 2178 74.68  0.20 1.21
4 0.59 1.42 0.13 0.74 1.65 0.53 0.62 1.46 054 2544  44.04 77.16  0.58 1.40
5 1.20 1.28 0.00 40.81 2412 2437 1.73 1.66 1.40 1.47 1.13 1.72 1.20 1.28
6 2.24 2.28 0.84 56.26 41.05  30.77 1.43 1.80 0.00 1.25 1.48 1.48 1.42 1.80
7 37.99  30.27 18.97 96.00 56.87  53.39 1.35 1.58 0.00 1.10 1.26 0.44 1.35 1.58
8 0.95 1.10 0.00 4.11 0.07 3.12 1.31 1.29 136 3637 2413 6298  0.95 1.10
9 0.76 1.38 0.00 30.44 32.08  28.89 0.90 1.51 0.95 12.52 10.63 3092 0.76 1.38
10 1.53 0.01 2.85 21.12 0.01 42.22 0.33 0.98 0.00 0.34 0.99 068 033 098
11 0.94 1.74 1.31 291 4.39 4.48 0.41 1.21 0.00 12.93 13.56 6534 041 1.21
12 0.58 1.15 0.04 3.14 0.01 3.94 0.73 1.33 1.13 10.59 14.85 27.86  0.58 1.15
13 1.53 1.18 0.17 4.52 1.84 2.00 1.48 1.18 0.00  43.57 13.02 57.25 1.48 1.18
14 1.18 1.17 0.77 23.01 7.00  21.77 0.73 1.07 0.00 1.22 1.39 233 073 1.08
15 1.43 2.43 0.90 56.99 71.57  50.44 0.82 1.70 0.00 1.15 2.30 229  0.82 1.70
16 1.38 1.92 0.00 115.24 131.78  59.31 5.70 7.04 5.33 14.44 14.69 35.30 1.38 1.92
17 222 7.00 0.00 1.83 4.00 037 2020  62.68 14.06 1.86 3.50 145 222 7.00
18 1.14 1.33 0.42 31.25 15.47 24.21 0.94 1.24 0.00 2.30 2.23 3.84 0.94 1.24
19 0.23 0.85 0.06 0.35 0.80 0.58 0.25 0.73 0.94 0.46 0.01 342 023 085
Aggregated 0.66 1.35 0.24 52.69 54.18 5942 0.62 1.32 0.00 2.56 4.08 722 0.62 1.32
Note. Given their extreme values, some estimates are numerically unstable. Therefore, we report the estimates that provided the best goodness-of-fit

results out of 50 fitting runs. For the model referred to as not restricted, the mean response criteria are free to shift between ensemble sizes. Mean response
criteria are fixed to be equal for the restricted models. When criterion noise was fixed to 0 and the response criteria were free to shift across ensemble sizes,
averaging and summation models collapse into the integration model. Parameter estimates for the maximum rule model (the OR model), and for the
averaging and summation models with both response criteria and criterion noise restricted, are omitted due to space restrictions.
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The estimates for the aggregated data sets provide mixed results,
as the estimates for the averaging model are still very large,
although the ones for the summation model approach more com-
monly observed values. It may be that these extreme parameter
estimates are in part caused by the small number of observations
per individual (see Macmillan, Rotello, & Miller, 2004), which can
lead to inaccurate estimates. When inspecting the data matrix
resulting from Benjamin et al.”’s (2009) experiment, it can be seen
that out of 684 cells (19 participants X 36 response categories),
425 (62%) have frequencies smaller than 6, which is known to
compromise parameter estimation and testing on data following a
multinomial distribution (e.g., Bishop, Fienberg, & Holland, 1975,
Chapter 12). Still, the averaging model estimates for the aggre-
gated data suggest that the small number of trials is probably not
the sole cause of these issues.

Establishing upper bounds on parameter values—such as p,,
o, = 4, for example—-could be seen as a way to deal with these
extreme parameter estimates, although it does not represent a true
solution to this problem as it would simply mask it. Upper bounds
can be useful when dealing with occasional outliers, but in the
present case, most of the parameter estimates are extreme: These
upper bounds would be reached for 68% and 53% of the individ-
uals with the restricted averaging and summation models, respec-
tively. This would impose a ceiling that compromises the charac-
terization of at least half of the participants in this data set and is
likely to render the estimates useless as measures of the processes
underlying participants’ performance.

When the response-criteria shift restriction is not imposed, the
number of cases with extreme parameter estimates drops dramat-
ically, which suggests that in these cases, the extreme estimates
were caused by the response-criteria shift restriction. Also, the
estimates for o. become rather low for several individuals, which
explains the non-rejection of the null hypothesis o, = 0. Regard-
ing the integration model, which assumes no criterion noise, there
are virtually no cases of extreme parameter estimates. The excep-
tion is participant 17, whose data vector has 21 empty cells out of
36, which compromises any reliable model fitting. If the extreme
parameter estimates somehow represented an adequate description
of the latent evidence distributions, then one would not expect the
response criteria restriction to lead to such large differences in
parameters ., and o,. The fact that large differences are observed
strongly suggests that the extreme parameter estimates are the
outcome of imposing response criteria restrictions that are not
consistent with the processes generating the data.

Overall, the results confirm the suspicions that were raised
regarding the impact of response criteria restrictions: Not only do
they frequently lead the models to return unrealistic parameters
estimates, they also have a decisive and undesired role in the
assessment of criterion noise. A possible reason for the poor
performance of the restricted models is that the remaining free
parameters attempt to counteract the implausible predictions that
the response-criteria shift restriction imposes, thereby compromis-
ing the validity of parameter estimates. Note that if mean response
criteria do in fact shift as a function of ensemble size, a restricted
model can compensate for this to some extent by inflating the
parameter for criterion noise, as previously shown.

Discussion.  Benjamin et al. (2009) claimed that criterion
noise assumes high magnitudes, a result that could potentially lead
to a reinterpretation of several findings so far reported in the

literature (e.g., response conservatism; Thomas & Legge, 1970).
Our reanalysis points out serious problems that compromise the
original conclusions: Criterion noise only makes a significant
contribution when response criteria are not allowed to shift across
ensembles, a restriction that introduces problematic predictions in
both the averaging and the summation model and that ultimately
leads to extreme parameter estimates that are difficult to interpret
in terms of the model’s theoretical principles. Once this problem-
atic restriction is lifted and response criteria are allowed to shift
across ensemble sizes, criterion noise simply fails to make a
significant contribution to the account already given by traditional
SDT.

One of the most important points that this reanalysis makes is
that descriptive parsimony in terms of AIC,., BIC, or any other
model selection measure cannot be a researcher’s sole yardstick.
Descriptions not only need to be as simple as possible, they also
need to be interpretable, and the parameter estimates provided by
the restricted models are somewhat challenging when it comes to
attribute to them some sort of psychological meaning. One of the
main problems with the parameter estimates is that they are based
on very few trials, which combined with strong assumptions such
as the integration rules or stability of criterion noise across ensem-
bles® can lead to severely distorted results. Some of these problems
can potentially be dealt with by means of a Bayesian hierarchical
modeling approach (e.g., Pratte, Rouder, & Morey, 2010), al-
though its implementation would require more participants than
are available here.

