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In a process-dissociation task of source memory, individuals have to judge whether items
belong to one of different, mutually exclusive contexts (e.g., Source A, Source B). The
acceptance rates to different test probes (e.g., “Source A?”) can be used to estimate the
probability that the item is assigned simultaneously to the different contexts (“Source A
and Source B”), designated as source overdistribution. Brainerd et al. (2012) have argued that
source overdistribution can be used to refute traditional models of source memory such as
the One or Two High-Threshold Source-Memory models (1HTSM and 2HTSM; Batchelder
and Riefer, 1990; Bayen et al., 1996). We reanalyze previously-published datasets, includ-
ing Brainerd et al.’s data, and show that there is no support for the rejection of the THTSM/
2HTSM. Moreover, through a hierarchical-Bayesian model comparison using data from two
new experiments, we show that the 2HTSM is not only able to account for source overdis-
tribution, but also provides the best account of the data among different candidate models.
These new results suggest that source overdistribution is an outcome of different guessing

processes.

© 2014 Elsevier Inc. All rights reserved.

Introduction

An important distinction in the memory literature is
between item memory and source memory (Johnson,
Hashtroudi, & Lindsay, 1993). While item memory
concerns the ability to remember previously acquired infor-
mation (e.g., “Did I see this word before in the experi-
ment?”), source memory is concerned with contextual
details associated with the acquisition of information (e.g.,
“who said this word?”). The relationship between these
two types of memory has produced a considerable body of
work along with a diverse set of models (Batchelder &
Riefer, 1990; Bayen, Murnane, & Erdfelder, 1996; Hautus,
Macmillan, & Rotello, 2008; Klauer & Kellen, 2010; Meiser
& Broder, 2002; Onyper, Zhang, & Howard, 2010; Qin,
Raye, Johnson, & Mitchell, 2001; Schiitz & Broder, 2011).

Despite some divergences in the literature, there
is a considerable level of convergence regarding the
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relationship between item and source memory (Klauer &
Kellen, 2010; Onyper et al., 2010). This understanding of
item and source memory has recently been questioned
by Brainerd, Reyna, Holliday, and Nakamura (2012), who
reported a phenomenon entitled source overdistribution
that they argued to be incompatible with current modeling
approaches, such as the One and Two-High Threshold
Source-Memory Models (1HTSM and 2HTSM; Batchelder
& Riefer, 1990; Bayen et al., 1996)." In addition, Brainerd
et al. (2012) proposed a new model that is able to overcome
the reported shortcomings of the THTSM/2HTSM.

The manuscript is organized as follows: First, we will
discuss the 1HTSM/2HTSM. This is followed by a
characterization of source overdistribution and how it

! Throughout their manuscript, Brainerd et al. (2012) exclusively refer to
the 1HTSM proposed by Batchelder and Riefer (1990). Still, the model
equations presented include a distractor-detection parameter Dy belonging
to the 2HTSM, which was later introduced by Bayen et al. (1996). Because
of this confusion we attempt to refer to both models (1HTSM/2HTSM)
when discussing Brainerd et al.’s claims. We also refer to the two models
when discussing aspects that hold for both of them.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jml.2014.07.001&domain=pdf
http://dx.doi.org/10.1016/j.jml.2014.07.001
mailto:david.kellen@psychologie.uni-freiburg.de
http://dx.doi.org/10.1016/j.jml.2014.07.001
http://www.sciencedirect.com/science/journal/0749596X
http://www.elsevier.com/locate/jml

D. Kellen et al./Journal of Memory and Language 76 (2014) 216-236 217

can be accounted for by the THTSM/2HTSM as well as by a
new model proposed by Brainerd et al. (2012). We will
show that Brainerd et al.’s dismissal of the THTSM/2HTSM
as well as their characterization of memory processes
made on the basis of their new model can be questioned
on several grounds. Furthermore, we report results from
a reanalysis of data from Brainerd et al. (2012), Brainerd,
Wang, and Reyna (2013), and Yu and Bellezza (2000).
Finally, we report two new experiments using an extended
task in order to provide a better understanding of source
overdistribution and its impact in memory modeling.

Modeling item and source memory data

The traditional method for evaluating source-memory
consists of a study phase in which items with different
contextual characteristics (i.e., different sources) such as
words with different colors (e.g., red words and green
words) are presented. Individuals subsequently engage in
a test phase in which they have to distinguish between
studied and non-studied words and identify the source of
recognized items. There are typically two sources, A and
B, and the response alternatives in this source-memory task
are “Source A”, “Source B”, and “New”.

The relationship between item and source-memory
judgments is frequently modeled by means of measure-
ment models designed to disentangle the contribution of
different cognitive processes (Klauer & Kellen, 2010). One
such model is the 2HTSM (Bayen et al., 1996), a model
belonging to the Multinomial Processing Tree (MPT) model
class (Batchelder & Riefer, 1999; Riefer & Batchelder,
1988). The 2HTSM assumes a finite set of discrete mental
states that can be entered conditional on the occurrence
of specific cognitive processes. The parameters in the
model quantify the probability of each of these processes
taking place (the parameter values are therefore bounded
between 0 and 1). The 2HTSM is depicted in Fig. 1 for the
case of two sources (A and B) in which the model assumes
five mental states, from M; to Ms:

M;: An A item is remembered as previously studied and
stemming from Source A.

M,: A B item is remembered as previously studied and
stemming from Source B.

Ms: An old item is remembered as previously studied,
but memory for the source is absent.

M,: A new item is detected as new.

Ms: An item presented at test is not remembered as
previously studied nor is it detected as new.

The probability of each mental state being entered,
given a particular type of item (A, B, or new), is determined
by detection parameters that quantify the probability of
specific memory processes successfully occurring: Parame-
ters D, and Dg correspond to the probability, respectively,
of A and B items being remembered as previously studied
(item memory). The memory-retrieval processes
associated with D, and Dp determine whether an item
was previously studied or not, but not the source of these
items. Parameter Dy captures the probability that a new

item is actively rejected via so-called recall-to-reject
processes (e.g., Rotello & Heit, 2000) or metacognitive
strategies (e.g., Strack & Bless, 1994). In the restricted ver-
sion of the 2HTSM, the 1HTSM, the possibility of an item
being detected as new (M) is excluded (i.e., Dy = 0), so
that responses to new items are completely governed by
guessing processes, which will be described below.

Parameters d, and dp quantify the probability that the
source of a studied item is remembered, conditional on
item memory. The probability of the mental states
described above being entered is a function of all of the
above parameters: For example, for A items the probability
of state M; corresponds to D4 x ds. From a broader per-
spective, the detection processes described by parameters
D and d can be aligned with the familiarity and recollection
processes postulated by dual-process models of memory
(Klauer & Kellen, 2010; see also Malmberg, 2008).

In states My, M;, and M,, the true status of the test item
has been detected, which means that a correct response
(responses “Source A”, “Source B”, and “New”, respec-
tively) is given with probability 1. In contrast, in M5 and
M5 the true status of the test item is only partially detected
or completely unknown, respectively. In these states,
responses are guesses: State M3 is mapped onto responses
“Source A” and “Source B” with guessing probabilities y,
and vy, with y, +7; = 1. In state Ms, responses “Source
A”, “Source B”, and “New” are given with guessing proba-
bilities B,4, B, and By, respectively, with g, + Bz + fy = 1. At
this point, an important feature of the model should be
emphasized: The detection processes modeled by parame-
ters Ds,Dg, and Dy always provide accurate information,
which means that the model does not permit judgment
errors based on false information retrieved from memory.
Consequently, the model attributes all observed errors to
guessing processes, which are described by the y and B
parameters.® It is important to note that the exclusive
assignment of errors to guessing processes does not mean
that one is claiming that other types of errors (e.g., false rec-
ollection) do not exist. Rather that such types of errors do
not constitute a major aspect of the particular data being
characterized by the model (recognition memory judgments
for non-related word lists associated to arbitrary contexts or
sources). This is not expected to hold in the case of data
coming from experimental paradigms where semantic/asso-
ciative false memories are expected (for reviews, see
Brainerd & Reyna, 2005; Gallo, 2006).

The model has been found to provide adequate fits to
experimental data and has been experimentally validated:

2 This comparison with dual-process models is done rather loosely and
does not imply that the familiarity and recollection parameters in the dual-
process model exactly correspond to item and source detection, respec-
tively. As shown by Yu and Bellezza (2000, p. 1527), recollection and
familiarity can be shown to be a complex function of item and source
detection as well as guessing processes.

3 This specification of the THTSM/2HTSM is actually a reparametrization
of the one originally proposed by Batchelder and Riefer (1990), according to
which there are two types of guessing judgments: (1) item-memory (old-
new) judgments represented by parameter b, and (2) source-memory
(Source A - Source B) guessing judgments represented by parameters a and
g operating on mental states M3 and Ms, respectively. The current model
specification corresponds to Batchelder and Riefer’s if y, =a,7, =1—a,
Pa=bxg pg=bx(1-g),and fy=1-bh.
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Fig. 1. Two-High Threshold Source-Memory Model (2HTSM) for a two-source experiment. Note that each depicted set of response probabilities associated

to a mental state in the source-memory task sums to 1.

Several studies have shown that the different detection (D
and d) and guessing parameters (f and y) can be selectively
influenced across experimental conditions (Bayen et al.,
1996; Schiitz & Broder, 2011; Yu & Bellezza, 2000). More-
over, further studies have shown that the guessing tenden-
cies captured by the g and y parameters are affected in an
expected manner by the probabilities associated to the dif-
ferent detection processes as well as the nature of the
sources (Arnold, Bayen, Kuhlman, & Vaterrodt, 2013;
Batchelder & Batchelder, 2008; Ehrenberg & Klauer, 2005;
Klauer & Meiser, 2000; Meiser, 2003, 2005; Riefer, Hu, &
Batchelder, 1994; Spaniol & Bayen, 2002). These results
strongly suggest that the 2HTSM’s parameters are success-
fully measuring the major cognitive processes underlying
memory jugments in this paradigm.

The conjoint process-dissociation task, source
overdistribution, and a new model for item and source
memory

The source-memory task is only one possible way of
obtaining item and source-memory judgments. One alter-
native is the conjoint process-dissociation task (henceforth
CPD task; Brainerd & Reyna, 2008; Brainerd, Reyna, &
Mojardin, 1999; Brainerd et al., 2012; Yu & Bellezza,
2000): In the CPD task, test items are presented along with
one test probe that queries whether the item belongs to a
specific source (e.g., “Source A?”) or that queries whether
the item was previously studied (e.g., “0Old?”). The
participant is then required to respond “Yes” or “No” to
the presented probe. Although less popular than the

source-memory task, the CPD task is known to provide a
comparable characterization of item and source-memory
processes (see Yu & Bellezza (2000) for a demonstration
of parameter equivalence across the source-memory and
CPD tasks). The CPD task is an extension of Jacoby’s
(1991) original Process-Dissociation task, where items are
tested in an inclusion (“Old?”) and an exclusion condition
(“Source A?”).

