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On the Measurement of Criterion Noise in Signal Detection Theory:
Reply to Benjamin (2013)

David Kellen, Karl Christoph Klauer, and Henrik Singmann
Albert-Ludwigs-Universität Freiburg

Kellen, Klauer, and Singmann (2012) questioned whether possible criterion noise would contribute
significantly to modeling recognition memory. Our arguments were based on a reanalysis of the data by
Benjamin, Diaz, and Wee (2009) as well as on new experimental data. In a comment, Benjamin (2013)
questioned some of Kellen et al.’s conclusions and raised important issues regarding the new experi-
mental data. In this reply, we revisit our arguments and provide new analyses in response to Benjamin’s
questions and issues.
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In order to measure criterion noise, Benjamin, Diaz, and Wee
(2009) used the ensemble recognition task. By assuming certain
information-integration rules (e.g., summation, averaging), crite-
rion noise in the signal detection theory (SDT) model (Wickens,
2002) becomes identifiable.1 In addition to the measurement of
criterion noise, Benjamin et al. also evaluated whether or not
(mean) response criteria could be restricted to be equal across
ensemble size. Model-selection analyses preferred the averaging
model with the response-criteria restriction and criterion noise, a
result that led Benjamin et al. to conclude that criterion noise plays
a major role in recognition judgments.

According to Benjamin (2013), our criticisms of Benjamin et al.
(2009) critically hinge on the fact that the parameter estimates of
the winning model take on implausible values, and that the above-
mentioned response-criteria restriction has to be rejected in a test
of statistical significance for Benjamin et al.’s data. In fact, our
critique was somewhat more elaborate. We argued that the
response-criteria restriction produces a series of problems at the
level of qualitative predictions, and potentially distorting parame-
ter estimates (e.g., inflating criterion noise estimates). Given these
issues, we argued that this ultimately unnecessary restriction
should be avoided. Furthermore, we pointed out that Benjamin et
al.’s evidence for criterion noise was only found when imposing
the problematic response-criteria restriction. The arguments com-
prising our criticism have been presented in detail by Kellen,

Klauer, and Singmann (2012), so we do not address them further
here. Instead, we focus on two particular issues that deserve further
discussion.

Statistical Properties of the Models

A simulation analysis reported by Kellen et al. (2012) showed
that the ensemble recognition task and the associated models have
extremely low power for detecting the presence of criterion noise.
When generating data with the (unrestricted) models (using Ben-
jamin et al.’s, 2009, sample sizes) and introducing different levels
of criterion noise, the detection of criterion noise using null-
hypothesis testing in individual data sets never exceeded 8%.

A similar simulation can be done while imposing the response-
criteria restrictions. The purpose of this simulation is to assess the
impact of the response-criteria restriction on the probability of
falsely rejecting the hypothesis that there is no criterion noise (i.e.,
�c � 0) when criterion noise is in fact absent. One-thousand
artificial data sets were generated using the averaging model with
no criterion noise (�c � 0) and without response-criteria restric-
tions, using the generating parameter values already employed by
Kellen et al. (2012). The generated data sets were then fitted with
the averaging model with (mean) response criteria restricted to be
equal across ensembles. The true restriction �c � 0 was tested for
each fitted data set via null-hypothesis testing and was falsely
rejected in 98% of the cases. Similar rates of false positive results
were obtained with the summation model (rejection in 92% of the
cases).2

1 Let �t and �t denote the mean and standard deviation of the evidence
distribution for targets (studied items), respectively. Without loss of gen-
erality, the mean (�d) and standard deviation (�d) of the evidence distri-
bution for distractors (new items) are restricted to 0 and 1. Parameter �c

denotes criterion noise.
2 Note that because �c � 0 is at the boundary of the parameter space, the

sampling distribution of the likelihood-ratio test follows a �� 2 distribution,
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Taken together, as shown by Kellen et al. (2012), when not
imposing response-criteria restrictions, the restriction �c � 0 is
seldom rejected, even when high values of criterion noise are in
fact present. On the other hand, the new simulation results show
that when imposing response-criteria restrictions (as Benjamin et
al., 2009, did), the restriction �c � 0 is almost invariably rejected
despite that criterion noise is in fact absent. The probability of
rejecting the criterion-noise restriction is barely affected by the
actual presence of criterion noise, and instead is critically depen-
dent on problematic ancillary restrictions. This indicates that very
little evidence regarding the presence or absence of criterion noise
can be obtained from Benjamin et al.’s (2009) modeling of the
ensemble task.

Parameter Plausibility

Concerning the extreme parameter estimates obtained, Benja-
min (2013) pointed out that SDT parameters such as �t, �t, and �d

are defined only up to a multiplicative factor that is conventionally
determined by setting �d, the standard deviation of the evidence
distribution for distractors, equal to one a priori. Extreme values of
�c or �t are thus extreme relative to a standard deviation of �d �
1. It is of course possible to fix, say, �t to a reasonable value and
to re-scale the previously fixed �d accordingly. In consequence,
instead of �t assuming extremely large values, �d will now simply
assume extremely small values (see Figure 1, Panel D, in Benja-
min, 2013).