Additional issues regarding Benjamin et al.’s (2009) model and
conclusions were raised by DeCarlo (2010), who showed that the
effects of criterion noise on SDT parameter estimates are heavily
dependent on the manner in which the model is parameterized and
how criterion noise is ultimately introduced, as a different param-
eterization from the one adopted by Benjamin et al. would only
lead to reduced estimates of discriminability (DeCarlo, 2010, p.
309). In any case, it is possible a priori that Benjamin et al.’s
specific parameterization of criterion noise would have provided a
better account of the data than the SDT model without criterion
noise. As it turns out, it does not, unless problematic restrictions
are introduced.

It is important to note that although our results show that the
claims made by Benjamin et al. (2009) regarding the contribution
of criterion noise in recognition memory performance are ques-

¢ Benjamin et al. (2009) remarked that if one of the models assumes that
criterion noise is affected by ensemble size in the exact same manner as the

. oy . . . . . . 0-(‘
variability of targets and distractors (e.g., specifying criterion noise as o

instead of o for the averaging model), then this model would reduce to g
model in which no criterion noise is assumed at all (see Benjamin et al.,
2009, Appendix B). Given this equivalence, Benjamin et al. argued that the
comparatively worse performance of models without criterion noise rep-
resents evidence in support of the assumption that criterion noise is
constant across ensembles (Benjamin et al., 2009, p. 96). It is important to
note that the proof in their Appendix B only concerns the case where
criterion noise is forced to change across ensembles in a very specific
manner and bears no weight regarding the general question of whether
criterion noise varies across ensembles. If it did, it would result in the
paradoxical case that relaxing a parameter restriction (e.g., allowing o, to
vary across ensemble sizes) leads to a restriction in the model’s predictions.
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tioned by a careful assessment of model predictions, model per-
formance, and parameter estimates, they do not necessarily imply
that criterion noise is non-existent. Also, the models considered by
Benjamin et al. only instantiated one of many possible models of
criteria variability (see Klauer & Kellen, 2012), making any claims
based on them dependent on the adequacy of the implemented
criterion noise model.

A Model Generalization Approach for the
Measurement of Criterion Noise

Although it can be argued that the reanalysis of Benjamin et al.’s
(2009) results raise doubts regarding the presence of criterion
noise, the evidence provided is paradigm-specific and therefore
should not be generalized. Given this issue, it would be important
to have an alternative method to estimate criterion noise, one that
does not hinge on the same principles that underlie the ensemble
recognition approach. If possible, this method should also attempt
to go beyond Benjamin et al.’s approach and, in particular, allow
for the assessment of additional implementations of criterion noise
that have so far been proposed in the recognition memory litera-
ture—namely the DNM’s response rule proposed by Mueller and
Weidemann (2008), which assumes that response criteria are eval-
uated in a sequential and conditional manner. The possibility of
considering different implementations of criterion noise is ex-
tremely important as it not only allows one to assess which of these
is more adequate but also the robustness of conclusions across
distinct criterion noise models.

An alternative method for the measurement of criterion noise is
available by going beyond the traditional choice of a yes—no/rating
task and capitalizing on the characteristics of SDT for less popular
tasks. One of such tasks is the four-alternative forced choice
with two responses task (4AFC-2R; Swets et al., 1961). In the
4AFC-2R task, individuals are to recognize the old item among
four alternatives, knowing beforehand that three of them are dis-
tractors. In some of the trials, after giving their response, individ-
uals are allowed to choose another item among the remaining three
alternatives. This task was originally used by Swets et al. (1961) to
test certain predictions of SDT and as an attempt to understand the
relationship between the model’s parameters (see also Solomon,
2007). More recently, Kellen and Klauer (2011) provided a full
characterization of the SDT model for this task and exemplified its
use in the field of recognition memory using data obtained by
Parks and Yonelinas (2009).

The SDT model can be fully specified for the 4AFC-2R or, more
generally, a kKAFC-nR task (with k = 3 and 2 = n = k) as easily
as for the binary or rating judgments required to obtain ROCs: Let
F . and f, ., be the distribution function and probability den-
sity, respectively, of the normal distribution with mean w and
standard deviation o, with F' and f being these functions for the
standard normal distribution (i.e., F = F 4y and f = fi ).
Additionally, let ; be the unconditional probability that out of k
alternatives — 1 correct and (k — 1) incorrect — the jth choice (j =
1, ..., n)is the correct one. In a kAFC-nR task, the SDT model is
specified by a simple rule: For each trial, the alternatives are
ordered according to their associated evidence values and then are
chosen in a decreasing order. Therefore m, is defined as the
probability that the studied item has a larger evidence value than
all (k — 1) incorrect alternatives, whereas m, corresponds to the

probability that the studied item will have a larger evidence value
than just (k — 2) incorrect alternatives, and so forth. According to
SDT, m; is given by:

k—1 . |
Trj - < ‘]_ 1 >ka_j(x)ﬁWv“r)(x)(l - F()C))j_l dx (6)

Note that no response criteria are involved in Equation 6,
meaning that parameters of interest such as p, and o, can be
estimated in the absence of response criteria and thus of criterion
noise by means of a task such as the 4AFC-2R. Kellen and Klauer
(2011) estimated these parameters using such a task and obtained
parameter estimates that closely resemble the ones obtained in the
ROC literature, a result that suggests a relatively good match
between the different methods. Although previous work in percep-
tion (e.g., Klein, 2001) has questioned the assumption of unbiased
responding in kAFC tasks, note that in the perception literature, the
alternatives presented on each trial normally correspond to obser-
vation intervals that occur sequentially, which can compromise the
assumption that the observation and evaluation of the alternatives
is independent. For the case of recognition, this issue does not
apply given that all studied items are presented in a separate phase
and all test alternatives are shown simultaneously.

The possibility of fitting the SDT model (and other related
models as well; see Kellen & Klauer, 2011) within this type of
multiple-alternative, multiple-response tasks allows one to adopt
them as alternative methods to estimate model parameters. Still,
this possibility does not exhaust its advantages, as this ability can
be exploited for the study of criterion noise through the general-
ization of parameters across tasks, namely parameters w, and o,. If
a SDT model is simultaneously fitted to data from a traditional
yes—no/rating task, in which both stimulus and criteria variability
are present, and data from the 4AFC-2R task, in which only the
stimulus variability is present, then it becomes possible to obtain
separate estimates for stimulus and criteria variability. This strat-
egy follows previous approaches in cognitive modeling that have
relied on the generalization of models across distinct tasks (e.g.,
Busemeyer & Wang, 2000; Chechile & Soraci, 1999; Jang,
Wixted, & Huber, 2009). One of the benefits of this kind of
approach is that it prevents one from falling prey to what has been
called mono-operation bias (Shadish, Cook, & Campbell, 2002,
Chapter 3), a bias that is incurred when conclusions rely exces-
sively on a single method. In the case of recognition memory, the
overwhelming majority of the work has relied on confidence-
rating ROCs, which represent only one of many tasks that the
models can be specified for, most of them completely overlooked
(e.g., Murdock, 1963). Focusing one’s efforts for model assess-
ment and selection on a single task is likely to produce biased
results, given that a “winning” model might be simply overfitting
the data for that task, being in fact unable to provide accurate
predictions and generalizations for different operationalizations.