Brainerd et al. (2012) argued that the proportion of
“Yes” responses associated to the test probes “Source
A?”, “Source B?”, and “Old?” can be seen as subjective
estimates of source-membership probabilities, namely
P(A), P(B), and P(A U B). Following the laws of probability
one can easily see that the (subjective) probability of
the test item belonging to both sources is given by
P(ANB) =P(A) + P(B) — P(AUB). The probability of the
conjunction — which Brainerd et al. term source overdistri-
bution — is expected to be zero given that the sources are
mutually exclusive, a fact that participants are made aware
of in the instructions. Nevertheless, the experimental
results reported by Brainerd et al. show that source
overdistribution is consistently above zero. Brainerd et al.
(2013) replicate these results. The phenomenon of source
overdistribution is related to the phenomenon of episodic
overdistribution in the recognition of semantically-related
word lists (Brainerd & Reyna, 2008) as well as to a consid-
erable body of results in the decision-making literature
showing related biases in subjective-probability judgments
(e.g., Rottenstreich & Tversky, 1997; Sloman, Rottenstreich,
Wisniewski, & Hadjichristidis, 2004).

On the theoretical side, Brainerd et al. (2013) portrayed
the phenomenon of overdistribution as a memory analog
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of the quantum superposition principle, according to which a
physical system (e.g., an electron), prior to measurement
or observation, exists simultaneously in all of its theoreti-
cally possible states, even when those states are mutually
incompatible. This analogy is furthered by the classifica-
tion of the CPD task as an experimental-psychological
instantiation of the famous double-slit experiment from
Physics (Feynman, Leighton, & Sands, 1965) where quan-
tum superposition is observed: In the double-slit experi-
ment, electrons are fired through two adjacent slits, with
evidence (an interference pattern) indicating that each sin-
gle electron is simultaneously passing through the two slits
being found. Brainerd et al. (2013) argue that superposi-
tion in memory manifests itself via a deterministic accep-
tance of the test item as member of or satisfying any test
probe irrespective of their mutual incompatibility, similar
to the way single electrons simultaneously pass through
the slits. This apparent similarity between memory over-
distribution and quantum superposition has in fact been
used as a motivation for quantum-probability modeling
in Psychology (Brainerd et al., 2013; Busemeyer & Bruza,
2012; Busemeyer & Trueblood, 2010). In fact, proponents
of quantum-probability models argue that the phenome-
non of source overdistribution is “puzzling” from a
classical probability perspective (Wang, Busemeyer,
Atmanspacher, & Pothos, 2013, p. 681).

According to Brainerd, Holliday, Nakamura, and Reyna
(in press), when an item is remembered but the source is
not retrieved there is a combination of confidence and
uncertainty in the sense that the individual is sure that
the item was previously studied but he/she is not able to
remember its context. In fact, the evidence available is con-
sistent with any of the mutually exclusive contexts/

Mental
State
Wi
w2
Source A Ws
Items
(1-RA)
(1-EB) W
(1-1a) 6
W3
Wa
Source B
Items ws
We
New 1 We
Items

sources. This consistency leads participants to attribute
the test item to the source described in the test probe.
The same applies to the case of semantically-related word
lists (Brainerd & Reyna, 2008), where the phenomenon of
overdistribution is associated with the retrieval of
gist-memory traces that produce a generic phenomenology
— semantic similarity — which is consistent with different
episodic states (studied items versus related distractors),
thus leading to a general acceptance of test probes.

In order to account for the observed overdistribution in
the CPD task, Brainerd et al. (2012) proposed the Conjoint
Process-Dissociation Model (CPDM). The discrete mental
states assumed by the CPDM differ from the ones assumed
by the THTSM/2HTSM. The CPDM is depicted in Fig. 2 for
the case of two sources. For two sources, the model
assumes six mental states, labeled W, to Ws:

W;: An A item is correctly recollected as coming from
Source A.

W,: An A item is erroneously recollected as coming from
Source B.

W3: A B item is correctly recollected as coming from
Source B.

Wy4: A B item is erroneously recollected as coming from
Source A.

W5s: Anold item is remembered as being previously stud-
ied, and attributed to whatever source is being
probed.

Ws: For an item presented at test, no information is
available.

Parameters R4 and Ry represent the probability of the
source of A and B items being correctly remembered,

Response Probabilities Probability of “Yes”

Source-Memory Task CPD Task

“Source A” “SourceB”  “New”  “Source A?” “Source B?”  “Old?”
Lt Jl ol o[l Jlol]f1]
Lo Jl + Jl o J[o [z ]1]
Cva qCve Jo JL 2 JL 2 [ 1 |
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Fig. 2. Conjoint Process-Dissociation Model (CPDM) for a two-source experiment. Note that each depicted set of response probabilities associated to a

mental state in the source-memory task sums to 1.
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respectively. In contrast, parameters Eg and E4 correspond
to the (conditional) probability of A and B items being
incorrectly remembered as coming from Source B and
Source A, respectively. Parameters I, and I represent the
(conditional) probability that only item memory is avail-
able, in which case individuals will respond “Yes” to the
item whichever the probe, invariably attributing it to the
source referred to in the test probe (Brainerd et al., 2012,
p. 415). Thus, when only item memory is available, the
item would be attributed to both sources, which is a logi-
cally inconsistent response pattern. Finally, parameters
Bya» Bys:» and pyo, describe the guessing tendencies to
respond “Yes” for probes “Source A?”, “Source B?”, and
“0ld?” respectively.

Certain aspects of the CPDM should be emphasized:
First, the model assumes that errors can (also) occur due
to false recollection (e.g., Dodson, Bawa, & Slotnick,
2007), which contrasts with the 2HTSM’s assumption that
errors are solely due to guessing. Second, the item-memory
state (Ws) postulated by the model assumes that the test
item is invariably accepted, independently of the test probe
(see also Brainerd & Reyna, 2008). Thus, the model
excludes the possibility that individuals remember a given
test item but are not certain about its source(s), and then
choose to express this uncertainty by responding “No”
rather than “Yes” at least sometimes. This assumption of
CPDM is not only in contrast with the 2HTSM but also with
bivariate SDT and dual-process approaches to item and
source-memory (Hautus et al., 2008; Klauer & Kellen,
2010; Onyper et al., 2010) which do not assume such a
deterministic process (“Yes” responses are probabilistic
and depend on additional aspects such as subjects’
response criteria, for example). Furthermore, this assump-
tion is also at odds with research pointing to the existence
of different source-guessing strategies when only item
memory is available (Batchelder & Batchelder, 2008;
Riefer et al., 1994). Brainerd et al. (2012) argue that when
only item information is available, retrieval processes attri-
bute the test item to too many contexts (i.e.,, a case of
memory superposition), even when these memory attribu-
tions represent logical contradictions.

According to the CPDM for a two-source CPD task, the
probability of response “Yes” for the different probes (for
the case of A items) is as follows for A and new items
(for the sake of brevity, we leave out the analogous equa-
tions for B items):

P(Yes|A?,A) =Ry + (1 —Ra)(1 —Ep)la
+ (1= Ra)(1 = Eg)(1 — In) By
P(Yes|B?,A) = (1 —Ra)Eg+ (1 —Ra)(1 — Ep)Ia
+ (1 =Ra)(1 = Ep)(1 = 1a) By,
P(Yes|Old?,A) =1~ (1 —Ra)(1 = Ep)(1 = La)(1 = Byor);

P(Yes|A?, New) = Byars

P(Yes|B?,New) =
) =

ﬁy\B?y
P(Yes|Old?, New B

y|0?-
Model equations for both two and three-source CPD tasks

can be found in the Supplemental Material. Now, let us
consider the case of overdistribution for A and New items,

whose expressions can be obtained with basic algebraic
manipulations:

P(ANBIA) = (1 = Ra)(1 = Eg)la + (1 = Ra)(1 = E)(1 — L)
X (Byar + By — Byjor)s (1)

P(ANB|New) = B4, + Byz: — Byjor- 2)

The first term in Eq. (1) of item memory in the absence of
recollection. The second term shows that overdistribution
can also be caused by differences in guessing tendencies
across test probes, particularly when Sy, + By > [iy‘o._,.“
Eq. (2) shows that this inequality between the guessing
parameters will also lead to the observation of source over-
distribution in the case of new items. Note as one example
that this inequality between the guessing parameters is
expected to hold when individuals do not perfectly adjust
(or do not adjust at all) their guessing tendencies to the pro-
portion of items in the test list that match the test probe
(e.g., Cox & Dobbins, 2011; Thomas & Legge, 1970). For
example, if all three B parameters are of equal size,
overdistribution is predicted as a consequence of guessing
processes. Still, note that the CPDM can also predict negative
overdistribution if item memory is low and ., + By
< Pyj0»- Finally, note that source overdistribution is expected
to be greater when memory is poor (especially source mem-
ory). However, given that source overdistribution is the out-
come of several different processes, the possibility of
interactions among the latter compromises the establish-
ment of clear-cut predictions.

One of the predictions made by the CPDM (and con-
firmed empirically by Brainerd et al. (2012)) is that source
overdistribution increases as the number of sources used
increases. For example, if three sources (A, B, and C) are
used, the CPDM predicts

P(ANBNC|A) =2 x (1 —Ra)(1 —Eg)(1 —Ec)Is + (1 — Ry)
x (1= Eg)(1 = Ec)(1 = Ia) X (Byar + Byae
+ Byicr = Byjor)s

where the first term, corresponding to the contribution of
item memory to overdistribution, is doubled. From this it
is easy to see how overdistribution is expected to be larger
in the case of three sources. First, assume that all parame-
ters shared by the two overdistribution equations (e.g., R4)
have the same values. Now, if false-recollection parameter
Ec is smaller than .50 (something which is highly expected;
see Brainerd, Wright, Reyna, & Mojardin, 2001), then over-
distribution is expected to be larger in the three-source
case than in the two-source case.

4 Note that when the task format enforces Byz + By + Byor = 1 and
Vyar +Vyp = 1 as when participants have to respond with one of three
response options, (1) that the item was studied in and belongs to Source A,
(2) that the item was studied in and belongs to Source B, (3) that the item is
new (see Batchelder & Riefer, 1990; see also Footnote 3), then the predicted
overdistribution due to guessing processes is 0. Batchelder and Riefer's
parametrization is a special case of the parametrization used here, a
parametrization which is the most general and allows for the THTSM/
2HTSM to be tested on the basis of its core assumptions (the mental states
M).
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Revisiting Brainerd et al.’s (2012) model analysis

A new model is usually shown to outperform other
models already established in the literature before being
accepted for further scientific scrutiny. In the case of
source-memory modeling, an obvious point of comparison
would be either the THTSM or the 2HTSM. Brainerd et al.
(2012) reported a comparison between the CPDM and
the THTSM/2HTSM (see Footnote 1) and correctly pointed
out that the latter model attributes source overdistribution
entirely to guessing processes. Furthermore, Brainerd et al.
(2012) fitted both models to the experimental data
reported and found that the THTSM/2HTSM provided a
much poorer account, producing gross misfits that were
rejected under null-hypothesis testing. According to Brain-
erd et al., these results indicate that the THTSM/2HTSM,
but not the CPDM, mischaracterizes the underlying cogni-
tive processes, which are seemingly better captured by the
CPDM. As shown next, the comparison reported by
Brainerd et al. (2012) has important limitations that ques-
tion the conclusiveness of the reported model comparisons
as well as the related claims regarding the dependence of
cognitive processes: First, we will show that Brainerd
et al. (2012) considered an incorrect specification of the
THTSM/2HTSM. Second, we will demonstrate that, con-
trary to Brainerd et al’s claims, the CPDM makes no
assumptions regarding the relationship between item
memory and source recollection. Finally, we reanalyze pre-
viously-published CPD-task data (Brainerd et al., 2012,
2013; Yu & Bellezza, 2000) with the THTSM and CPDM
and show that both models are very similar in their ability
to account for the data, contradicting the notion that the
THTSM/2HTSM is unable to account for CPD-task data.