Values such as those obtained for Benjamin’s (2013) data and
model are extreme inasmuch as they are not consistent with the
predictions of more fine-grained computational memory models
that describe encoding, storage, and retrieval processes (e.g., Shif-
frin & Steyvers, 1997). Moreover, the extreme parameter estimates
are also not consistent with dynamic versions of SDT such as the
diffusion model (Ratcliff, 1978), according to which drift rate
variabilities and drift rates themselves are found to be roughly
similar in size to the variabilities and means of signal and noise
distributions in SDT (e.g., Starns, Ratcliff, & McKoon, 2012, p.
16).

Moreover, even when the “real” parameter values are quite
similar to what is usually found in the literature (see Kellen et al.,
2012, p. 464), imposing the problematic response-criteria restric-
tion results in artifactually extreme estimates of the parameter
values as corroborated in the new simulation reported above: The
data-generating parameters for the averaging model were �t �
0.62, �t � 1.32, and �c � 0; but for 65% of the artificial data sets,
the estimates of �t, �t, and �c were all larger than 10. Benjamin
(2013) acknowledged that the response-criteria restriction leads to
gross mispredictions but overlooked the impact of these mispre-
dictions in terms of parameter estimates when attempting to justify
extreme parameter values.

Criticisms to Kellen et al. (2012)

Benjamin (2013) raised important questions regarding our ap-
proach to measure criterion noise, in particular regarding the tacit
assumption that forced-choice tasks such as the ranking task are
unbiased (see Klein, 2001). Unfortunately, we did not record the
spatial position of the old and new items in the ranking task, so we
cannot test the unbiasedness assumption for our data. We can

nevertheless evaluate the questions using alternative sources of
evidence. First, there is no evidence in the memory literature
indicating that there is a spatial bias in forced-choice tasks (Kroll,
Yonelinas, Dobbins, & Frederick, 2002) or a systematic mispre-
diction of forced-choice data, as would be expected if there was a
spatial bias (Smith & Duncan, 2004). For further checking, we
fitted the 63 individual data sets reported by Jang, Wixted, and
Huber (2009) and tested the unbiasedness assumption (by restrict-
ing the confidence criterion determining the binary judgment in the
two-alternative forced choice [2AFC] receiver operating charac-
teristics [ROC] functions to 0). In these data sets, 2AFC and
YES–NO confidence-rating trials were intermixed, a case which
according to Benjamin is likely to bias 2AFC judgments. The
unbiased SDT model was preferred over the unrestricted model in
86% individual data sets in terms null-hypothesis testing, 76% in
terms of Akaike information criterion (AIC)c, and 95% in terms of
Bayesian information criterion (BIC).3 This preference is not sur-
prising given that the binary-response criterion was on average
unbiased (Mdn � 0.04, SD � 0.35), t(62) � 0.94, p � .35, with the
2AFC criterion restriction (c � 0) producing marginal increases in
misfit, Mdn �G2(1) � 0.80, p � .37.

Another issue raised by Benjamin (2013) is that the correlation
of �t estimates across tasks was only .20 for our data, which, he
suggested, could indicate violations of assumptions. The observed
correlations of �t and �t across tasks were .81 and .20, respec-
tively. Does the low correlation for �t necessarily imply a violation
of the assumptions? Not necessarily, as the size of the correlation
can be reduced due to the low precision of �t estimates (Mac-
millan, Rotello, & Miller, 2004), a restricted range of the observed
�t estimates, as well as model overfitting (Jang et al., 2009). In
order to check this, we assessed the sampling distributions of the
correlation coefficients using a parametric-bootstrap simulation
(see Efron & Tibshirani, 1993, Chapter 6) in which we generated
data from a model in which both �t and �t are equal across tasks,
and computed parameter correlations when estimating �t and �t

separately for each task.4 Simulation results show that the 95%
bootstrap confidence intervals for the correlations of �t and �t

across tasks were [0.70, 0.92] and [0.10, 0.68], respectively, which
means that both observed correlations are within their respective
95% confidence intervals, and that a lower precision in �t esti-

with �� 2 ~
1

2
�0

2 �
1

2
�1

2 (Self & Liang, 1987). If Akaike information crite-

rion (AIC)c and Bayesian information criterion (BIC) were used instead of
null-hypothesis testing, the averaging model with criterion noise would
have been preferred in 98% and 93% of cases, respectively. In the case of
summation model, the model with criterion noise would have been pre-
ferred in 94% and 79% of cases, respectively.

3 We thank Yoonhee Jang for providing the individual data sets. Model
fits were done using R (R Development Core Team, 2012) and package
MPTinR (Singmann & Kellen, 2013). Scripts can be obtained from the first
author upon request.

