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In recent years, discussions comparing high-threshold and continuous accounts of recognition-memory
judgments have increasingly turned their attention toward critical testing. One of the defining features of
this approach is its requirement for the relationship between theoretical assumptions and predictions to be
laid out in a transparent and precise way. One of the (fortunate) consequences of this requirement is that it
encourages researchers to debate the merits of the different assumptions at play. The present work addresses
arecent attempt to overturn the dismissal of high-threshold models by getting rid of a background selective-
influence assumption. However, it can be shown that the contrast process proposed to explain this violation
undermines a more general assumption that we dubbed “single-item generalization.” We argue that the case
for the dismissal of these assumptions and the claimed support for the proposed high-threshold contrast
account does not stand the scrutiny of their theoretical properties and empirical implications.

Keywords: critical testing, recognition memory, signal detection theory, high-threshold models, single-item

generalization

A long-debated issue in memory research is how to best
characterize recognition judgments. For instance, whether these
judgments should be formalized as the outcome of comparing
mnemonic strength values with a response threshold—*“how familiar
is this?”’—or instead, the manifestation of a small number of discrete
states standing for complete knowledge and pure ignorance—"“you
either remember it or you guess” (e.g., Broder & Schiitz, 2009; Dubé
& Rotello, 2012; Egan, 1958; Province & Rouder, 2012).l These
two alternative accounts have traditionally been instantiated by the
Gaussian signal detection theory (SDT) model and the two high-
threshold (2HT) model, which are illustrated in Figure 1 for the case
of single-item yes/no judgments. Their dispute aside, both models
have been applied to a wide variety of experimental and real-world
scenarios, including eyewitness-identification judgments (e.g.,
Winter et al., 2022; Wixted et al., 2018).

The standard approach for comparing competing models like
these two involves the use of global performance indices that take
into account how well they can describe the data as a whole,
relative each model’s complexity or flexibility (e.g., Broder &
Schiitz, 2009; Dubé et al., 2012; Dubé & Rotello, 2012; Kellen et
al., 2013, 2015; Klauer & Kellen, 2015; Province & Rouder,
2012). But more recent years have seen a shift in the way model

comparisons are conducted, with greater emphasis being placed on
critical tests (Chechile & Dunn, 2021; Kellen et al., 2021; Kellen &
Klauer, 2014, 2015; Ma et al., 2022; Meyer-Grant & Klauer, 2021;
Starns et al., 2018). This approach focuses on specific portions of the
data for which the competing models make qualitatively distinct
predictions.

Compared to global model comparisons, critical testing offers
considerable advantages both in terms of fransparency and
generality: They establish a clear connection between theory and
data, such that one can clearly see in the data why one of the
models fails while the other succeeds (for relevant discussions, see
Birnbaum, 2011; Kellen, 2019; Kellen et al., 2021). They also
forgo a number of auxiliary parametric assumptions. For example,
they enable one to test an SDT account without having to commit
to Gaussian mnemonic-strength distributions (see Figure 1). By
dispensing with these kinds of assumptions, the scope of the test
is greatly expanded. Instead of dismissing a single parametric
instance (e.g., Gaussian SDT model), the verdict is extended to

"'To be clear, not all discrete-state accounts subscribe to a complete
knowledge versus pure-ignorance dichotomy (see Chechile, 2018). However,
such accounts are beyond the scope of the present work.
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Figure 1

Hllustration of Gaussian Signal Detection Model and Two High-Threshold Model

Gaussian Signal Detection Theory (SDT) Model
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Note. Upper panels: The left panel illustrates the Gaussian SDT model, which assumes that old and new items are each associated with a
Gaussian latent memory-strength distribution (with parameters p,, 6o, by = 0, and 6, = 1). During a recognition test, when the latent strength value
of an item is greater than the response criterion (dashed line), then a “yes” recognition judgment is issued for that item. Otherwise, a “no” judgment
is made. The right panel illustrates the predicted relationship between the hit and false-alarm rates (“yes” response rates to old and new items,
respectively) when varying the response criterion. This relationship is commonly referred to as the receiver operating characteristic (ROC)
function. Lower panels: The left panel illustrates the 2HT model, which assumes that during test, items are either in a detection state in which
their true status is known. This state is reached by old and new items with probabilities D,, and D,,, respectively. With complementary probabilities
1 —D,and 1 — D, old and new items are said to be in an uncertainty state, such that the judgments on them are based on pure guessing, with “yes”
and “no” responses being given with probability g and 1 — g, respectively. The right panel illustrates a ROC function predicted by the 2HT model
when varying guessing-probability g. See the online article for the color version of this figure.

a large family of models (e.g., SDT models with monotonic
likelihood ratios; see Kellen et al., 2021).