Incorrect specification of the 1THTSM/2HTSM

Let us begin with the misspecification of the THTSM/
2HTSM. Brainerd et al. (2012) fitted the models to each
source separately. In the case of two-source CPD data,
responses given to items from one list (e.g., A items) and
to new items together provide six degrees of freedom, a
limited number that imposes the need to fit restricted ver-
sions of the THTSM/2HTSM in order to have models that
are both testable (can be rejected by the data) and identifi-
able (the account provided has a unique set of parameters;
for a discussion, see Bamber & Van Santen, 2000).

Brainerd et al. (2012) specify the equations of the
THTSM/2HTSM for the 2-source CPD task as follows:
P(Yes|A?,A) = Dada + Da(1 — da)y,,

P(Yes|B?,A) = Da(1 — da)y,

P(Yes|Old?,A) = Dy,

P(Yes|A?,New) = (1 — Dn)8,,

P(Yes|B?, New) = (1 — Dy)p,,

P(Yes|Old?, New) = (1 — Dy)p,.

Given the equations above, the following expression for
source overdistribution in A items results:

P(ANBIA) = Da(1 - dy)(27, — 1), 3)
P(ANBIN) = (1 - Dy)h,. (4)

According to Eq. (3), source overdistribution is entirely
produced by a specific guessing process, and is expected
to be above 0 when 7, >.50. Eq. (4) new items, source
overdistribution simply corresponds to the predicted
false-alarm rate.

At this point it is important to note that Brainerd
et al.’s (2012) specification of the THTSM/2HTSM leading
to Egs. (3) and (4) considerably departs from traditional
specifications in several ways: First, it precludes any form
of guessing when no memory is available, which occurs,
for example, for A items with probability 1 — D,. Instead,
it is tacitly assumed for studied items that response “No”
is deterministically given when no memory is available
(state Ms). This assumption is problematic given that it
reduces the number of ways that source overdistribution
can come about in the 2HTSM, compromising the validity
of any comparison. Also of note is the fact that although
Ms invariably leads to “No” for the case of old items, a
guessing process is assumed for the case of new items.
One of the core assumptions of the 2HTSM is, however,
that individuals behave similarly towards items in state
Ms, whether they are old or new. That is, the impact of
the item type (e.g., studied or non-studied) on responses
is expected to be completely mediated by the mental
state that is entered, a principle that Brainerd et al.s
specification violates without any sort of justification.

The specification of the THTSM/2HTSM for new items
has additional problems: The guessing process that
occurs in the absence of distractor rejection is assumed
to be invariant across test probes, with the probability
of response “Yes” being (1 —Dy)p, for all test probes.
In contrast, no such restriction is present in the CPDM,
which reasonably permits different p parameters for
the different test probes (see Brainerd et al., 2012,
Appendix). The same problems can be found in the
implementation of the 1HTSM/2HTSM for the three-
source CPD task.

Overall, the evaluation of the THTSM/2HTSM hinges
upon an implementation that does not have some of the
defining properties of the model, and therefore has limited
diagnostic value regarding the ability of the 1HTSM/
2HTSM to account for data in general, let alone source
overdistribution.

A specification of the THTSM/2HTSM for the CPD task
that is in line with the original model for the source-mem-
ory task (a) uses the same mental states M; to Ms that
characterize memory states in the source-memory task
and (b) adjusts the state-response mapping to suit the
demands of the CPD task (state-response mappings are
shown in the rectangular boxes of Fig. 1):

P(Yes|A?,A) = Dada + Da(1 — da)Yyar + (1 — Da)Byar,
P(Yes|B?,A) = Da(1 — da)yyp: + (1 — Da)Byp,
P(Yes|Old?, A) = Da + (1 — Da) By,

P(Yes|A?,New) = (1 — Dn)Byar,
P(Yes|B?,New) = (1 — Dn)fyp:,
P(Yes|Old?, New) = (1 — D) By 0:-

This specification in turn leads to
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P(ANB|A) = Da(1 — da)(Vyar + Vypr — 1) + (1 = Da)
X (Byaz + Byr — Byjor), (5)

P(ANBIN) = (1 = Dn)(Bya: + Byp: = Byjor)- (6)

Egs. (5) and (6) show that the THTSM/2HTSM predicts
source overdistribution via two different kinds of guessing
processes, when 7y, + Py, > 1 andfor By, + Byg > Byjor-
As previously stated when discussing the CPDM'’s guessing
(B) parameters, inequalities of this kind are expected to
hold if participants do not adjust their guessing rates to
match the base-rate of the item being probed. Given that
individuals are known to be quite resistant to adjust their
response tendencies (e.g., Cox & Dobbins, 2011) and prone
to under-adjustment or response conservatism (e.g.,
Thomas & Legge, 1970), the occurrence of a guessing-based
overdistribution phenomenon is expected. Previous work
on the Process Dissociation task (Jacoby, 1991) has focused
on false-alarm differences (which are assumed to reflect
guessing differences) across test probes, with some studies
showing no differences in false alarms across test probes
(e.g., Jacoby, 1991) while others showing (small, but con-
sistent) changes (e.g., Yu & Bellezza, 2000). Egs. (5) and
(6) show that these observed false-alarm rates would lead
to the observation of overdistribution. Note that the
THTSM/2HTSM can also predict negative overdistribution
if Pyar + Vypr < 1 andfor By, + Bypr < Pyjor- Like the CPDM,
the THTSM/2HTSM’s characterization of overdistribution
leads to the prediction that the latter should be greater
when memory is poor. However, it is possible that changes
in other parameters (e.g., guessing) compromise the obser-
vation of such relationship.

Besides the ability to account for source overdistribu-
tion in a two-source CPD task, the THTSM/2HTSM is also
able to accomodate its increase in the case of three
sources:

P(ANBNCIA) = Da(1 - dA)(Vy\A? + Yy + Vyer — 1)
+ (1 = Da)(Bya + Bygz + Byicr — Byjor)-

Overdistribution is expected when Byar + Bypr + Byicr >
Byo» andfor Yyaz T Vyigr + Vyicr > 1. As for the CPDM, the
sum of three guessing parameters (e.g., Vy- Vyp» and
Vyic:) should produce a larger overdistribution than the
sum of only two (e.g., Y4, and y,p, ).

Dependency of mental processes

Brainerd et al. (2012) argue that the CPDM imposes a
relationship over retrieval states — that recollection states
are independent from item memory and thus can occur in
the absence of the latter. Brainerd et al. (2012) refitted
their datasets with a new version of CPDM in which source
recollection depended on the successful occurrence of item
memory, and found that this model grossly misfitted the
data. These results led Brainerd et al. to claim that recollec-
tion can occur in the absence of item memory, contradict-
ing the common modeling assumption that source
memory is dependent on item memory (Hautus et al.,
2008; Klauer & Kellen, 2010). The goal of this section is
to show that Brainerd et al.’s conclusions are premature

as the CPDM is silent regarding the dependency of item
and source memory. Particularly, we will demonstrate that
an alternative model that only assumes recollection in the
presence of item memory is formally equivalent to the
CPDM.

Before focusing on the CPDM, a brief discussion on how
previous modeling accounts like the THTSM/2HTSM cap-
ture the empirical relationship between item and source
memory is in order: The possibility of source memory in
the absence of item recognition is precluded by models
such as the THTSM/2HTSM, but this assumption is actually
immaterial in the context of traditional source-memory
tasks (e.g., Batchelder & Riefer, 1990) where source judg-
ments are only required for recognized items. Any adjust-
ment of the THTSM/2HTSM would be inconsequential as
the outcome of any tree branching representing source
memory in the absence of item memory would not lead
to an observable response: For example, branching
(1 —Dy) x (1 — B) x d, with d, denoting the probability of
source memory for non-recognized A items, would never
be observed given that participants do not have the
possibility to assign an item to a source without stating
explicitly or implicitly that they remember it as old in
the traditional source discrimination task. Such kind of
responses only recently became admissible with the mod-
eling of confidence-rating judgments (Hautus et al., 2008;
Klauer & Kellen, 2010) where individuals provided source
judgments independently of their item-memory judgment.
However, no evidence for the presence of source-memory
for non-recognized items was actually found in those stud-
ies. This lack of evidence is particularly interesting given
that it contrasts with focused studies (e.g., Ceci, Fitneva,
& Williams, 2010; Starns, Hicks, Brown, & Martin, 2008)
showing evidence for above-chance source-memory accu-
racy for non-recognized items (although this accuracy is
still lower than in the case of recognized items). For exam-
ple, Starns et al. argue that their results support a two-
dimensional signal detection theory account of item and
source memory where item and source memory are posi-
tively correlated (DeCarlo, 2003), but the modeling work
of Hautus et al. (2008) shows that a post hoc adjustment
imposing chance-level source judgments for non-recog-
nized items is necessary in order for the signal detection
model to give a reasonable account of the data. This dis-
crepancy suggests that source memory in the absence of
item memory does not contribute substantially to the
experimental paradigms commonly used in source-
memory modeling endeavors (see Klauer & Kellen, 2010)
and only needs to be taken into account in focused tests,
if at all. In any event, the pronounced differences observed
in source-memory accuracy between recognized and non-
recognized items across the different studies already indi-
cate that item and source memory processes are unlikely
to be stochastically independent (otherwise, source-
memory accuracy should be exactly the same for recog-
nized and non-recognized items).

We now turn to the tree structure of the CPDM.
Brainerd et al’s (2012) claim that the implied depen-
dency/independence of processes in the CPDM is meaning-
ful in the current setting is inaccurate. As it turns out, the
specification of processes in the CPDM can be shown to
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be completely silent regarding the actual dependence/inde-
pendence of mental processes. As an example, let us con-
sider a new model for CPD-task data, entitled CPDM*, in
which item memory not only precedes but is also a
requirement for the occurrence of recollection:

P(Yes|A?,A) = LR, + I, (1 = Ry)(1 = Ep) + (1 = L) By 0,
P(Yes[B?, A) = [;(1 — Ry) + (1~ [}) ;5.
P(Yes|Old?,A) = I} + (1 - [)B; 0

The meaning of the parameters in CPDM* is slightly differ-
ent from CPDM: For example, while I} represents the prob-
ability of item memory being available, I, is the probability
of item memory conditional on the absence of both true
and false recollection. On the other hand, while R, repre-
sents the probability of recollection, R, represents the
probability of recollection conditional on the presence of
item memory. Despite the slight differences in the inter-
pretation of the parameters, both the CPDM and CPDM*
are just different ways of describing the same joint events.
With some basic algebraic manipulation it is easy to show
that the change in the order of the parameters only
amounts to a reparametrization of the same multinomial
distributions, which means that the parameters of one
model can be set as a function of the other without any loss
of generality:

I, =Ra+ (1= Ry)Es + (1 — Ra)(1 — Ep)ls,

R, = Ra

AT RA —+ (] — RA)EB + (1 — RA)(l — EB)IA ’
. (1= Ra)Es

5=

(1 —Ra)Eg+ (1 —Ra)(1 — Ep)l4’

or conversely

I = (1-Ep)(1 - RyI;
(1=T) +1,(1 =Ry - Ep)’

Ra = Ry},

g - B —R)I

PR

CPDM and CPDM* are simple reparametrizations of each
other, so that their goodness of fit to actual data is the
same despite the different tree structure in the model
specification. The reason for the misfits reported by
Brainerd et al. (2012) for the rearranged model stem from
the fact that the E parameters were omitted in their CPCDM*
equations (see Brainerd et al., Equations A15-A20). An
evaluation of process dependence requires that the same
processes are present in the two models. The demon-
strated CPDM/CPDM* equivalence is especially important
because it shows that the order in which the processes
occur in the model do not lead to testable differences. This
means that the CPDM’s ability to fit data from the CPD task
(or its performance relative to the THTSM/2HTSM) has no
bearing whatsoever on the presumed relationship between
item and source memory.