Furthermore, it is important to take into account that the param-
eter generalization imposed by this strategy is by no means arbi-
trary. In fact, it is determined by the basic principles underlying
SDT. As shown by Iverson and Bamber (1997), the famous area
theorem (Green & Moses, 1966) can be extended to show that an
individual’s performance in k-alternative forced-choice tasks pro-
vides strong predictions regarding that individual’s ROC function.
According to the generalized area theorem, by specifying a ran-
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dom variable whose distribution function determines the ROC, it
can be shown that the proportion of correct responses (1,) in a
kAFC task is an estimate of the (k — 1)th moment of that variable.”
Given that the collection of all moments of a random variable on
a finite interval is sufficient to characterize that same variable
(Feller, 1966), the , values for an infinite sequence of kKAFC tasks
provide a full characterization of the ROC. Iverson and Bamber
also demonstrate that if a task allows for additional responses
within a single set of alternatives, then lower moments can be
estimated as well. For example, a 4AFC-4R task provides the same
information as the set of m, values for 4AFC, 3AFC, and 2AFC
tasks, meaning that the first three moments of the distribution
function determining the ROC can be conveniently estimated
through a single experimental condition.

Furthermore, a kAFC-kR task can be implemented as a
k-alternative ranking task (J. Brown, 1965; Dalrymple-Alford,
1970; Iverson & Bamber, 1997). In the k-alternative ranking task
participants are simply required to order the items according to the
likelihood with which they are believed to have been previously
studied. Implementing a kAFC-kR task by means of a k-alternative
ranking task has the advantage that each trial provides information
regarding the first (k — 1) moments of the function determining the
ROC, instead of having to collect different types of trials with
different number of choices. This means that more informative
data and hence better parameter estimates can be obtained via the
ranking task.

Two aspects of the generalized area theorem are especially
important: First, the theorem is based on distribution-free assump-
tions, meaning that the predictions that emerge from it are inde-
pendent of the specific distributions (e.g., Gaussian, Gamma, log-
normal) that are adopted. Second, the ROC function considered by
the theorem excludes the involvement of response criteria and
therefore of any form of criterion noise, so that the comparison of
rating and kKAFC responses can in principle be capitalized upon for
the estimation of criteria variability. The presence of criteria vari-
ability will lead to distortions in the parameter estimates (., and
o,) obtained with a confidence rating task, which will result in
discrepancies between these parameter estimates and the corre-
sponding ones obtained solely by means of kAFC responses. These
discrepancies will consequently lead to worse goodness-of-fit re-
sults when p, and o, are assumed to be equal across tasks, an
equality that is expected on the basis of the generalized area
theorem. The introduction of criterion noise in the SDT model is
expected to alleviate this misfit, as it would allow the model to
account for the differences across tasks.

This model generalization approach (the assumption that ., and
o, are equal across tasks) allows the estimation of criterion noise
under the broader assumption that the differences across tasks
correspond to the ones specified by SDT (Iverson & Bamber,
1997). This assumption can be seen as somewhat questionable
given the body of evidence pointing out the existence of task-
specific modes of processing (e.g., Benjamin, 2008; Malmberg,
2008), differences that might represent a violation of the predic-
tions of SDT. Similarly to previous work (e.g., Benjamin et al.,
2009; Morrell et al., 2002), the present approach is couched within
the SDT framework, meaning that the SDT model is assumed to
provide a suitable approximation to the cognitive processes oper-
ating during a recognition test and, by consequence, that its gen-
eralizations across tasks are assumed to hold.

The model generalization approach will be implemented
through the use of a single study phase along with the mixing of
tasks within the recognition test phase, namely 4-alternative rank-
ing and 6-point confidence rating trials. The individual data re-
sulting from both tasks can then be fitted simultaneously. Three
models that implement criterion noise are considered: the DNM
proposed by Mueller and Weidemann (2008); a restricted version
of DNM designated as DNM,, in which classification and criterion
noise are fixed to be equal; and the restricted case of the law of
categorical judgment (LCJ; see Klauer & Kellen, 2012; Rosner &
Kochanski, 2009) that was considered by Benjamin et al. (2009).
Note that the formal account of rating responses given by the LCJ,
model corresponds to both the averaging and summation models
(Equations 3 and 4) when n,, is fixed to 1.

The comparison of these alternative models provides a more
global account of criterion noise as well as an assessment of which
of these implementations better describes the data.

Method

Participants.  Thirty individuals (29 students and 1 nonstu-
dent) participated in this experiment. They were recruited via
flyers and displays at the University of Freiburg and received €7 in
exchange for participation. Mean age of participants was 23.4
years ranging from 18 to 33 years (SD = 3.2). Each experimental
session lasted approximately 45 min.

Design.  Experimental sessions were divided into a single
study phase followed by a single test phase. In the test phase, two
types of trials were presented in random order: rating trials and
ranking trials. In the rating trials, participants saw a single word
that could (or not) have been presented in the study phase and had
to indicate—on a 6-point scale ranging from sure new to sure
old—whether they believed this word had been presented in the
study phase. In the ranking task, participants saw four words on the
screen (one on each corner of the screen), only one of which had
been presented in the study phase. The participants—who were
aware of that only one word among the alternatives was previously
studied—had to order the four words by clicking on them, from
the one they believed most to have been presented in the study
phase to the one they believed least to have been presented in the
study phase. The position of the previously studied word in the
ranking trials was randomly chosen. To prevent primacy and
recency effects, the first and last five words of the study list were
not presented in the test phase.

Materials. The word list contained 639 neutral German
nouns taken from Lahl, Goritz, Pietrowsky, and Rosenberg (2009)
ranging from 4 to 8 letters in length. According to the ratings
obtained by Lahl et al., the words were all of medium valence

7In general terms, the ROC is a function x — g(x) from the closed
interval [0, 1] into itself, increasing and continuous on (0, 1), with g(0) =
0 and g(1) = 1. Consider then two independent random variables V, and V,,
both defined on [0, 1], with V, uniformly distributed. Each pair of false
alarm and hit proportions (py,4, p) forming a point on a ROC is given by
Pra) = P(V, > x) = 1 — x and p,(x) = P(V, > x) = g(I — x). The
generalized area theorem states that m,; in a 2AFC task corresponds to an
estimate of E(V,) and, more generally, that 7, in a kAFC task corresponds
to an estimate of E(V*"!). For proofs and a detailed discussion, see Iverson
and Bamber (1997).
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(ranging from 3.50 to 6.50 on an 11-point scale) and low in arousal
(ranging from 0.50 to 4.50 on an 11-point scale). Furthermore, all
words were of approximately equal word frequency in common
German, as indicated by log frequency ratings obtained for each
word via WordGen (ranging from 0.30 to 2.90; Duyck, Desmet,
Verberke, & Brysbaert, 2004).

In each experimental session, we used 610 randomly drawn
words from the word list (the stimulus set). The study list consisted
of 200 randomly drawn words from the stimulus set (“old” words).
In the study phase, we presented five filler words at the beginning
and five filler words at the end to prevent primacy and recency
effects. These filler words did not appear in the test phase. One
hundred of the words on the study list were randomly chosen for
rating trials, the other 100 words were used in ranking trials. For
the rating trials, another 100 words from the stimulus set were
randomly chosen (“new” rating words). The remaining 300 words
in the stimulus set were used as “new” words in the ranking task.
In total, participants saw 200 rating trials (100 with “old” words,
100 with “new” words) and 100 ranking trials (each consisting of
one “old” word and three “new” words) in the test phase.