By sharpening the comparison between competing accounts,
critical tests bring to the fore the contributions of specific assumptions
to the development of testable hypotheses. But they also highlight
the permanent possibility of rescuing any theoretical account from
recalcitrant data by adjusting said assumptions or doing away with
them entirely (i.e., the Duhem—Quine thesis: see Duhem, 1954;
Quine, 1951; see also Harding, 1976).

This possibility is at the center of the present work. Its goal is
to evaluate a recent controversy surrounding a basal assumption
in recognition-memory modeling and its role in the empirical
comparison of competing 2HT and SDT accounts. The assumption
at stake here is “single-item generalization.” It claims that the same
latent representations (e.g., memory strength, discrete states)
deployed in the characterization of single-item judgments (e.g.,
“Is this item old?”) can be generalized to judgments involving
multiple items (e.g., “Which of these items is old?”).
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SINGLE-ITEM GENERALIZATION AND HIGH-THRESHOLDS 3

Leveraging single-item generalization, D. M. Green (1960)
famously proved a very general result, widely known as the area
theorem, which shows that the accuracy rate in two-alternative
forced choice (2AFC) judgments is equal to the area under the
corresponding single-item ROC function (for a description of the
latter, see Figure 1). In the context of recognition memory, the area
theorem has been corroborated by empirical testing (Jang et al.,
2009; but see Jou et al., 2016; Starns et al., 2017) and has been
successfully extended to multiple-alternative forced-choice and
ranking scenarios (see Kellen et al., 2012, 2021).

Single-item generalization was (indirectly) put into question by
Malejka et al. (2022) when appealing the verdict of an earlier critical
test by Kellen and Klauer (2014) pitting the 2HT and SDT models
against each other. Specifically, Malejka et al. took issue with a
selective-influence assumption adopted by Kellen and Klauer by
arguing that it is inadequate in the context of recognition test trials
where multiple items (or a tuple) are evaluated simultaneously (see
also Chechile & Dunn, 2021).2 According to Malejka et al., there is a
comparative element in multiple-item judgments that fundamentally
sets it apart from its single-item counterpart. When discussing the
2HT-based characterization of these judgments, they state that:

‘While old—new recognition requires the evaluation of individuals items,
the ranking task requires comparing multiple items within one trial (i.e.,
the items in the current test display). Hence, the two high-thresholds
must operate on the item tuple’s familiarity contrast [emphasis added]
and not on an individual item’s memory strength. In our opinion, this
assumption is more in line with multiple-item discrimination than
assuming that items are processed in isolation. Hence, single-item and
multiple-item recognition tasks are quite different, and thus can and
should require different process (and measurement) models. (p. 18)

These theoretical considerations have important implications
that are not limited to the specific dispute between 2HT and SDT
accounts. Beyond selective influence in the context of Kellen
and Klauer (2014), they ultimately entail a wholesale rejection of
single-item generalization. More specifically, selective influence is
presumed to be violated on account of single-item generalization
not holding true. This state of affairs effectively blocks a main
theoretical avenue for developing joint models for closely related
tasks (cf. Cox et al., 2018; Schurgin et al., 2020).

The goal of the present work is to provide a critical analysis of the
empirical and theoretical arguments put forth by Malejka et al.
(2022). After providing the necessary background, we begin by re-
evaluating their experimental and modeling results and show that, in
their attempt to reappraise the 2HT model, Malejka et al. did not
adequately consider the predictions of the rival SDT model. But this
omission prevents them from realizing that their 2HT modelling
results are to be expected when the data are generated by an SDT
model (Malejka et al., 2022, Experiment 1). Moreover, a closer
examination of their novel experimental designs leads to a surprising
and quite interesting discovery: When 2HT model parameters are
estimated from SDT-generated data, impossible values, namely
negative probabilities, become possible (Experiment 2) or even
highly likely a priori (Experiment 3). These new and remarkable
predictions coming out of SDT are corroborated by these studies’
results. In a perhaps unexpected development, results calling for a
number of controvertible, post hoc assumptions in order to uphold
the 2HT model turn out to be in line with SDT predictions derived
from first principles.