A similar point was made by Buchner, Erdfelder, and
Vaterrodt-Pliinnecke (1995) for the case of Jacoby’s
(1991) Process Dissociation model (a conceptual predeces-
sor of the CPDM; Brainerd et al., 1999, 2012), where they

showed that the stochastic relationship between the recol-
lection and familiarity processes was not identifiable (see
also Buchner & Erdfelder, 1996) as the characterization of
observed responses provided by the model equations were
simultaneously consistent with process independence,
mutually exclusivity, and redundancy (Jones, 1987). This
non-identifiability issue in the Process Dissociation model
emerges from the fact that one can only estimate familiar-
ity in the absence of recollection whereas the probability of
familiarity given recollection is not observable (at least in
traditional Process Dissociation designs). This non-identifi-
ability issue should not be confused with the discussion
regarding whether or not recollection and familiarity esti-
mates are correlated when aggregating responses across
participants or items (e.g., Curran & Hintzman, 1995,
1997; Jacoby & Shrout, 1997). Finally, note that these
non-identifiability issues are not always present in models
of this kind, as there are models (together with their asso-
ciated experimental designs) where different process
orderings and dependencies can be distinguished and
tested (see Schweickert & Chen, 2008; Schweickert & Xi,
2011).

Can we reinterpret the CPDM parameters in terms of the
1HTSM/2HTSM?

In the previous section we focused on the dependency
of the processes postulated by the CPDM. We will now
discuss a related issue, the possibility of reinterpreting
the CPDM false recollection (E) and item-memory/super-
position (I) parameters in terms of the guessing processes
postulated by the THTSM/2HTSM.>

Let us begin with false-recollection parameter E: This
parameter cannot be reinterpreted as a guessing parameter
like y because it can assume different values for the differ-
ent sources (e.g., Ej # Ep). A source-guessing process
implies that it takes on the same values across sources,
given that source information is expected to be absent
(after all, it is this absence of information that creates the
need to guess).

We now turn to the item-memory/superposition
parameter I. This parameter establishes the (conditional)
probability of the test item being in a memory state in
which a “Yes” response is invariably produced. In contrast
with the THTSM/2HTSM, item memory is not mapped onto
observed responses via a guessing process. Instead, accep-
tance of the test probe results from the retrieved evidence
from item memory that is postulated to be consistent with
all the test probes simultaneously. This absence of a guess-
ing process in item memory reflects a theoretical position
that distinguishes the CPDM from the THTSM/2HTSM:

At the level of retrieval processes, the difference
between the [CPDM] and [1THTSM/2HTSM] accounts of
overdistribution is just this. On the one hand, [CPDM]
localizes the cause of overdistribution within item
memory, positing that overdistribution will occur for
cues for which subjects have item memory when sub-
jects cannot recollect the cues’ sources. On the other

5 We thank Charles J. Brainerd for suggesting this comparison.
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hand, the [THTSM/2HTSM] localizes overdistribution
within a guessing process, positing that for cues for
which subjects do not have item memory, overdistribu-
tion occurs when subjects tend to guess the sources
that are stipulated in exclusion and mirror exclusion
probes at high rates (Brainerd et al., 2012, p. 416)

Still, one could in principle introduce a guessing process
in the case of item memory into the CPDM. For the two-
source CPD task, the CPDM formula for overdistribution
would then be

P(ANBIA) = (1 = Ra)(1 = E)a(Vyar + Vypr — 1)
+ (1 = Ra)(1 — Ep)(1 — 1a) (Byar + Byig: — Byion)-
(7)

Eq. (7) is equivalent to Eq. (1) when 7,4, = 7,5, = 1. Thus,
the CPDM for two sources can be seen as arising from a
restriction on the guessing processes that invariably
produces “Yes” responses. In general terms, the guessing-
extended CPDM is consistent with Brainerd et al.’s (2012)
CPDM when all y parameters are fixed to 2, where S > 2
is the number of sources. Note that when there are more
than two sources, this guessing process no longer produces
a deterministic guessing acceptance of the test probe
(however, it is still imposes a fixed guessing rate).

This comparison highlights the similarities between the
two models and the possibility of integrating them both
within an encompassing model. Let us take the CPDM*
and extend it with the item-memory guessing processes
discussed above. The resulting equations for the two-
source CPD task are

P(Yes|A?,A) = LRy + [;(1 = Ry) (1 — Eg) Yy + (1 = L) By,
P(Yes|B?,A) = [ (1 — Ry)Eg + [,(1 = Ra)(1 — Ep) Yy,

+ (1 =Ly
P(Yes|Old?,A) = I + (1 = I}) B} 00-

By setting I, =Da,R, =ds, and E; =0, the equations
become equivalent to the 1THTSM/2HTSM equations. In
contrast, they are equivalent to the CPDM* equations when
the y* parameters are fixed to 1. Thus the encompassing
model can be seen as an extended THTSM/2HTSM where
false recollection is possible. Furthemore, the encompass-
ing model and its restricted cases assert and clarify the
main diverging features of the two models: (1) the possi-
bility of false recollection, and (2) the deterministic (or
fixed) acceptance rates for item memory in the CPDM, ver-
sus the probabilistic guessing processes in the 1THTSM/
2HTSM. Unfortunately, due to its complexity the encom-
passing model cannot be estimated in the experimental
settings discussed in this manuscript and in the literature
at large.

Comparing between the 1HTSM and the CPDM empirically: a
reanalysis of CPD-task data

In this section we conduct a reanalysis of CPD-task data
using correctly-specified versions of the THTSM/2HTSM.
One additional problem in Brainerd et al.’s (2012) analysis
is that the goodness-of-fit results for each source/list were

summed across all stimulus conditions. This procedure is
problematic because the responses to a common set of
new items are “recycled” when modeling the responses
to each studied list, violating the assumption of indepen-
dent observations that is required for the summed fits to
be meaningful (Bishop, Fienberg, & Holland, 1975).

In order to sidestep this assumption violation we will
instead fit models to data from all sources and new items
simultaneously, an approach that has been frequently
advocated in the source-memory literature (e.g., Broder &
Meiser, 2007; DeCarlo, 2003; Hautus et al., 2008; Klauer
& Kellen, 2010; Slotnick & Dodson, 2005). The two and
three-source aggregate datasets from Brainerd et al.
(2012, 2013), and Yu and Bellezza (2000) will be analyzed
with the THTSM and CPDM.® The 1HTSM is used because
this model is identifiable and testable with two and three-
source CPD-task data.

The evaluation of relative model performance will be
based on the Normalized Maximum Likelihood index
(NML; Myung, Navarro, & Pitt, 2006) in order to take pos-
sible differences in model flexibility into account. NML is a
model selection index emerging from the Minimum
Description Length framework (MDL; Griinwald, 2007).
According to MDL, data can be seen as a code whose length
can be compressed by a model (itself a code with a partic-
ular length) according to the regularities present in the
data. The (logarithm of the) NML index for an arbitrary
model is given by:

NML = — log f(x|0(x)) + log > f (y/0(y)).
y

The first term corresponds to the model’s maximum log-
likelihood for observed data x and quantifies goodness of
fit. The second term is a penalty factor that is the sum of
the maximum log-likelihoods of all possible data patterns
y that could in principle be observed in such experiment.
In other words, the first term quantifies a model’s good-
ness of fit (in terms of the maximum likelihood) and the
second term penalizes the model for its ability to account
for any data that might be observed (again in terms of
maximum likelihoods). The larger the flexibility the larger
the penalty. NML has been shown to outperform several
alternative model-selection methods, and even approxi-
mate optimal model-recovery rates (e.g., Kellen, Klauer, &
Broder, 2013; Klauer & Kellen, 2010). The computation of
NML represents a formidable challenge as it becomes
intractable even for moderate sample sizes (alternative
MDL-based measures such as the Fisher Information
Approximation could be used in those cases as they are
readily available for MPT model class; see Wu, Myung, &
Batchelder, 2010a, 2010b; but see also Navarro, 2004).
Klauer and Kellen (2011) developed methods for estimat-
ing NML in binomial and joint-binomial data that will be
used in the present case.

5 A couple of minor data-entry errors in the new-item trials were found
in the two-source CPT data from Brainerd et al. (2012). The correction of
these frequencies was obvious due to the expected number of trials and the
fact that the frequencies for the distractor trials appeared twice in the data
files (once with each source).
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Both the THTSM and the CPDM are saturated in the
two-source CPD task (nine parameters for nine degrees of
freedom) but not in the three-source task (both have thir-
teen parameters for sixteen degrees of freedom). Although
the two models are saturated in the two-source task they
are still testable because they nevertheless impose
inequality restrictions on the data (i.e. there are data pat-
terns that they are unable to account for; for a similar case,
see Kellen & Klauer, 2011). In such cases, the sampling dis-
tribution of the goodness-of-fit statistic G* follows a mix-
ture of y? distributions with the most conservative
distribution being }y3_,, which has a critical value
(p = .05) of 2.71 (e.g., Self & Liang, 1987; for an example,
see Regenwetter & Davis-Stober, 2012).

Model performance is summarized in Table 1: Both the
1HTSM and the CPDM are frequently rejected (p < .05),
indicating that both models are failing to account for many
of the observed data (see Note to Table 1). Both models
have often similar goodness of fit values, which suggests
that the shortcomings of both models do not result from
their different assumptions. Regarding the predicted levels
of source overdistribution, the results shown in Table 1
indicate that both models produced very similar predic-
tions, which were very often close to the observed overdis-
tribution values. In fact, the absolute agreement (measured
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by the Concordance Correlation Coeficient (CCC); see
Barchard, 2012) between the two models’ predicted over-
distribution values was virtually perfect (CCC=0.996).
The observed and predicted overdistribution values are
plotted in Fig. 3. Parameter estimates and their respective
confidence intervals are reported in the Supplemental
Material.