Procedure. Participants were tested individually using
PsychoPy (Peirce, 2007) for stimulus control. Prior to the study
phase, participants gave their informed consent and were intro-
duced to the task. They learned that they were to conduct a
memory experiment consisting of a study and a test phase. We
specifically explained to them that they would see a series of
words in the study phase that they should try to memorize as well
as possible.

Then the study phase started. Each word was presented for 1.5 s
with a 0.5-s interstimulus interval. Directly after the study phase,
participants read that the test phase would consist of two types of
trials: rating trials and ranking trials. We thoroughly explained the
nature of the ranking trials. Participants read that only one of the
four presented words was old and the other three were new and
that they should rank the words such that the order of the words
reflects their feeling for the likelihood of the individual words
being old. Also, they were informed that the position of the old
word among the four was randomly chosen. The ranking was
achieved by clicking the words with the mouse. The first word that
was clicked received the highest rank (a “1” appeared next to the
word), the second one that was clicked received the second highest
rank (a “2” appeared next to the word), and so on. Furthermore,
participants could deselect a word or several words by clicking on
them again, in which case all other ranks were updated accord-
ingly. Participants could only proceed to the next trial when all
four words were ranked and they confirmed the shown ranking. To
familiarize participants with the ranking task, they had to work on
one test trial that could be repeated if participants wanted to. Next,
participants read that in the rating trials they had to decide whether
the item was old or new and that they should use a 6-point rating
scale to indicate how confident they were in their decision. Then,
the test phase started, with ranking and rating trials randomly
alternated. After finishing the test phase, participants were thanked
and debriefed.

Results and Discussion

Models were fitted using the maximum likelihood method.
The model fitting routines were implemented in R (R Devel-

opment Core Team, 2011). When fitting models in general, the
question of whether to aggregate data across participants is
posed: Although aggregating data is known to lead to severe
distortions and erroneous inferences (e.g., Estes & Maddox,
2005), suggesting that fitting individual data is more suitable,
aggregation can still be advantageous in situations with small
number of trials per condition (Cohen et al., 2008). For this
reason, the models were fitted to both aggregated and individual
data.

Table 3 shows goodness-of-fit values and parameter esti-
mates for the SDT model without criterion noise when fitting
data from the 4-ranking and 6-point rating tasks separately and
simultaneously. The goodness-of-fit tests indicated statistically
significant deviation from the model for only three individual
data sets for the ranking trials (smallest G*(1) = 4.33, p < .05)
and for only two individuals in the rating trials (smallest
G*(3) = 8.99, p < .05). Fitting both tasks jointly with equal
parameters led to significant deviations for only four individu-
als (smallest G*(6) = 12.63, p < .05). These results suggest that
although not perfect, the account of individual data provided by
the SDT model is adequate. Concerning the summed and ag-
gregated data, the model is rejected on both tasks whether
analyzed separately or jointly, which is to be expected given
that the model represents only an approximation to the true
data-generating process with probability of rejection approach-
ing 1 as the data size increases. A SDT model that excludes
criterion noise and allows mnesic evidence parameters (., and
o,) to differ across tasks—a model designated as SDT,,,—is
later compared with the other candidate models.

Goodness-of-fit results as well as the respective parameter es-
timates for the models with criterion noise (with the exception of
DNM,) are reported in Table 4. For individual data sets, the
models are rejected few times (p < .05; seven times for the DNM
and four times for the LCJ,). For the aggregate data, all models are
rejected (p < .01), which is to be expected given the sample size.
These results indicate that despite some discrepancies, the models
provide in general a relatively good description of the data. Figure
3 shows the ROC and zROC (ROC plot on a probit scale) plots for
the aggregate data: Ratcliff et al. (1994) as well as Malmberg and
Xu (2006) hypothesized that certain forms of criterion noise lead
to inverse U-shaped zROCs. The zROC obtained is very slighty
U-shaped, a result that indicates that the form of criterion noise
proposed by Ratcliff et al. and by Malmberg and Xu is not present.

The parameter estimates concerning mnesic evidence (w, and
o,) reported in Table 4 are consistent with the values normally
found for the SDT model (without criterion noise) in this field
(e.g., Yonelinas & Parks, 2007). The criterion noise parameter
estimates (0, 0., and o ,,) assume rather low values, in many
cases 0. This indicates that for these data sets, criterion noise as
defined by these models is estimated to be very low or even
non-existent, a result that runs counter to previous reports in the
literature.

In terms of the model selection measures presented in Table 5,
the results are clear: Both AIC, and BIC values strongly prefer the
SDT model without criterion noise as the most adequate one, with
the exception of AIC, for the aggregated data, which points the
SDT,,, as the most adequate model. These results reflect the low

sep

estimates of criterion noise presented in Table 4.
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Table 3
Goodness-of-Fit Results and Parameter Estimates for the Reported Experiment for the Standard Signal Detection Theory Model
Without Criterion Noise When the Four-Alternative Ranking and Six-Point Rating Tasks Are Fitted Separately and Jointly
Four-alternative ranking task Six-point rating task Both tasks
Participant G? W, o, G? W, o, G? W, o,
1 0.00 0.43 1.25 4.29 0.49 1.05 5.16 0.45 1.11
2 0.58 2.50 1.83 1.86 2.22 1.92 3.33 2.36 1.88
3 0.79 2.08 1.69 1.96 2.05 1.59 2.84 2.05 1.62
4 1.75 0.29 1.08 3.90 0.37 1.00 5.99 0.33 1.03
5 3.08 1.34 1.74 0.22 1.31 1.27 5.59 1.29 1.44
6 0.00 0.99 1.30 0.05 1.50 1.62 2.43 1.23 1.48
7 0.46 2.01 1.74 2.17 2.35 1.54 5.00 2.20 1.67
8 0.53 0.90 1.26 3.47 1.14 1.43 4.71 1.02 1.37
9 1.26 0.59 1.30 2.58 0.57 1.14 4.11 0.57 1.22
10 1.30 1.37 1.48 3.11 1.25 1.24 4.94 1.29 1.31
11 0.00 0.55 0.87 4.60 0.94 1.22 8.36 0.72 1.07
12 1.92 0.71 1.87 2.34 1.37 1.57 11.00 1.04 1.74
13 0.14 1.87 0.97 1.01 2.65 1.86 4.27 2.28 1.45
14 1.94 0.76 1.60 0.78 0.79 1.14 5.45 0.76 1.31
15 0.01 0.57 1.35 10.00" 1.21 1.50 15.16" 0.87 1.44
16 0.05 2.40 1.68 2.31 1.98 1.55 3.28 2.14 1.58
17 0.68 1.77 1.86 5.33 2.26 1.59 10.66 2.03 1.74
18 4.33" 0.91 1.29 8.99" 1.18 1.52 14.23" 1.05 1.44
19 0.12 2.08 1.19 3.54 1.67 1.23 6.30 1.89 1.24
20 0.94 1.28 1.50 5.02 1.67 1.51 7.73 1.47 1.52
21 1.26 1.15 1.06 0.62 1.60 1.28 3.86 1.32 1.13
22 7.02* 1.55 1.81 5.14 1.30 1.42 12.63" 1.41 1.68
23 7.30" 0.86 1.53 3.51 0.87 0.95 15.81" 0.84 1.14
24 2.13 1.08 1.11 3.27 1.43 1.33 6.72 1.24 1.23
25 0.74 1.72 1.64 1.94 1.43 1.71 3.78 1.58 1.68
26 3.03 2.13 1.80 2.57 1.54 0.95 10.86 1.68 1.18
27 0.11 1.79 1.55 7.09 2.39 2.17 8.71 2.13 1.92
28 1.65 0.67 1.64 1.85 1.07 1.44 6.67 0.86 1.53
29 0.34 0.63 1.05 7.55 0.42 1.11 9.09 0.54 1.10
30 0.34 2.83 1.76 1.55 2.43 0.97 6.42 2.58 1.29
Aggregated 13.05" 1.26 1.52 9.45* 1.32 1.42 30.69" 1.28 1.46
Note. The column labeled “Both tasks” shows the results with w, and o, restricted to be equal across the two tasks.