We will then turn our attention to the theoretical “familiarity-
contrast’ high-threshold model proposed by Malejka et al. (2022) as
an alternative explanation for Kellen and Klauer’s (2014) results and
as more plausible account of multiple-item judgments. Our analyses
show that this model allows for gross violations of empirically
corroborated predictions obtained from single-item generalization.’
It is also rejected by a critical test targeting one of its basic
predictions. All things considered, we find it difficult to identify
compelling grounds for treating the proposed contrast mechanism as
a viable alternative explanation of the results originally reported by
Kellen and Klauer.

SDT and 2HT Models for Ranking Judgments

Kellen and Klauer (2014) reported two experiments implement-
ing a critical test contrasting the SDT and 2HT models. These tests
involved a ranking task alongside a manipulation of how items were
encountered during the initial study phase. Specifically, during the
study phase, participants studied a single list of words, with some
being presented once (weak items) and others thrice (strong items).
Later in the test phase, each trial was comprised of four (three)
words—one old and three (two) new. Participants were made aware
of this composition and were instructed to rank the words according
to their belief that they were previously studied (for an illustration,
see Figure 2). The dependent variable of interest here was the
ranking distribution of old words, and how this distribution differs
between sets including weak and strong words.

In typical studies on “study-strength” effects (e.g., Aytag et al.,
2024; Ratcliff et al., 1990; Stretch & Wixted, 1998), weak and
strong items are often studied and tested separately, or are associated
with conspicuous perceptual features such as color (e.g., weak green
items, red strong items; e.g., Stretch & Wixted, 1998). An important
goal of these studies is to create the conditions for participants’
engagement with test items to vary as a function of how said item
was presumably studied (e.g., “is this a strong item or is it new?”).
Kellen and Klauer (2014) purposely deviated from these experimen-
tal designs due to their ability to introduce systematic changes in the
recognition of new items; their critical test hinged on the study-
repetition manipulation selectively influencing the recognition of old
items. Accordingly, their experimental designs were intended to
maximize the plausibility of said assumption and rule out well-known
alternative accounts such as “differentiation” that would be relevant if
weak and strong items were studied in different lists or explicitly
labeled as weak or strong at test (e.g., Criss, 2006). This is why
previously published data, such as Chechile et al. (2012), were not
subjected to reanalysis—their experimental designs rendered the
assumption of selective influence implausible. That being said, these
experimental-design considerations were not spelled out by Kellen
and Klauer, although they were discussed in later work, when

2 Malejka et al. (2022) referred to it as the “lure-detection invariance”
assumption, in direct reference to parameter D,, of the 2HT model. We prefer
using the term selective influence as it can be used more generally. One
should note, however, that the precise technical meaning of the latter term
ultimately depends on the model that is being referred to.

3 To be absolutely clear about this, Malejka et al. (2022) themselves do not
question or even directly refer to single-item generalization. Nevertheless, its
rejection is a logical consequence of their theoretical proposal. One of the
goals of the present work is to unveil this issue.
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4 KELLEN, MEYER-GRANT, SINGMANN, AND KLAUER

Figure 2
Lllustration of a Four-Alternative Ranking Trial in Kellen and
Klauer’s (2014) Experiment 1

3 2
Dog Bread

4 1
Cloud Bottle
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Note. 1In each ranking trial, one of the presented items is old (e.g., Bread)
and three are new. Ranks are assigned to items by clicking on them (i.e., the
first item clicked on receives Rank 1, etc.). In this illustration, ranks have
been assigned to all items as indicated by the numbers (i.e., ranks) shown
above each item.

identifying the requirements for implementing a related critical test
using published data (e.g., see Kellen & Klauer, 2015, pp. 547).
The SDT model assumes that the probability R; ¢ that an old item
among K alternatives is assigned rank i = 1, ..., K, corresponds to
the probability of the item’s latent-strength value being the ith
largest one (without the possibility of ties). The latent strength
associated with each option is assumed to be an independent sample
from each one’s respective latent distribution, with all K — 1 new
items being associated with the same distribution. Formally,

R = (f__ll) |” rwr @ - Rwe

where f, is the probability density function of old-item latent
strength and F,, is the cumulative distribution function of new-item
latent strength.