In terms of non-nested model selection, the computed
NML values provide mixed results, as the THTSM is pre-
ferred in the two-source data and the CPDM is preferred
in the three-source data. Overall, there is a preference for
the CPDM, but it is not systematic according to a (permu-
tation-based) Wilcoxon test (summed ANML =10.60,
Z =0.39,p =.73; see Hothorn, Hornik, van de Wiel, &
Zeileis, 2008). According to the NML metric, the THTSM
is less flexible than the CPDM in the two-source CPD task
(average penalty difference is —0.81), but the opposite
holds in the three-source task (average penalty difference
is 0.54). This difference indicates that model flexibility is
dependent on the task used (see Kellen & Klauer, 2011;
Kellen et al., 2013). Still, one aspect that needs to be taken
into account is that flexibility is of secondary importance
when none of the models provides a reasonable account
of the data to begin with. If one only considers the cases
where at least one of the models is not rejected by the data,

Table 1

Model performance.
Data THTSM CPDM Observed overdistribution

G2 NML Predicted overdistribution 2 NML Predicted overdistribution

Two-source CPD task
B1-Exp.1 HF-HC 341 24.28  [0.33,0.25, 0.25] 0.10 23.47 [0.37,0.17, 0.25] [0.38, 0.17, 0.25]
B1-Exp.1 HF-LC 1.56 23.34 [0.47, 0.39, 0.50] 0.00 2341 [0.50, 0.34, 0.50] [0.50, 0.34, 0.50]
B1-Exp.1 LF-HC 0.00 22,56  [0.37,0.31, 0.13] 0.00 2341 [0.37,0.31,0.13] [0.37, 0.31, 0.13]
B1-Exp.1 LF-LC 1743 31.22  [0.54, 0.51, 0.33] 1743 32.08 [0.54,0.51, 0.33] [0.54, 0.69, 0.29]
B1-Exp.2 HF-HC 0.00 2248  [0.23,0.22, 0.26] 0.00 23.34  [0.23,0.22, 0.26] [0.23, 0.22, 0.26]
B1-Exp.2 HF-LC 1.86 2341 [0.29, 0.27, 0.30] 1.86 24.27  [0.29, 0.27, 0.30] [0.35, 0.27, 0.28]
B1-Exp.2 LF-LC 0.00 2248 [0.17,0.21, 0.12] 0.00 23.34 [0.17,0.21, 0.12] [0.17, 0.21, 0.12]
B1-Exp.2 LF-LC 2.85 2391 [0.45, 0.44, 0.29] 2.85 24.74  [0.45, 0.44, 0.29] [0.45, 0.51, 0.28]
YB-Exp. HS HD 0.00 20.97 [0.11, 0.10, 0.00] 0.00 21.71  [0.11, 0.10, 0.00] [0.11, 0.10, 0.01]
YB-Exp. HS LD 0.00 20.97 [0.11, 0.05, 0.05] 0.00 21.71  [0.11, 0.04, 0.05] [0.11, 0.04, 0.05]
YB-Exp. LS HD 0.00 20.97 [0.11, 0.05, 0.01] 0.00 21.71  [0.11, 0.05, 0.01] [0.10, 0.05, 0.01]
YB-Exp. LS LD 0.00 20.97 [0.08, 0.06, 0.00] 0.00 21.71  [0.09, 0.06, 0.00] [0.08, 0.05, 0.01]
Subtotal 2711 27757 2244 28491
Three-source CPD task
B1-Exp.3 HF-HC 32.73 50.48 [0.58, 0.65, 0.66, 0.29] 31.23 49.14  [0.62, 0.65, 0.63, 0.28] [0.81, 0.57, 0.52, 0.29]
B1-Exp.3 HF-LC 46.05 57.16  [0.88, 0.74, 0.86, 0.49] 3145 49.27  [0.84, 0.68, 0.94, 0.49] [0.93, 0.54, 0.98, 0.49]
B1-Exp.3 LF-HC 16.13 42.18 [1.06, 0.87, 0.90, 0.25] 16.61 41.83  [1.10, 0.86, 0.86, 0.25] [1.20, 0.86, 0.85, 0.24]
B1-Exp.3 LF-LC 15.54 41.88  [1.23,0.94, 1.00, 0.43] 13.00 40.02  [1.24, 0.94, 0.97, 0.43] [1.28, 0.87, 0.98, 0.44]
B1-Exp.4 HF-HC 12.66 37.10 [0.67, 0.49, 0.68, 0.35] 11.59 36.06 [0.74, 0.42, 0.68, 0.35] [0.82, 0.46, 0.53, 0.36]
B1-Exp.4 HF-LC 21.05 41.27 [0.50, 0.61, 0.74, 0.54] 1943 39.96 [0.51,0.57,0.79, 0.53] [0.57, 0.53, 0.75, 0.54]
B1-Exp.4 LF-LC 5.49 33.51 [0.69, 0.64, 0.57, 0.19] 4.75 32.64 [0.72,0.63, 0.55, 0.19] [0.75, 0.59, 0.54, 0.19]
B1-Exp.4 LF-LC 2.91 32.22  [0.93, 0.68, 0.94, 0.31] 1.59 31.06 [0.92, 0.65, 0.96, 0.32] [0.95, 0.59, 0.98, 0.32]
B2-Exp. HF-HC 8.63 36.87 [0.51, 0.56, 0.60, 0.31] 8.68 36.38  [0.54, 0.54, 0.60, 0.31] [0.66, 0.49, 0.54, 0.31]
B2-Exp. HF-LC 1.54 33.32  [0.67, 0.64, 0.79, 0.47] 1.72 32.90 [0.68, 0.64, 0.79, 0.47] [0.73, 0.60, 0.78, 0.47]
B2-Exp. LF-HC 0.52 32,97 [0.83, 0.62, 0.62, 0.20] 0.50 3246  [0.83, 0.62, 0.62, 0.20] [0.84, 0.63, 0.59, 0.20]
B2-Exp. LF-LC 429 34.13  [1.04, 0.82, 0.92, 0.36] 3.96 3342 [1.05, 0.81, 0.91, 0.36] [1.07, 0.74, 0.94, 0.36]
Subtotal 167.54  473.09 14451 455.14

Note: HF = high frequency, LF = low frequency, HC = high concreteness, LC = low concreteness, HS = high source-similarity, LS = low source-similarity, HD = high
distractor-similarity, and LT =low distractor-similarity. B1=Brainerd et al. (2012), B2 =Brainerd et al. (2013), and YB=Yu and Bellezza (2000).
NML = normalized maximum likelihood. The critical G? value (p = .05) for the two-source data is 2.71 (sampling distribution follows a mixture of 212
distributions; see body of text) and for the three-source data is 7.81 (sampling distribution corresponds to ngfa)' G? results above the critical value are
presented in bold. The parameter estimates (and confidence intervals) are provided in the Supplemental Material. The overdistribution values inside the
squared brackets correspond (in order) to A, B, and new items in the case of the two-source CPD task, and to A, B, C, and new items in the case of the three-source

CPD task.
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Fig. 3. Observed and predicted overdistribution values across the reanalyzed datasets.

then there is slight advantage for the THTSM (summed
ANML = —2.78, Z = 1.52,p = .14).

A careful reevaluation of the two models shows that
Brainerd et al.’s (2012) claims regarding the inability of
the THTSM/2HTSM to account for the observed source
overdistribution in comparison to the new CPDM were
inaccurate. As it turns out, both models pretty much suc-
ceed and fail in similar circumstances. Furthermore, the
claim that the particular order of processes in CPDM is
meaningful was shown to be false. Altogether, these results
suggest that the need for a new conceptualization of item
and source memory processes (e.g., one that postulates a
memory superposition state) is perhaps premature.

Still, the results are far from satisfactory given that both
models often fail to provide good fits. Several reasons could
be behind these large misfits; for example, the aggregation
of individual data might produce distorted results (e.g.,
Heathcote, Brown, & Mewhort, 2000; Rouder & Lu, 2005;
Rouder, Morey, & Pratte, in press). Another potential
reason is that the models compared did not include any
distractor-detection state, which is known to make an
important contribution in accounting for the observed data
(Bayen et al., 1996; Klauer & Kellen, 2010). Also, the use of
sources with distinct memorability (i.e., sources being lists
studied sequentially) might have led to the use of different
retrieval strategies when attempting to remember whether
an item belonged to a particular source, violating the
assumption that memory processes (as captured by the
parameters) are invariant across test probes (e.g., Marsh
& Hicks, 1998).

In the next session we report two new experiments
using an extended experimental design, providing more
degrees of freedom for the full specification of models
(e.g., a fully identifiable 2HTSM for two and three sources)
and an evaluation of models that does not rely on aggregate
data. One important aspect of this extension is that it capi-
talizes on some of the main assumptions of the models.

Source overdistribution: new experimental and
modeling approaches

In this section we report two experiments that attempt
to replicate source overdistribution in a setting that is

closer to the source-memory experiments that are typi-
cally considered in the literature (e.g., DeCarlo, 2003;
Hautus et al., 2008; Klauer & Kellen, 2010). An extended
experimental design is proposed, allowing for the model-
ing of the 2HTSM as well as an extended version of the
CPDM. Finally, the resulting data are modeled using hierar-
chical-Bayesian extensions of the models that avoid relying
on sparse individual data or potentially distorted aggregate
datasets (Rouder et al., in press).

Extending the response set in the CPD task

In the current CPD task, participants are required to
answer “Yes” or “No” to each of the test probes. The use
of a binary response set limits the ability to fully specify
and estimate the parameters of the 2HTSM. For example,
in a two-source experiment there are nine degrees of free-
dom available, which are insufficient to fully specify the
ten free parameters of the 2HTSM. One way of increasing
the number of degrees of freedom is by extending the
response set, in this case by introducing a “Skip” response
option which can be used to avoid a determinate (yes/no)
response when uncertain. With a ternary response set, a
two-source experiment provides 18 degrees of freedom.

The introduction of a skip response-option requires an
extension of the models, which can be done in a rather
straightforward manner: For the 2HTSM, the possibility
of skipping is associated to cases in which the mental state
does not provide enough information on whether the test
item matches the test probe. For example, when only item
memory is available (state Ms3), individuals answer to
probe “Source A?” by guessing “Yes”, “Skip”, and “No” with
probabilities 7y, (1 = 7y40)75a, and (1= Py0) (1 = Yga0)s
respectively. Different guessing parameters are specified
for the “Source B?” probe (y,; and yj,). Note that no
parameters have to be specified for the “0ld?” probe given
that item memory is sufficient to respond with certainty in
state Ms;. When no memory is available at all (state Ms),
individuals answer to probe “Source A?” by guessing
“Yes”, “Skip”, and “No” with probabilities f,,,,
(1 = Byaz) Bsjars and (1 = Bya,) (1 — Pyar), rEspectively. Differ-
ent guessing parameters are specified for probes “Source
B?” (Byp: and fp,) and “01d?” (B0, and f;o,). Altogether,
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the 2HTSM has fifteen free parameters, all of them fully
identifiable. This type of extension has been previously
proposed and implemented by Oravecz, Faust, and
Batchelder (in press) and Singmann, Kellen, and Klauer
(2013). To better illustrate this extension, Fig. 4 specifies
the 2HTSM'’s tree for A items with the ternary response set.

According to the theoretical principles underlying the
CPDM, “Skip” responses should only occur when no mem-
ory is available (state Ws). This simply follows from the
fact that all other memory states deterministically lead to
either “Yes” or “No” responses, depending on the state.
This means that the model is extended by having addi-
tional B parameters in the exact same way as in the
2HTSM. The resulting CPDM has twelve free parameters,
all of them fully identifiable. See Fig. 4 for a depiction of
the CPDM’s tree for A items with the ternary response set.

It is important to note that at the core of the CPDM
there are extremely strong theoretical assumptions regard-
ing the mapping of memory states onto observed
responses (i.e., these restrictions do not result from a prag-
matic choice due to modeling constraints). In fact this
response determinism plays a fundamental role when
arguing that source overdistribution is the outcome of an
item-memory (or superposition) state that is invariably
mapped onto “yes” responses, independently of the test
probe.

The remaining degrees of freedom allow for the CPDM
to be further extended, by introducing an additional state
(W5) where a distractor item is detected as being new
(with probability Dy), equivalent to My in the 2HTSM. This
extended model, henceforth referred as CPDMy, is included
among the candidate models in our analysis. Including this
extended model prevents the possibility of preferring the
2HTSM to the CPDM simply because the latter does not

Mental
State
1HTSM/2HTSM
M.
dA !
DA
Source A (1-da) M3
Items
(1-Da) Ms

CPDM w1

w2
Source A Ws
Items
(1-RA)
(1-EB)
(1-1a) We

include a distractor-rejection mechanism, whereas the
former does.