4 The bootstrap simulation consists of three steps: (1) One artificial data
set is generated for each of the 30 sets of individual parameter estimates
obtained from Kellen et al.’s (2012) experiment, while assuming that �t

and �t are equal across tasks and that �c � 0. Each of these artificial data
sets exactly follows the experimental design of Kellen et al. (2) Parameters
�t and �t are estimated separately for ranking and confidence-rating trials
from these artificial data sets, and their correlation computed. (3) Steps 1
and 2 are repeated many times (in the present case 5,000 times) in order to
obtain stable distributions of correlation values.
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mates is expected even when memory parameters are in fact the
same across tasks.

In the light of these results, the notion that unaccounted response
biases severely distorted our results seems somewhat implausible,
although we acknowledge that further work focusing on direct
tests is desirable.

The Explanatory and Predictive Power of Criterion
Noise

Benjamin (2013) furthermore repeated Benjamin et al.’s (2009)
point that a number of important empirical phenomena reported in
the literature could in principle be accounted for by criterion noise,
and he criticized us for not discussing these phenomena. In fact,
most of these phenomena have alternative accounts that are at least
as plausible as criterion noise. Let us briefly illustrate this by
means of four of Benjamin’s examples.

Sequential Dependencies and ROC Distortions

Benjamin (2013) himself acknowledged that sequential depen-
dencies (Malmberg & Annis, 2012) can be explained by models
assuming fluctuations in the memory representations without cri-
terion noise (e.g., Atkinson, 1963). However, he holds that such
models do not provide any account for the observed ROC distor-
tions (Balakrishnan, 1999; Van Zandt, 2000). This statement is
inaccurate: For example, representational accounts were already
proposed by Balakrishnan (1999, p. 1201) in his report of critical
results implying ROC distortions (the same kind of distortions
reported by Van Zandt, 2000; see Mueller & Weidemann, 2008).
More recently, Turner, Van Zandt, and Brown (2011) proposed a
dynamical SDT model that can account for many problematic
results and supposed violations of SDT assumptions (e.g., Van
Zandt, 2000). This SDT model assumes that the evidence distri-
butions change across test trials, without the traditional notion of
response criteria that are placed along the evidence axis.

Response Conservatism

Response conservatism concerns the observation that individu-
al’s shifts in response bias are smaller than optimal. As shown by
Maloney and Thomas (1991), response conservatism can occur
simply because the “true” latent evidence distributions do not
correspond to the assumed Gaussian distributions. In fact, distri-
butional misspecification can lead to results suggesting response
conservatism even when individuals optimally adjust response
criteria. This is especially problematic as it is well known that one
cannot directly single-out a particular distributional assumption as
the “correct one” (Krantz, Luce, Suppes, & Tversky, 1971, Chap-
ter 2; Rouder, Pratte, & Morey, 2010; but see Wixted & Mickes,
2010b), which means that there is no direct solution for this
conundrum.

Remember–Know ROCs

Criterion noise has been used to account for joint Remember–
Know and confidence judgments (e.g., Wixted & Stretch, 2004). A
critical aspect of these SDT accounts is that they are unidimen-
sional, meaning that they only assume a single evidence axis.
Wixted and Mickes (2010a) recently proposed a two-dimensional

SDT model that provides an equally good account without crite-
rion noise. Furthermore, Wixted and Mickes tested and confirmed
a set of hypotheses emerging from the model, giving further
credence to this two-dimensional account. In consequence, the
need for assuming criterion noise may arise out of erroneous
assumptions about the dimensionality of the underlying evidence
space.

Inverse Relationship Between Confidence-Scale Size
and Performance

Benjamin et al. (2009) established the prediction that criterion
noise assumes a greater magnitude in cases where several response
criteria have to be simultaneously established. Given the impact of
criterion noise on performance, it is predicted that ROC points
obtained with simple binary responses are above ROC points
obtained with confidence-rating scales.5 Benjamin, Tullis, and Lee
(2013) reported interesting findings confirming this prediction,
although the observed differences in performance were relatively
small. The notion that the effect of scale size in recognition-
memory performance is small is corroborated by recent work (e.g.,
Mickes, Hwe, Wais, & Wixted, 2011; Mickes, Wixted, & Wais,
2007) where 20- and 99-point confidence-rating scales were used,
leading to parameter estimates that are indistinct from the ones
usually reported in the literature with 6-point scales (e.g., Ratcliff,
McKoon, & Tindall, 1994). Although Benjamin et al.’s (2013)
results are consistent with criterion noise, they do not suggest that
criterion noise as such plays an important role in recognition
judgments, and they are thus consistent with our conclusion that
the contribution of criterion noise for the modeling of recognition
memory is typically very small.

Conclusions

Taken together, we see little reason to modify our claim: Cri-
terion noise (as currently modeled) does not have a major influ-
ence on recognition-memory performance. In any case, the study
of criterion noise in SDT is a difficult problem that can be
approached in many different ways (Klauer & Kellen, 2012), and
new interesting results such as the ones reported by Benjamin et al.
(2013) show that there is much to discover and understand. Like
Benjamin, we look forward to the new data that this ongoing
debate will stimulate.

5 It should be mentioned that this prediction is not only made by SDT
models with criterion noise. Actually, it has long been shown to be a
prediction of certain discrete-state models (see Krantz, 1969, p. 322).
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