“p < .05.

Regarding the DNM, its difference in terms of goodness-of-fit
from the SDT model without criteria variability can also be tested
by means of null-hypothesis testing.® For the individual data sets,
it was significant in only one case (AG> = 5.71, p < .05), and no
significant differences were found for both the sum of individual
results (AG® = 23.99, p = .67) and the aggregate data (AG* =
2.84,p = .11).

Imposing the restriction o, = 0., defining DNM, did not
significantly deteriorate goodness-of-fit relative to the DNM: nei-
ther for individual data sets (largest AG*(1) = 2.53, p = .11),
summed results (AG*(30) = 15.75, p = .98), nor aggregate data
(AG*(1) = 2.84, p = .09).

Although the differences between DNM and DNM, were non-
significant, it is interesting that in the majority of the cases the
classification noise estimates are larger than the confidence noise
estimates, a pattern that is at odds with the parameter estimates
reported by Mueller and Weidemann (2008), who suggested the
opposite difference. In consequence, it is also at odds with the
explanation of Mueller and Weidemann’s results proposed by
Benjamin et al. (2009, p. 101), who considered that response
criteria farther away from the classification criterion might be
more variable due to a greater difficulty in maintaining them fixed.

Regarding the results of Mueller and Weidemann, two aspects
need to be taken into account: First, they used a restricted DNM
that precludes representational variability and fits the data solely
by means of variable response criteria, unlike the present approach
that fits the data without such restrictions. Additionally, this re-
stricted DNM can produce smaller estimates of classification noise
compared to confidence noise even when no criteria variability is

8 Note that, again, the null hypothesis (o, cony = 0) lies on the
boundary of the alternative hypothesis (0 .,y Oconr > 0), but in this case
the test concerns the restriction of two parameters of interest. For a single
data set (either an individual or the aggregated data set), the X> ~ woxg +
cos”'(p(By, 6,)) 1 1

o ,w1=§,andm2=i—

= 0,

class

w,x% + wzxg, where w, =

cos'(p(6,,6,))

2m
parameters of interest (Self & Liang, 1987), correlations that were esti-
mated by means of parametric bootstrap. For the summed results of N
individual data sets, x> ~ > B;x7, where the B, weights are defined as a
function of the mixtures for the individual cases. Given the difficulty in
obtaining an exact solution for the (3, weights, stable approximations were
obtained via Monte Carlo simulation.

, and p(6,, 0,) represents the correlation between the two
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Table 4
Goodness-of-Fit Results and Parameter Estimates for the Reported Experiment for the DNM and the LCJ, Models
DNM LCJ,

Participant G? ™ o, O elass Conf G* ™ o, .
1 4.84 0.48 1.14 0.00 0.59 5.16 0.45 1.11 0.00
2 2.47 2.69 2.08 0.91 0.88 2.90 2.61 2.04 0.62
3 2.61 2.05 1.60 0.52 0.00 2.84 2.05 1.62 0.00
4 4.54 0.35 1.01 1.02 0.00 5.99 0.33 1.03 0.00
5 5.52 1.32 1.46 0.00 0.30 5.59 1.29 1.44 0.00
6 2.42 1.23 1.48 0.36 0.00 2.43 1.23 1.48 0.00
7 4.28 2.28 1.72 0.00 0.42 5.00 2.20 1.67 0.00
8 4.71 1.02 1.37 0.01 0.00 4.71 1.02 1.37 0.00
9 3.94 0.58 1.23 0.08 0.40 4.06 0.60 1.25 0.46

10 3.16 1.38 1.36 0.88 0.34 4.88 1.33 1.34 0.36

11 7.77 0.74 1.07 0.73 0.00 8.36 0.72 1.07 0.00

12 10.84" 1.06 1.75 0.46 0.00 11.00 1.04 1.74 0.00

13 3.48 2.29 1.45 0.44 0.00 4.27 2.28 1.45 0.00

14 5.00 0.80 1.34 0.68 0.39 5.34 0.81 1.38 0.54

15 15.14" 0.89 1.47 0.98 0.00 15.16" 0.87 1.44 0.00

16 2.55 2.40 1.72 0.69 0.85 2.39 243 1.74 0.72

17 10.46" 2.05 1.75 0.39 0.00 10.66 2.03 1.74 0.00

18 12417 1.09 1.46 0.77 0.00 14.23" 1.05 1.44 0.00

19 0.59 2.09 1.21 1.19 0.83 3.81 2.16 1.29 0.86

20 5.20 1.56 1.58 0.79 0.00 7.73 1.47 1.52 0.00

21 3.78 1.32 1.13 0.20 0.00 3.86 1.32 1.13 0.00

22 12.24* 1.43 1.70 0.33 0.22 12.26" 1.55 1.78 0.64

23 15.55" 0.85 1.14 0.53 0.00 15.81" 0.84 1.14 0.00

24 6.72 1.24 1.23 0.01 0.01 6.72 1.24 1.23 0.00

25 1.79 1.67 1.73 0.88 0.20 3.20 1.75 1.77 0.72

26 10.82" 1.73 1.20 0.33 0.30 10.85 1.71 1.20 0.23

27 8.04 2.15 1.92 0.60 0.00 8.71 2.13 1.92 0.00

28 5.88 0.88 1.53 0.71 0.00 6.67 0.86 1.53 0.00

29 7.94 0.57 1.11 0.00 0.76 8.20 0.63 1.12 1.10

30 6.42 2.58 1.29 0.00 0.00 6.42 2.58 1.29 0.00

Aggregated 27.85" 1.29 1.46 0.33 0.00 30.69" 1.28 1.46 0.00

Note.  DNM = decision noise model; LCJ, = restricted case of the law of categorical judgment.

*p < 05,

in fact present, which raises doubts regarding any claims based on
the restricted DNM’s parameter estimates for recognition memory
data. Regarding Benjamin et al.’s explanation for the claimed
difference, note that an equally plausible explanation for the
opposite prediction can be entertained: In most circumstances,
the mean position of the classification criterion is expected to
be around the intersection of the target and distractor evidence
distributions. This is the region where a greater uncertainty
regarding the stimulus’ class membership exists. It is plausible
to expect that there is a higher response variability in situations
of uncertainty than in cases where there is a great level of
confidence regarding the stimulus’s class.

Concerning the LCJ, model, no significant differences were
found in the focused test of o. = 0 for the individual data sets
(largest AG* = 2.49, p = .06), for the summed results (AG* =
5.91, p = .96), or for the aggregated data (AG* = 0.00, p = .50).

Overall, the present results starkly contrast with previous claims
that attributed a great magnitude to response criteria variability.
Not only are the estimates of criterion noise small and in many
cases close to zero, they also fail to provide a statistically signif-
icant contribution to account for the data. This failure is found for
different implementations of criterion noise.” Also, note that a
similar outcome is obtained with Benjamin et al.’s (2009) data as

soon as problematic parameter restrictions are lifted, not only
corroborating the present findings but also generalizing them
across paradigms.