Hierarchical-Bayesian parameter estimation and model
comparison

One of the common issues in cognitive modeling con-
cerns the choice between individual and group data. It is
well known that data aggregation glosses over participant
heterogeneity and can lead to severe distortions when
relying on non-linear models (e.g., Estes & Maddox, 2005;
Heathcote et al., 2000; Rouder et al., in press). This sug-
gests that a more accurate characterization of the underly-
ing cognitive processes can be achieved by relying on
individual data. On the other hand, the reliance on
individual-level data can be equally problematic when
the number of observations per individual is small, as such
data are likely to produce noisy and unreliable parameter
estimates (e.g., Chechile, 2009; Cohen, Sanborn, &
Shiffrin, 2008).

A principled compromise between both approaches is
given by considering hierarchical extensions of the models
(Cohen et al., 2008; Rouder et al., in press): It is assumed
that individual parameters originate from group-level
distributions, such as a (multidimensional) Gaussian distri-
bution. The standard deviations of the group-level distri-
bution reflect the existing differences between
participants, being small when participants are rather
homogeneous, and large when there are substantial
individual differences. The hierarchical approach allows
for the individual differences and similarities to be cap-
tured in a single, principled framework, overcoming the
limitations of both individual and group-level data (for
comprehensive introductions to hierarchical modeling,

Response Probabilities in Extended CPD Task
“Source A?”

“Yes” “Ski p" “No”

Le ] o | o |

[[vviw J(@-yyim) ysiaz [ (T-yine)(1- vsiae) |

[ Byiaz [(1-Byine) Bsiaz | (1-By1az)(1- Bsiw?)]

Lt [ o | 0 |
Lo ] o | 1 |
Lt [ o | 0 |

[ Byiaz | (1-Byime) Bsiaz | (1-Byia?)(1- Bsia)|

Fig. 4. THTSM/2HTSM and CPDM trees for Source A items and a ternary response set (test probe “Source A?” only). Note that each set of response

probabilities associated to a mental state sums to 1.
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see Lee & Wagenmakers, 2013; Rouder & Lu, 2005; Rouder
et al,, in press).

Because of its advantages, hierarchical extensions of
cognitive models have been regularly developed and pro-
posed across the recent literature (e.g, Lee &
Wagenmakers, 2013). Such developments have especially
been prominent in the MPT model class (Klauer, 2006,
2010; Matzke, Dolan, Batchelder, & Wagenmakers, 2013;
Rouder, Lu, Morey, Sun, & Speckman, 2008; Smith &
Batchelder, 2010), a class to which both the 2HTSM and
the CPDM are members of.

In order to see how the hierarchical extension is intro-
duced, let © : 6;5,i=1,...,1,j=1,...,] represent the I sets
of ] individual parameters in a given (MPT) model. For the
ith participant, the jth parameter is given by

0ij = P(L; + &oij) (8)

where @ is the standard normal distribution function, y; is
the group mean of parameter 6;;, and J;; is the individual
displacement from the group mean. Parameters ¢;; are
draws from a zero-centered multivariate Gaussian distri-
bution A(0,X). The covariance matrix X captures any
potential correlations between parameters across individ-
uals (Klauer, 2010). Parameter ¢; is a redundant multiplica-
tive scale-parameter that only serves to accelerate the rate
of convergence in the Markov chain Monte Carlo (MCMC)
sampling method used for parameter estimation under a
Bayesian framework (see Gelman, Carlin, Stern, & Rubin,
2004, chap. 15; Klauer, 2010).”

Hierarchical extensions of models can be implemented
in a Bayesian framework (e.g., Gelman & Hill, 2007),
whereas their implementation under a classic-frequentist
framework is difficult (see Klauer, 2010). In a Bayesian
framework, the available information regarding a model
and its parameters is represented by probability distribu-
tions. In particular, posterior distributions are obtained by
using the observed data to update established prior
distributions. These priors can incorporate knowledge
obtained from previous findings, or alternatively be rather
uninformative, as in the present case. The following prior
distributions are associated to each parameter in the pres-
ent application (following Klauer (2010), Matzke et al.
(2013), & Rouder et al. (2008)):

K ~ N(0,1),
fj ~ N(Ovl)v
o~ wlid(),J + 1),

where N is the Gaussian distribution and W='(Id(J),] + 1)
is the so-called inverse Wishart distribution with J+1
degrees of freedom, with Id(J) being the identity matrix
with J rows and columns (see Gelman & Hill, 2007, chap.
13).

7 The items used in the experiments reported below were selected anew
from a larger pool for each participant. This item sampling scheme
considerably reduced the number of “replications” of each item across all
levels of the experiment design (item type x test probe), compromising any
realistic attempt to test and/or model item heterogeneity along with
participant heterogeneity (see Matzke et al., 2013).

In order to assess the fit of each model, we rely on so-
called posterior model checks using Bayesian p-values
(see Gelman et al., 2004, chap. 6). Bayesian p-values will
be computed for the T; and T, test statistics proposed by
Klauer (2010): Statistic T; quantifies a model’s ability to
account for the total observed category frequencies, aggre-
gated across individuals, and T, the ability of a model to
account for the variances and covariances in the observed
category frequencies (for details on the T, and T, test sta-
tistics, see Klauer (2010)). The model’s posterior distribu-
tions can also be used to produce predictions concerning
overdistribution.

Finally, due to the current inability to compute NML for
hierarchical implementations, the comparison between
the candidate models is done using the Deviance Informa-
tion Criterion (DIC; Spiegelhalter, Best, Carlin, & van der
Linde, 2002), a model-selection index that generalizes the
Akaike and Bayesian information criteria (AIC and BIC;
see Burnham & Anderson, 2002) to hierarchical models
estimated using MCMC methods. The DIC penalizes models
by taking into account their respective number of effective
parameters (denoted by pp), which are directly estimated
from the MCMC chains. The number of effective parame-
ters in a model corresponds to the number of parameters
in a model that are not constrained by the imposed hierar-
chical structure (for details, see Spiegelhalter et al., 2002).
Like for AIC and BIC, the model with the lowest DIC value is
the one striking the best trade-off between goodness of fit
and parsimony.

Experiment 1

The goal of the first experiment is to obtain a source-
memory dataset with ternary responses that can be used
for comparing the hierarchical extensions of the 2HTSM,
CPDM, and CPDMy. In this experiment, two sources were
used, which differed in their visual characteristics (color
and spatial position).

Method

Participants

32 undergraduate psychology students (mean
age =21.5, SD = 3.18, ranging from 18 to 30 years) from
the University of Freiburg served as participants for the
experiment. They received course credits for their partici-
pation. Subjects were native speakers of German without
severe or uncorrected visual impairments. Each participant
was tested individually, and one session of the experiment
lasted approximately 30 min.

Design and procedure

The computer-based experiment consisted of a single
study phase followed by a single test phase. Prior to the
study phase, individuals were informed about the two
sources and their defining characteristics. In the study
phase 180 words (90 A and 90 B items) were presented
in a randomized order. Each word was presented for
2000 ms, with 500 ms inter-stimulus interval. Source A
items were presented in red on the left side of the screen
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and B items in blue on the right side of the screen, against a
light gray background. The assignment of words to each
source was randomized anew for each participant.

Prior to the test phase, participants were informed
about the different test probes and the relative proportion
of items in the test list (3 A items, 1 B items, and 1 New
items). Furthermore, participants were reminded that no
item could simultaneously belong to both source A and
B. To encourage participants to provide accurate responses
as well as consider the use of the “Skip” response, they
were informed that they would receive 1 point per correct
response and lose 3 points per incorrect responses, and
that they could use the “Skip” response to avoid losing
points when uncertain about the true status of the item.
Also, it was stated that the participant with the best score
would receive a €30 prize. In the test phase, a total of 270
items were presented (90 A items, 90 B items and 90 new
items). All words were presented in black at the center of
the screen, against a light gray background. One third of
each item type was tested with one of the three test probes
(“Source A?”, “Source B?”, and “0Old?”). The test probe was
presented above the test item, with “Source A?”and
“Source B?” presented in red and blue, respectively. Probe
“0ld?” was presented in black. Three response buttons
were presented below the test word, and participants
could select a response by clicking on it using a mouse.
No feedback was given throughout the test, with the indi-
vidual’s final score being presented at the end of the test
phase. After completing the test phase, participants were
thanked and debriefed.

Materials

The experiment was implemented in PsychoPy (Peirce,
2007). Words were sampled from a selection of 639 words
from Lahl, Goritz, Pietrowsky, and Rosenberg (2009), rang-
ing from 4 to 8 letters in length. According to the ratings
obtained by Lahl et al., the words were all of medium
valence (ranging from 3.50 to 6.50 on an 11-point scale)
and low in arousal (ranging from 0.50 to 4.50 on an 11-
point scale). Furthermore, all words were of approximately
equal word frequency, as indicated by the log frequency
ratings obtained for each word via WordGen (ranging from
0.30 to 2.90; Duyck, Desmet, Verbeke, & Brysbaert, 2004).

Results and discussion

The average proportion of overall correct responses was
.67 (excluding “Skip” responses) and the average propor-
tion of “Skip” responses was .26. The average source over-
distribution for A, B, and new items was .30, .29, and .17,
respectively, in line with values reported by Brainerd
et al. (2012). Overdistribution was found to be reliably
above zero (smallest t(31) = 4.68, largest p < 0.01).

Prior to the modeling analysis, it is important to test the
data for participant homogeneity (Smith & Batchelder,
2008). A 2 test of participant homogeneity was used sep-
arately for each multinomial distribution in the data (each
corresponding to a item type x test probe combination). In
each multinomial distribution the participant-homogene-
ity hypothesis was rejected (smallest x2(62) = 202.36,
largest p < .001). A bootstrap analysis that does not

rely on asymptotic approximations confirms that the
results are statistically significant. Following Smith and
Batchelder (2008), this rejection strongly discourages
the use of aggregate data and recommends the use of a
hierarchical model that can account for participant
heterogeneity.

Modeling results are presented in Table 28: Contrary to
what is claimed by Brainerd et al. (2012), the 2HTSM pro-
vided a suitable characterization of the data, as quantified
by the p-values of the T; and T, statistics. This result was
further corroborated by the predicted average source-over-
distribution values that were very close to the observed
ones. In contrast, CPDM failed to account for the data, as
indicated by the T, statistic for aggregate frequencies and
the T, statistic for the variance-covariance structure (all
p < .05), and also failed to provide accurate mean poster-
ior-predictive estimates of source overdistribution. Mean
posterior-predictive overdistribution values are obtained
by sampling parameters from a model’s posterior distribu-
tions and then generating data using these parameters. This
two-step sampling process is repeated multiple times and
then averaged. On the other hand, CPDMy improved upon
the results, supporting the inclusion of a distractor-rejection
state in the model. This was observed in the non-significant
p-values associated to the T; and T, statistics, and the mean
posterior-predictive overdistribution values that were closer
to the observed ones.

Regarding the relative performance of the candidate
models, the 2HTSM had a lower DIC than the CPDM
(ADIC=166.91) and the CPDMy (ADIC = 52.90). According
to the DIC metric, which can be interpreted in the same
way as AIC and BIC (Burnham & Anderson, 2002), differ-
ences larger than 10 represent extremely strong evidence
in favor of the winning model, in this case the 2HTSM.

Concerning the parameter estimates, we will focus on
the 2HTSM and CPDMy. The group-mean parameter esti-
mates of the models are reported in Table 2, along with
their respective 95% credible intervals, which can be inter-
preted much like 95% confidence intervals. The parameters
of the 2HTSM show that source memory (d4 and dp) was
low, especially when compared to the overall item mem-
ory and distractor rejection (D4,Dp, and Dy). Parameter
correlations show a strong relationship between item
detection for the two sources (p(Da,Ds)=0.77 [0.37,
0.93]) that was expected given the equal memorability of
items from the two sources. Still, no reliable correlations
were found for source memory (p(da,ds)=0.62 [-0.37,
0.93]) nor between item memory and distractor rejection
(p(Da,Dy)=0.19 [-0.36, 0.65] and p(Ds,Dy)=0.14

8 The hierarchical models were implemented in C++ along with the NAG
library, using the scripts developed by Klauer (2010). Scripts can be
obtained from the authors upon request. Four independent streams of
MCMC samples were collected for each model using a Gibbs sampler.
Rough initial estimates of the parameters were obtained by means of the
Monte Carlo EM algorithm (Wei & Tanner, 1990). Chain convergence was
assessed via the R statistic, which compares within-chain variance to
between-chain variance (Gelman et al., 2004, chap. 11). Sampling with the
Gibbs sampler continued until all MCMC streams converged (all R < 1.05),
and then went on for 1000 consecutive samples per stream, for a total of
4,000 draws from the posterior parameter distributions retained for
analysis.
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Table 2
Model-Fitting Results for Experiment 1.

Model fit Ty T, Pp DIC ADIC
44 .52 233.36 15165.60 0
Parameter estimates Dy Dg Dy dy dp
.52 [.44, .63] .51 [.40, .63] .25 [.16, .38] .11 [.01, .25] .16 [.05, .34]
Byaz Bsian Byig: Bsi2 Byjo Bsi02
.18 [.12, .25] .65 [.41, .85] .26 [.16, .38] .66 [.43, .91] 25 [.18, .34] 33 [.21, .44]
Vyia? Vsa? VyiB? VsiB?
.73 [.53, .91] .11 [.00, .55] .75 [.52, .90] .09 [.01, .76]
Predicted overdistribution Source A Source B New
0.28 0.27 0.17
Model fit T, T, Pp DIC ADIC
< .01 .03 213.09 15332.51 166.91
Parameter estimates Ry Rp Ex Ep Iy Iy
.10 [.04, .18] 13 [.06, .21] .01 [.00, .06] .04 [.00, .10] .36 [.26, .46] 33 [.23, 43]
ﬁy\A‘? ﬁs\A‘? ﬂy\B’] ﬁs\B? ﬁy\O? ﬂs\O‘?
.12 [.07, .18] .54 [.40, .72] 17 [11, .24] .54 [.39, .74] 21 [.15, .29] .30 [.19, .46]
Predicted overdistribution Source A Source B New
0.39 0.36 0.12
Model fit T, T, Po DIC ADIC
35 .09 222.57 15218.50 52.90
Parameter estimates Ry Rp Ex Ep Is I Dy
17 [.07, .24] .19 [.13, .26] .12 [.06, .19] .10 [.04, .19] 29 [.19, .40] .26 [.10, .36] .26 [.16, .37]
Byaz Bsiaz Byig2 Bsi: Byjo? Bsjo2
.18 [.12, .29] .67 [.48, .83] .28 [.18, .40] .69 [.51, .89] .27 [.20, .36] 31 [.18, 42]
Predicted overdistribution Source A Source B New
0.32 0.30 0.15

Note: DIC is computed up to an additive constant. ADIC corresponds to the difference between the model’s DIC and the DIC of the best-performing model.
The parameter estimates correspond to the group-mean parameters estimated with the hierarchical models. The values between squared brackets are the
95% credible intervals. The values under T; and T, correspond to the p-values of these statistics. The predicted overdistribution values are the averages
obtained from each model’s sampled predictive-posterior distributions. For reference, the average source overdistribution values observed for A, B, and new

items were .30, .29, and .17, respectively.

[—0.44, 0.62]) given that the 95% credible intervals include
the value 0 in these cases. Reliable correlations between
the guessing parameters were also found for most guessing
parameters, indicating that individuals behaved in a
similar manner for the different probes (e.g.,
P(Byar Byp:) = 0.71 [0.23, 0.92], p(Byar, Byor) = 0.72 [0.27,
0.91], and p(7y:,Vy,) = 0.13 [-0.60, 0.78]), and that indi-
viduals manifest a general tendency to skip
(P(Byas Bys) = 0.90 [0.68, 0.97], p(Byr. fyor) = 0.62 [0.13,
0.85], p(Vga2; Ysipr) =0.73 [0.06, 0.94]). Full estimates of
each model’s variance-covariance matrix can be found in
the Supplemental Material.

Let us now turn to the CPDMy: Concerning true recol-
lection, a positive relationship was found, although not a
reliable one (p(R4, Rg) = 0.54 [-0.07, 0.88]). No relationship
was found for false recollection (p(Ea,Ez)=0.07 [—-0.86,
0.94]). On the contrary, a reliable positive correlation was
found between the item memory parameters
(p(Ia,I5) = 0.74 [0.21, 0.94]) as well as between the guess-
ing parameters (p(Bya», Bys:) =0.72 [0.27, 0.91]). Also, a

general tendency for skipping was reliably found
(0(Bgazs Bsip:) = 0.90 [0.66, 0.97], p(Byar, Bsjor) = 0.62 [0.18,
0.86]).

The results from Experiment 1 show that overdistribu-
tion can be described as a byproduct of different guessing
processes, without the need of assuming additional mem-
ory states such as false recollection or a memory state that
invariably leads to “Yes” responses. The model proposed by
Brainerd et al. (2012) failed to provide a good account of the
data, as shown by the different model-performance statis-
tics used. An extension of Brainerd et al.’s model performed
considerably better but still fared worse than the 2HTSM.

Besides accounting for overdistribution, the 2HTSM also
provided a good characterization of the different underly-
ing processes as well as the relationships between them,
as shown by the estimated parameter correlations. Still,
no reliable positive correlation was found between the
source-memory parameters in the 2HTSM (although a posi-
tive relationship was found). One factor contributing to this
result may be the fact that source-memory was generally
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low, which can compromise the detection of correlations in
source memory. Another reason for the non-reliable corre-
lation may be the small number of participants in this
experiment. The low source-memory performance could
also explain the lack of reliable correlations between recol-
lection parameters in CPDy. It should be noted though that
the low source-memory performance that was observed is
not problematic per se given that overdistribution is
expected to be large when there is little recollection of
the sources (see Brainerd et al., 2012, Figure 2). In fact, if
the phenomenon of overdistribution is capable of distin-
guishing between the competing models, then the present
case should be most informative. Nevertheless, a rigorous
comparison between the different models should include
cases in which source-memory performance is somewhat
higher. One of the benefits would be a greater similarity
to previously published studies (e.g., DeCarlo, 2003;
Hautus et al., 2008; Klauer & Kellen, 2010).

Experiment 2

The purpose of Experiment 2 is to attempt to replicate
and generalize the findings of Experiment 1. First, following
Brainerd et al.’s (2012) experiments 3 and 4, three sources
are used instead of only two. The extension of the models
to a three-source experiment is rather straightforward
and therefore will not be described here (but model equa-
tions can be found in the Supplemental Material). Second,
the study phase was modified in order to improve source-
discrimination and place the overall performance closer
to what is usually observed in the source-memory litera-
ture (e.g., Klauer & Kellen, 2010). With the exception of
the details described below, this study was implemented
in the exact same way as Experiment 1.

Method

Participants

42 individuals (35 university students; mean age = 24,
SD =3.33, ranging from 19 to 35 years) served as partici-
pants for the experiment. In exchange for their participa-
tion, participants received between €5 and €8, depending
on their performance. Each participant was tested individ-
ually, and the experiment lasted approximately 40 min.

Design and procedure

The study phases consisted of two study blocks in
which participants learned 240 words (80 A, 80 B, and 80
C items). In both study blocks all 240 items were pre-
sented, with a different randomized order per block. Addi-
tionally, the same sets of six primacy and six recency
buffers (two for each source) were presented before and
after each block, with a different randomized order per
block. Each word was presented for 1200 ms, with
500 ms inter-stimulus interval. Before the first study block,
participants were made aware that there would be two
study blocks with identical items.

Source A items were presented in red on the left side
of the screen, B items in blue on the top, and C items in
green on the right side, against a light gray background.

The vertical position of A and C items was slightly low-
ered in order to have the positions of A, B, C items equi-
distant from each other and from the center of the screen
(i.e., in a equilateral triangle with the screen center being
the center of the triangle). The assignment of words to
the sources was randomized anew for each participant.
A participant’s total score (scored as in Experiment 1)
from the test phase was converted into Euro cents so that
a perfect score would yield a payoff of €3 that was added
to a fixed compensation of €5. No feedback was given
throughout the test phase.

Results and discussion

The average proportion of overall correct responses was
.71 (excluding “Skip” responses) and the average propor-
tion of “Skip” responses was .38. Mean overdistribution
values for A, B, C, and new items were 0.34, 0.40, 0.37,
and 0.19, respectively, with overdistribution being reliably
above zero for all item types (smallest t(41) = 3.19, largest
p < .01). As in Experiment 1, we tested the assumption of
participant homogeneity: In each multinomial distribution
the participant-homogeneity hypothesis was rejected
(smallest x2(82) = 386.10, largest p < .001), a result that
was confirmed by a bootstrap analysis. Once again, the
use of a hierarchical-modeling approach is found to be
justified.

In terms of model performance, the results were sim-
ilar to the ones obtained in Experiment 1: As shown in
Table 3, the 2HTSM provided a good account for the data,
followed by the CPDMy. Again the CPDM failed to
account for the data (p < .01 for both T; and T,). The
same pattern was found in the DIC results, with the
2HTSM performing better than the CPDM (ADIC = 210.66)
and the CPDMy (ADIC=43.45). One way in which the
superiority of the 2HTSM manifested itself was in terms
of the predicted overdistribution values, which were
much closer to the actual values than the predictions
made by the CPDM, although the CPDMy also predicted
overdistribution values that were relatively close to the
observed ones.