Given that the present results indicate an almost complete ab-
sence of criterion noise, it is important to test whether the gener-
alization of parameters across tasks is adequate. The fact that
criterion noise estimates are low might simply result from inade-
quate assumptions that lead to its underestimation. One form of
reassurance comes from testing the generalization of parameters
across tasks, as these should hold in the absence of criterion noise
given the predictions stemming from the generalized area theorem.
The parameter restriction that implements the model generaliza-
tion (i.e., the restriction that sets ., and o, to be equal across tasks)
is not rejected for the individual goodness-of-fit values (highest
AG*(2) = 5.26, p = .07), with the exception of only one partici-
pant (AG*(2) = 6.75, p < .05), it is not rejected for the summed
individual values (AG*(60) = 68.73, p = .21) but is rejected when
considering the aggregated data sets (AG*(2) = 8.19, p < .05).

9 Equivalent results were obtained with a model that implemented the
response rule of the law of categorical judgment (symmetrically corrected),
proposed by Klauer and Kellen (2012).
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Figure 3. Receiver operating characteristic (ROC) and zZROC (ROC plot on a probit scale) plots for the

aggregated data obtained in the reported experiment.

The latter rejection is not surprising given that the large sample
size provides the statistical test with sufficient power to detect
even tiny model violations, and that data aggregation might lead to
distorted parameter estimates for each task. Similar results are
found when comparing AIC, and BIC values for the SDT and
SDT,,,,, as reported in Table 5. Taken together, the results show
that the predictions made by the generalized area theorem (Iverson
& Bamber, 1997) were not strongly violated, suggesting that the
criterion noise estimates obtained are adequate.

Assessing the Sensitivity of Criterion Noise
Measurement

Both the results from the reanalysis of Benjamin et al.’s (2009)
experimental data and the present results converge to the same
conclusion: The inclusion of a criterion noise parameter does not
seem to provide any significant improvement to the models’ ac-
count of the data. Nevertheless, before making any strong claims
regarding the presence or absence of criterion noise based on these
results it is important to take into account the ability of the two

Table 5

methods of detecting the presence of criterion noise of different
magnitudes. As previously pointed out by Rosner and Kochanski
(2009), a SDT model that assumes no criteria variability whatso-
ever can still account for data generated by a SDT model with
criteria variability unless very large numbers of trials are used.
This requirement can perhaps be easily fulfilled in other fields
such as visual or auditory perception, but it is especially problem-
atic for the case of recognition memory, as sample sizes in indi-
vidual data sets are by necessity relatively small. The limitations in
sample size are especially problematic for the two methods dis-
cussed here, as they require several items to be presented on each
trial. A common way to overcome the limitation of individual data
sets is to aggregate them and analyze the resulting group data
(Cohen et al., 2008).

It might be the case that a model that precludes criterion noise
might be preferred even when in fact there is criterion noise, and
that the probability of this preference might be radically different
between individual and aggregated data sets. Assessing the sensi-
tivity of both methods to the presence of criterion noise for

Goodness-of-Fit and Model Selection Results for the Reported Experiment

Individual data sets

Aggregated data set

Model G* df AlC, BIC G? df AlC, BIC

SDT 215.13 180 646.64 1,412.92 30.69 6 44.70 94.43
SDT,,, 146.42 120 705.04 1,686.44 22.50 4 40.52 104.44
LCJ, 209.22 150 704.06 1,578.13 30.69 5 46.71 103.53
DNM,. 206.89 150 701.74 1,575.80 30.69 5 46.71 103.53
DNM 191.14 120 749.76 1,731.16 27.85 4 45.87 109.80
Note. The values under the label “individual data sets” are the sums of the individuals’ values. These results

for the individual data sets thereby represent a single model with different parameters for each individual. For
all models, p < .05. AIC, = corrected Akaike information criteria; BIC = Bayesian information criteria; SDT =

signal detection theory; SDT

sep

= a SDT model that excludes criterion noise and allows mnesic evidence

parameters (., and o,) to differ across tasks; LCJ, = restricted case of the law of categorical judgment; DNM =
decision noise model; DNM, = a restricted version of the DNM.
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different types of data sets is therefore important. Still, assessing
the sensitivity of these methods is not straightforward as the
impact of criterion noise on the individuals’ performance is ex-
pected to be influenced by several additional factors beyond the
nature and magnitude of criterion noise, such as the individuals’
mnesic discriminability as defined by parameters p, and o,, as well
as the positioning and distance between the mean response criteria
(e.g., Macmillan et al., 2004). For the case in which there is more
than one criterion noise parameter (i.e., classification and confi-
dence noise parameters), the relative magnitude of these is also
expected to play a role.

To test the sensitivity of these methods, individual-sized and
group-sized data sets were generated using the parameter estimates
obtained from the respective models without criterion noise, for
the aggregate data sets. Besides the different approaches used, two
important differences between the experiment reported and the
ensemble recognition experiment reported by Benjamin et al.
(2009) are the number of trials and the number of participants:
Whereas in the ensemble recognition experiment, a total of 180
trials were collected per participant, for a total of 19 participants,
in the experiment reported here, a total of 300 trials were collected
per participant, for a total of 30 participants. These differences
were taken into account in the data simulations. Note that the only
difference between the individual and aggregated data sets is the
total amount of trials, as the same parameter estimates are used to
generate the artificial data sets.

The choice of using the parameter estimates obtained with the
aggregate data to generate artificial data sets rests on the notion
that they might be seen as representative of a “stereotypical”
individual, instead of using arbitrary parameter values as done by
Benjamin et al. (2009) and Rosner and Kochanski (2009). For the
case of Benjamin et al.”s models, the parameters obtained with the
original data sets did not assume any restriction of the mean
response criteria across ensembles. Different values of criterion
noise were then used along with the parameters obtained for the
aggregated data to generate the data sets using different models.

Table 6

Criterion noise was varied between o. = 0.50 and o. = 2 in steps
of 0.50.

For the simulations regarding the ensemble recognition experi-
ment here reported, the averaging and summation models were
used to generate the individual and group-sized data sets. The
generated data were then fitted to the original data-generating
model and the integration model. For the model generalization
experiment here reported, data sets were generated by the LCJ, and
DNM, models. In total, three factors were taken into account for
the simulation of the two experimental methods available for
measuring criterion noise: (1) the data-generating model, (2) the
size of the data set, and (3) the level of criterion noise considered.
For each combination of these factors, 1,000 data sets were gen-
erated and fitted.