Regarding the 2HTSM’'s parameter estimates (see
Table 3), it is clear that, in comparison with Experiment
1, source-memory parameter estimates increased while
item-memory parameters slightly decreased, leading to
overall parameter estimates that are close to what is usu-
ally found in the literature (e.g., Klauer & Kellen, 2010).
These differences in opposite directions in comparison to
Experiment 1 can be seen as strange at first glance given
that the words were presented twice in Experiment 2.
However, this difference is not unexpected given that the
words in Experiment 2 were also presented faster, there-
fore not guaranteeing an increase of item-memory, and
the block-repetition scheme used reduced the average
temporal lag between item study and test, a lag which is
known to disproportionately impair source memory (e.g.,
Jennings & Jacoby, 1997). Reliable correlations were now
found between the item and the source-memory parame-
ters (p(Da,Dp)=0.83 [0.61, 0.94], p(Dg,Dc)=0.82 [0.55,
0.93], p(da,dg)=0.78 [0.37, 0.94], and p(dp,dc)=0.77
[0.37, 0.94]), but not between distractor rejection and item
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Table 3
Model-Fitting Results for Experiment 2.
2HTSM
Model fit T, T, Pp DIC ADIC
.06 11 392.08 21216.01 0
Parameter estimates Da Dg D¢ Dy dy dg dc
43 [.30,.53] .47 [.34,.58] .39[.23,.50] .15[.06,.23] .45][.29,.62] .45][.25,.61] .51[.36,.65]
ﬁy\A’] ﬁs\A! ﬁy\B? ﬁs\B? ﬁy\C.‘ ﬁs C? ﬁy\O’] ﬁs\O?
.10[.03,.18] .68[.52,.81] .11[.05,.19] .65][.43,.84] .15][.08,.23] .78[.60,.94] .19[.11,.28] .43 [.25,.60]
Vyia Vsia? VyiB? VsiB? Yyl Vsic?
.69 [.51,.84] .69 [.21,.99] .78[.62,.98] .79[.43,.97] .71[.38,.84] .69 [.29,.94]
Predicted overdistribution Source A Source B Source C New
0.35 0.37 0.33 0.21
CPDM
Model fit T: T, Pp DIC ADIC
< .01 < .01 370.12 21426.67 210.66
Parameter estimates Ry Rp Rc Ex Ep Ec
17 .09, .26] .19 [.10,.29] .15[.08,.26] .00 [.00,.01] .00 [.00,.01] .00 [.00,.01]
Ia Ip Ic
.16 [.08, .26] .18 [.09,.29] .16 [.09, .26]
Byar Bsiaz Byip: Bsip? By Bsic2 Byo? Bsjo2
.06 [.03,.10] .63 [.45,.77] .07 [.03,.11] .60 [.40,.74] .09 [.06,.14] .69 [.50,.84] .17 [.11,.25] .43[.22,.61]
Predicted overdistribution Source A Source B Source C New
0.40 0.41 0.39 0.14
CPDMy
Model fit T: T, Pp DIC ADIC
.05 .01 363.63 21259.46 43.45
Parameter estimates Ry Rg R¢ Ex Ep Ec
.19[.11,.30] .22 [.15,.30] .18[.11,.28] .01 [.00,.02] .01 [.00,.04] .01 [.00,.04]
Ia Ip Ic Dy
.13 [.03,.20] .15[.10,.23] .12[.08,.18] .18.10,.29]
Byar Bsiaz Byip: Bsip? Byic Bsic2 Byio Bsjor
11 [.05,.19] .66 [.51,.91] .11[.07,.20] .64 [.44, .91] .14[.06,.25] .80[.58,.94] .23[.13,.32] .43[.26, .61]
Predicted overdistribution Source A Source B Source C New
0.37 0.39 0.37 0.17

Note: DIC is computed up to an additive constant. ADIC corresponds to the difference between the model’s DIC and the DIC of the best-performing model.
The parameter estimates correspond to the group-mean parameters estimated with the hierarchical models. The values between squared brackets are the
95% credible intervals. The values under T; and T, correspond to the p-values of these statistics. The predicted overdistribution values are the averages
obtained from each model’s sampled predictive-posterior distributions. For reference, the average source overdistribution values observed for A, B, C, and
new items were 0.34, 0.40, 0.37, and 0.19, respectively.

memory (e.g., p(Dn,Ds)=0.22 [-0.24, 0.62]). In terms of
guessing parameters the results were similar to
Experiment 1, with strong reliable correlations being found
between the guessing parameters (e.g., p(fy:, fy-) = 0.86
[0.59, 0.96]) as well as a tendency to skip responses (e.g.,
P(Bgar: Bsp:) =0.87 [0.68, 0.96] and  p(Byar, Byor) = 0.65
[0.30, 0.84]).

Concerning the CPDMy's parameter values, a strong
reliable correlation was found between the true-recollec-
tion parameters (e.g., p(Ra,Rg) = 0.84 [0.58, 0.95]) and the
item-memory parameters (e.g., p(Ia,Iz)=0.79 [0.38,
0.94]), but not for the false-recollection parameters (e.g.,
P(Ex,Ep)=0.11 [-0.79, 0.91]). One reason for the latter
result were the extremely low values taken on by the E
parameters. Given the low E parameter estimates along

with the increase of the R estimates (in comparison with
Experiment 1), there is the possibility of a negative
relationship between R and E. None of the estimates sug-
gest so (eg., p(Ra,Es)=-0.16 [-0.88, 0.87] and
P(Ra,Eg)=—0.01 [-0.81, 0.81]), but the level of uncer-
tainty in these estimates is large. As in Experiment 1,
strong reliable correlations were found between the
guessing parameters (e.g., P(fys, Byp:) =0.87 [0.64,
0.97]) as well as a tendency to skip responses (e.g.,
P(Bgar Psp:) =088 [0.71, 0.96] and  p(Byas, Bsor) = 0.65
[0.34, 0.84]).

Experiment 2 replicated the main finding of Experiment
1: Not only was source overdistribution accounted for by
the 2HTSM, this model also provided a better account than
Brainerd et al.’s (2012) candidate model.
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General discussion

The CPD task extended Jacoby’s (1991) original Process
Dissociation task, enabling the estimation of several
contributing processes in the recognition of semantically-
related lists (Brainerd et al., 1999) as well as the observa-
tion of emerging phenomena like memory overdistribution
(Brainerd & Reyna, 2008). The recent use of the CPD task in
source-memory studies revealed the presence of source
overdistribution, which according to Brainerd et al.
(2012) has wide implications in the understanding and
modeling of source-memory judgments. Instead of the tra-
ditional distinction between (a) (veridical) item memory,
(b) (veridical) source memory dependent on item memory,
and (c) guessing (Hautus et al.,, 2008; Klauer & Kellen,
2010; Onyper et al., 2010), Brainerd et al. (2012) proposed
a new model characterizing source-memory judgments
through the distinction between (a) true source-recollec-
tion, (b) false source-recollection, (¢) item memory (super-
position), and (d) guessing. Two important aspects were
associated to this new characterization: First, the model
assumed a quantum-like item-memory/superposition
state (Brainerd et al., 2013). Second, the apparent indepen-
dence of the different source-recollection and item mem-
ory processes was claimed to be meaningful, with source
memory being retrieved in the absence of item memory.
These two aspects represent theoretical departures to the
way source memory is usually modeled.

The present work argued that a traditional source-
memory model like the THTSM/2HTSM is able to account
for source overdistribution via its different guessing pro-
cesses. Subsequently, we evaluated how well these two
different accounts, the THTSM/2HTSM and the CPDM, were
able to account for source overdistribution. A reanalysis of
both previously-published data as well as new experimen-
tal results using an extended task indicated that the
observed source overdistribution could be attributed to a
set of rather mundane and well studied guessing processes
(e.g., Riefer et al., 1994; Schiitz & Broder, 2011) and the
well-known phenomenon of response conservatism (e.g.,
Thomas & Legge, 1970). This guessing-based account is in
line with traditional modeling accounts of source memory
and runs counter to the claims of Brainerd et al. (2012,
2013) that a new conceptualization of memory processes
is necessary. Instead of leading to a dismissal of traditional
models of item and source memory, source overdistribu-
tion proved to be well accounted for by the 2HTSM, restat-
ing the value of this well-known model in decomposing
observed responses into basic cognitive processes.

The two experiments reported here are in some ways
distinct from the ones reported by Brainerd et al. (2012,
2013): (1) The sources correspond to different colors and
spatial positions instead of lists studied sequentially; (2)
a set of homogeneous items was used instead of different
types of items (e.g., low versus high frequency); (3) a
“Skip” response option was made available. Given such dif-
ferences, one could argue that despite the fact that source
overdistribution is observed in the present experimental
results, they are not comparable to the results by
Brainerd et al. (2012, 2013). Several reasons lead us to
think otherwise: First, source overdistribution is presented

by Brainerd et al. (2012) as a phenomenon that is informa-
tive regarding the nature of the memory processes under-
lying source-memory performance. If that is the case, then
one would expect such phenomenon to play a role in
source memory performance in general, such as when
homogeneous words are tested and the sources only differ
in terms of simple perceptual features (a common choice
in source-memory studies; e.g., Batchelder & Riefer,
1990). Second, the introduction of a “Skip” option should
make it easier to distinguish between the THTSM/2HTSM
and CPDM given the theory-driven, deterministic state-
response mapping of the CPDM, which should exclude
the use of the “Skip” option in many instances. In fact,
the distinction between the THTSM/2HTSM and the CPDM
could be further explored by considering a manipulation
that selectively influenced the use of the “Skip” option
(e.g., a payoff manipulation). Another possibility would
be to provide participants with feedback during test in
order to encourage them to approximate their guessing
tendencies to the test-item base rates. According to the
THTSM/2HTSM’s pure guessing account, this approxima-
tion should reduce or even eliminate overdistribution.

Of course, one could in principle relax the CPDM map-
pings when a “Skip” option is available but it is then not
clear why such a relaxation was not already considered
for the deterministically mapped “No” responses, and
more importantly, how it affects the theoretical status of
the memory states themselves. For example, if the item-
memory/superposition state of the CPDM (state W5) is
not deterministically mapped onto “Yes” responses but
can also be mapped onto “Skip” or “No” responses, then
it becomes equivalent to the item-memory state of the
1HTSM/2HTSM (e.g., state M3) in which responses are pro-
duced via guessing. As previously shown, such equivalenc-
es would make the two models almost indistinguishable as
they can be seen as special cases of an encompassing
model.

The existence of an encompassing model also offers
interesting opportunities for future work, especially with
the development of richer experimental designs that allow
its identifiability and testability (e.g., tests of selective
influence). Such designs might include both source-mem-
ory and CPD tasks (e.g., Yu & Bellezza, 2000), larger sets
of test probes (e.g., “both Source A and B?”; see Brainerd
et al, in press), multiple study conditions (e.g., Brainerd
et al., in press; Gallo, Weiss, & Schacter, 2004), among
other possibilities. Additionally, efforts can also be placed
on better understanding item effects and the impact of
item features such as word frequency within a hierarchi-
cal-Bayesian framework (Matzke et al, 2013).° This
approach has the advantage of sidestepping item-aggrega-
tion effects (e.g., classifying items as “high frequency” and
“low frequency”) and providing a more fine-grained

9 One potential source of distortion that could be removed via the

introduction of item effects or the use of item features as covariates is the
role of semantic/associative relatedness. Although the sources in both
experiments were not associated with any particular group or category, it is
possible that the association between single items (e.g., FLOWER-PLANT)
could have led to some unaccounted effects (e.g., distractor PLANT being
associated to the source in which FLOWER was studied).
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understanding (see Rouder et al., in press). The same applies
for individual-related variables such as age, which are
known to be associated with important differences at the
level of the memory processes (e.g., Ceci et al., 2010).
Finally, consider the implications of the present results
for the broader literature. The present work focused on
source memory, contrary to the original work on episodic
overdistribution which focused on lists of semantically-
related words (Brainerd & Reyna, 2008). As noted by
Stahl and Klauer (2008) in a series of validation studies,
the CPDM seems to provide a more adequate account of
the latter kind of data than the THTSM. This advantage of
the CPDM for the case of semantic lists stems from the fact
that it is a model especially tailored to account for the epi-
sodic and semantic memory processes underlying recogni-
tion responses, in contrast to the 1THTSM (see Batchelder &
Riefer, 1990). For example, the occurrence of false recollec-
tion, which is precluded by the THTSM/2HTSM, is a well-
documented phenomenon in memory studies involving
lists of semantically-related stimuli (Brainerd & Reyna,
2005; Gallo, 2006). It is possible that the theoretical impor-
tance of the overdistribution phenomenon depends on the
particular memory task and stimuli being discussed,
although even in the case of semantically-related lists the
role (even if auxiliary) of a guessing-based account should
not be overlooked (e.g., Miller, Guerin, & Wolford, 2011).
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