The results presented in Table 6 indicate that for individual data
sets, the rejection of the null hypothesis (o, = 0) in tests address-
ing the individual AG? values is unlikely unless large values of
criteria variability are expected. Despite the differences in the
model predictions, these are too small relative to the sampling
variability of the data to be detected reliably. The picture is
somewhat different for the aggregated data sets, in which the
proportion of rejections of the false null hypothesis is quite higher.
Unsurprisingly, the difference in the sample size between the
present experiment and the ensemble recognition experiment re-
ported by Benjamin et al. (2009) is reflected in the simulation
results, with higher detection rates for the present experiment.
Additionally, the results for the averaging model follow a non-
monotonic function, with detection rates increasing as criterion
noise becomes larger but then decreasing for the largest values of
criterion noise. One reason for this unexpected pattern is the
manner in which criterion noise operates on the ensemble recog-
nition task: For larger values of criterion noise, individuals’ per-
formance approximates chance level for all ensemble sizes, which
compromises the discriminability between models, whether they
incorporate criterion noise. Note that the absence of criterion noise
in Benjamin et al.’s data does not reflect this “masking” effect of

Simulation Results for the Sensitivity of the Different Models to Detect Criterion Noise of

Various Sizes

Data Model o. = 0.50 . =1 o. = 150 . =2
Benjamin et al.’s (2009) experiment

Individual Averaging-o,. 84 58 32 23
Summation-o, 53 67 64 74

Aggregated Averaging-o,. 472 679 617 539
Summation-o,. 136 426 611 658

Present experiment

Individual LCI, 118 327 602 793
DNM, 199 431 673 831

Aggregated LCI, 746 1,000 1,000 1,000
DNM, 745 1,000 1,000 1,000

Note. The values show the number of times in which the hypothesis restricting criterion noise to be 0 (H,: 0. =
0, p < .05) was rejected for 1,000 simulation runs per cell of the table. The parameter values used to generate
the data sets (with the exception of the criterion noise parameters) correspond to the estimates obtained with
these models for their respective experiments, when fitting the aggregated data sets and assuming the absence
of criterion noise. LCJ, = restricted case of the law of categorical judgment; DNM, = a restricted version of the

decision noise model.
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extreme criterion noise values. If that would be the case, then the
SDT model without criterion noise would give parameter estimates
consonant with chance performance (u, ~ 0 and o, ~ 1), which
did not occur (see Table 2). Note that this pattern of results did not
extend to the summation model.

The reason is that for the summation model, differences in
ensemble size lead to a complete rescaling of the target and
distractor evidence distributions, as previously discussed. As en-
semble size increases, the variances of the evidence distributions
increase as well, reducing the relative magnitude of criteria vari-
ability.

Opverall, the results suggest that if criterion noise is present in the
reported experiment, it has a quite low value, as criterion noise
values of the magnitude suggested by the studies of Mueller and
Weidemann (2008) and Benjamin et al. (2009) would have led to
a frequent rejection of the null hypothesis for the individual data
sets. Despite the low statistical power, the results here presented
are far from being inconsequential, as they allow the dismissal of
the notion that large values of criteria variability are normally
present.

Furthermore, these results are in agreement with Rosner and
Kochanski’s (2009) results: Unless large sample sizes are used, a
SDT model that precludes criterion noise can still provide an
adequate account of the data. This issue highlights an important
aspect in the implementation of SDT in different fields that should
not be overlooked: Although the models and methods stemming
from SDT that are used might be exactly the same, their effective-
ness varies greatly among fields given their specific constraints.
Although in perceptual tasks it is often easy to collect several
hundreds of trials per participant, it is in most cases not possible to
do this when studying recognition memory.

General Discussion

The failure of a model to account for experimental results
usually leads to its reformulation and to the questioning of its basic
assumptions. For the case of SDT, the results of Balakrishnan
(1998, 1999) and Van Zandt (2000) motivated the development of
solutions that focused on the notion that the assumption of criteria
invariance is not only fundamentally wrong but is also undermin-
ing the model’s account of the data. The present work indicates
that criteria variability—irrespective of the way it was specified—
seems to be quite low, to the point that it cannot provide any
noticeable improvement to the account already given by traditional
SDT. This result contrasts with the conclusions reached by previ-
ous research, which suggested that the magnitude of criteria vari-
ability is equivalent to or even greater than mnesic variability, and
that its contribution could be easily detected with a model that
allowed the estimation of mnesic and response processes. These
previous conclusions have been shown to be unwarranted given
the several shortcomings and confoundings discussed earlier.

The results obtained dispel the notion that the SDT model
without criteria variability does not provide an adequate descrip-
tion of participants’ performance. As discussed by Benjamin et al.
(2009), disparate effects in various fields, such as response con-
servatism and probability matching (e.g., Thomas & Legge, 1970),
or the effect of fatigue on performance (e.g., Galinsky, Rosa,
Warm, & Dember, 1993), might result from unaccounted criteria
variability. These possibilities hinged on the assumed existence of

high criteria variability, which the present results do not support.
The attribution of such effects to the presence of criterion noise is
perhaps premature.

Still, one could argue that the overall results here reported are
relatively inconsequential, as the forms of criterion noise here
considered are only reliably detected when assuming large values.
This would mean that criterion noise still represents a possible
explanation for findings that are hard to interpret within the classic
SDT framework. This reasoning fails to take into account that
when criterion noise was estimated, it barely affected the estimates
of w, and o, (compare parameter estimates when SDT is fitted to
both tasks jointly, reported in Table 3, and the LCJ, and DNM’s
parameter estimates reported in Table 4). This means that low
values of criterion noise produce small distortions in memory
parameters and, hence, small divergences from traditional SDT
predictions, whereas severe divergences from these predictions
(e.g., Malmberg & Xu, 2006; Van Zandt, 2000) that have been
associated to criterion noise require considerably larger values of
criteria variability to take place.

It is important to note that the present results do not constitute
an argument against the existence of criteria variability. The results
constitute an argument against the claim that criterion noise (as
currently modeled) has a major influence on recognition memory
performance. Our results show either low values of criterion noise
that seem to barely affect individuals’ performance, or the absence
of criterion noise. Additionally, the lack of statistical power for
low levels of criterion noise, especially for the case of individual
data sets, indicates the possibility of low values of criterion noise
remaining undetected and highlights the limitations that recogni-
tion memory research is subjected to in comparison to other fields
that use the same measurement models. Future work in recognition
memory modeling needs to take into account that the development
of more fine-grained models is limited by the quality of the data
available. This notion has led to the argument that given the
existence of such limitations, it is perhaps more fruitful that one’s
efforts are focused on more crude and basic aspects of the models
(e.g., Rouder, Pratte, & Morey, 2010, p. 432).

The reanalysis of Benjamin et al.’s (2009) results as well as the
results obtained with the model generalization approach encourage
a global evaluation of the limitations of these two methods. The
ensemble recognition task has several limitations: First, it requires
that individuals integrate the evidence values provided by each
element in the ensembles in a specific (sum or average) and stable
manner. One can conceive of several idiosyncratic rules that take
into account all the elements in an ensemble or only part of them,
and the question of whether individuals use the same rule across
ensemble sizes is still open. The literature on strategy identifica-
tion in decision-making documents many cases where individuals
only consider a fraction of the information available and the
difficulty in identifying the specific manner in which individuals
integrate (or not) the information available (e.g., Glockner, 2009;
Moshagen & Hilbig, 2011). Second, the use of information inte-
gration rules makes the models susceptible to several problems, as
previously shown. In particular, restricting the (mean) response
criteria to be the same across ensemble sizes results in the intro-
duction of additional problems such as enforcing implausible
predictions, as previously discussed. Third, the sensitivity analyses
reported in Table 6 indicate that the probability that criterion noise
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provides a statistically significant contribution in the ensemble
recognition task is very low.

The model generalization approach also has limitations: Despite
having a greater sensitivity to presence of criterion noise than the
ensemble recognition approach, this sensitivity is still quite low. In
addition, one needs to assume that the generalization made by SDT
across tasks holds. One possibility is that individuals use a differ-
ent approach to the ranking task than the one specified, although
this possibility would have wider implications for the SDT in
general, as it would represent the existence of boundary cases for
SDT. Such a scenario would seriously compromise the suitability
of SDT to serve as a generalized cognitive measurement model
and would indicate the need for adjustments. Overall, the ensemble
recognition approach has a greater number of limitations than
the model generalization approach, a difference that recommends
the use of the latter method in further studies. Still, the complete
dismissal of the ensemble recognition approach is perhaps too
harsh a judgment given that the measurement of criterion noise in
recognition memory is still in its infancy and that further refine-
ments and adjustments might overcome the current problems.

As previously stated, the notion that the positioning of response
criteria is a noise-free process is implausible, but the question that
cognitive modelers need to ask is whether criteria variability has
an influence that necessarily needs to be taken into account. What
the present results suggest is that the SDT assumption of criterion
invariance, although most likely wrong, still constitutes a valid
approximation to individuals’ performance, given the constraints
of the experimental design. Questioning the existence of a process
should not be confused with questioning its relevance, especially
its relevance within a specific experimental context. Furthermore,
it is interesting that the arguments for the relevance of criterion
noise in recognition memory are mostly based on findings from
other fields, findings that therefore have a limited value for the
case of human memory. Too often findings related to SDT coming
from different sources (e.g., perception) are used as evidence in
rather distinct fields (e.g., reasoning; see Dube et al., 2010).
Although SDT provides a general framework that can be used in
various fields, the notion that the nature of the underlying pro-
cesses might be radically different cannot be ignored (Broder &
Schiitz, 2009, p. 599). The usage of SDT in different fields hinges
more on the fact that the resulting data matrices from these fields
have a similar structure, making SDT a convenient data analysis
tool, than on the existence of a general unifying theory. The
tendency of researchers to engage in such generalizations
(and their dangers) has been discussed in the literature as the
“tools-to-theories™ heuristic (Gigerenzer, 1991). The discussion of
hypotheses and findings reported in other fields is of course very
important, as it inspires and informs different research approaches,
but the mere assumption that the findings generalize across fields
is rarely justified.

Although the criterion noise models proposed so far do not
appear to provide a better description of the data, there are many
issues related to criterion noise that remain to be solved: For
example, the original results from Van Zandt (2000) still need to
be explained by a SDT model that provides a description of both
mnesic and response processes. Although the presents results
indicate a quite low or absent criteria variability, Van Zandt’s
results are consistent with the predictions made by Treisman and
Williams’s (1984) model of criterion variability (see Treisman &

Faulkner, 1984), a model proposed in the perception literature. Is
there any way to reconcile these apparently contradictory results?
One possibility is that criterion noise is related to response bias,
more specifically experimentally induced response bias. In the
experiments reported by Van Zandt, individuals provide confi-
dence ratings under different base rate (ranging from 10% new
items and 90% old items to 90% new items and 10% old items) or
payoff conditions. It could be that memory testing in biased
conditions—either toward “old” or “new” responses—creates a
conflicting situation for participants that generates criterion noise.
Wixted and colleagues (Mickes, Hwe, Wais, & Wixted, 2011;
Wixted & Gaitan, 2002) have argued that individuals’ positioning
of response criteria is pre-conditioned by extensive error feedback
that these individuals received throughout their life. When encour-
aged to produce biased responses, individuals would attempt to set
the response criteria accordingly, but these positionings would be
in conflict with the response criteria positions that previous expe-
rience has conditioned them to use. The conflict between these
different positionings could effectively lead to the emergence of
criterion noise, as these opposing tendencies would likely com-
promise the stability of response criteria in the recognition task,
perhaps affecting the classification and confidence criteria differ-
ently. This would mean that criterion noise is mostly present in test
conditions that encourage response bias, which would explain the
findings reported by Van Zandt as well as the present results.
Nevertheless, this explanation is speculative, and future research
efforts should focus on the measurement of criterion noise in test
conditions that induce response biases to test different hypotheses,
although the use of the model generalization approach would face
serious difficulties as different sets of parameters would have to be
estimated for each bias condition, reducing even further the num-
ber of trials per test condition. One way of overcoming this
problem would consist in the specification of hierarchical models,
which so far has only been done for SDT models without criterion
noise (e.g., Pratte et al., 2010).

Another issue that needs to be considered concerns the sequen-
tial dependencies found in the responses given on recognition tests
(e.g., Malmberg & Annis, 2011; see also Criss, Malmberg, &
Shiffrin, 2011; Malmberg, Criss, Gangwani, & Shiffrin, 2012).
The existence of these sequential dependencies seems to be at odds
with the results reported here, as it is not precisely clear how these
dependencies could occur in the absence of criteria variability. One
reason for this apparent paradox lies in the fact that the criterion
noise processes here considered do not take into account previous
trials. In fact, the positioning of response criteria is ensured to be
independent across trials. This means that the criterion noise
processes considered here fail to provide any direct description of
sequential dependencies. In addition, the sequential dependencies
so far observed in recognition memory data (Malmberg & Annis,
2011) seem to be rather at odds with some of the predictions made
by Treisman and Williams’s (1984) model of criterion variability
(see Malmberg & Annis, 2011), a result that raises the question of
whether or not the latter model can account for both Van Zandt’s
(2000) results as well as Malmberg and Annis’s (2011) results.
This situation should encourage the development of new models
that include criterion variability processes that are influenced by
prior responses. Still, the estimation of several forms of criterion
noise (see Klauer & Kellen, 2012; Rosner & Kochanski, 2009)
already represents a formidable challenge due to the difficulty of



MEASURING CRITERION NOISE 477

obtaining accurate numerical estimates. The development of more
complex models will add a new set of difficulties that future
research efforts will need to overcome. In addition, one needs to
consider that the loci of the observed sequential dependencies does
necessarily lie in the decision processes but could also emerge
from fluctuations of the mnesic processes. The possibility of
sequential dependencies arising from differences in discriminabil-
ity across trials has been discussed in the perception literature (e.g.,
Atkinson, 1963; S. D. Brown, Marley, Donkin, & Heathcote,
2008) and should not be overlooked in future efforts in the field of
recognition memory.

The latter point raises the question of whether future refine-
ments of the SDT model necessarily imply the inclusion of crite-
rion noise: The assumption that criteria positioning is a noise-free
process is not the only assumption of SDT that is generally
considered implausible and that can cause the documented inade-
quate descriptions of individuals’ performance. For example,
Turner, Van Zandt, and Brown (2011) proposed an alternative
framework for SDT in which stimulus evidence distributions
evolve across time, reflecting the statistical properties of the pre-
viously encountered experimental trials. Within this framework,
decisions are solely based on likelihood ratios, estimated from the
evidence available to the decision maker up to that moment,
precluding the establishment of response criteria along the evi-
dence axis. This alternative framework can successfully account
for several findings in the literature, although it does not provide
a measurement model like the traditional SDT approach does.

Furthermore, the traditional SDT model assumes that the infor-
mation available as evidence is based on a fixed evidence sample,
precluding the possibility of dynamical accumulation of informa-
tion and thus making the model incapable of accounting for several
effects such as speed—accuracy tradeoffs (e.g., Pleskac & Buse-
meyer, 2010; Ratcliff & Starns, 2009). Relaxing such assumptions
toward a dynamical signal detection model (e.g., Balakrishnan &
MacDonald, 2011) may lead to an alternative solution for the
inconsistencies so far encountered in the literature.
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