In turn, the 2HT model assumes that the ranking of the old
item is a function of whether it is detected or not, and in the
latter case, how many new items were detected. Specifically, it
is assumed that, if the old item is detected with probability D,,, then
it is assigned Rank 1. If the old item is not detected, with
complementary probability 1 — D,, then it is said to be in an
uncertainty state, along with any new item that was not actively
rejected (i.e., not detected as new). In these circumstances, the p
out of K test items that happen to be in this uncertainty state are
randomly assigned the top p out of K possible rank positions,
whereas any new items that were actively rejected are randomly
assigned to the remaining bottom ranks.

The rank probabilities R; x predicted by the 2HT model considered
here can be conveniently formalized as follows:

P R (1= D,)&(i), ifi=1
iK_{(l—Do)é(i), if2<i<K’

where &(7) denotes the probability of a nondetected old item being
assigned rank i, which is a function of the number of items of
uncertain status. The version of the 2HT model considered by

@

Kellen and Klauer (2014) does not make an explicit reference to D,,.
The reason being that it is possible—under selective-influence
assumptions—to derive testable predictions without making any
claims about the stochastic relationship between new-item detec-
tions; for example, that they are independent (for a similar approach,
see Chechile & Dunn, 2021). That being said, one could have
assumed that new-item detections are independent and identically
distributed with probability D,,. In that case (see also Malejka et al.,
2022, Equation 3)*

&(i,Dn)=Z({(—1)D§"(1 —Dny"jl.. (3)

VA

As previously discussed, Kellen and Klauer (2014) assumed that
the study-repetition manipulation utilized in their studies selectively
influenced the remembering of old items. This assumption was
deemed plausible in the specific context of their experimental designs.
In terms of both models, this assumption means that parameters i, and
D, were presumably influenced by the manipulation, whereas other
parameters such as D, remained invariant.

Under the assumption that selective influence holds, both the SDT
and 2HT models can be shown to make distinct predictions. Let c;,
denote the conditional probability that the old item is assigned
Rank 2 out of K, given that it was not assigned Rank 1,

R
TR “)

Gk = 1 _RLK-

The SDT model then, under a wide range of parametric
assumptions, expects ¢, to be greater for strong items than for
weak items; that is, cE‘fK < cg’,( (for a proof, see Kellen & Klauer,
2014, supplemental materials). In words, the SDT model expects
the latent strengths of strong items to be somewhat larger than
their weak counterparts, even when not assigned Rank 1.

In contrast, the 2HT model with selective influence in force
expects ¢y x = ¢ k. It is easy to see why these two models make
distinct predictions: The 2HT model assumes that items, when their
status is uncertain, are all alike in the sense that the response
distributions associated to them are one and the same (for a
discussion, see Rouder & Morey, 2009). In this case, the ranking of
the old item, regardless of its study conditions, will be determined
by a pure guessing process that is applied to all the test options that
were not actively rejected.

Across two experiments, Kellen and Klauer (2014) found ¢ g
estimates to be greater than their ¢3 p counterparts, a result that
speaks for the SDT model and against the complete information
loss—guessing for nondetected items—postulated by the 2HT
model (see Figure 3). This result has since then been replicated by
McAdoo and Gronlund (2016), McAdoo et al. (2019), and more
recently by Malejka et al. (2022).

* Note that it is presumed that guessing-based rankings are equiprobable
among the j items in an uncertainty state; for each such item, the ranking-
assignment probability is 1. This follows from the assumption that

recognition judgments for nondetected items are based on pure guesses.
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Figure 3
Individual c, Estimates Obtained by Kellen and Klauer (2014) for
Trials in Which a Weak (c¥') or Strong Old Item (c5) Were Included
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Note. Experiment 1 used four alternatives (for an illustration, see Figure 2),
whereas Experiment 2 used three alternatives instead of four. See the online
article for the color version of this figure.

Comparing Models With Forced-Choice and
Ranking Judgments

In an attempt to put selective influence in the 2HT model to the
test, Malejka et al. (2022) conducted a number of studies in which
they found D, estimates to be affected by the kind of study-strength
manipulation used by Kellen and Klauer (2014). Specifically, they
estimated D,, to be greater among ranking trials that include strong
items compared to those that included weak items; that is, D} < D;,.
Their first study was basically a replication of Kellen and Klauer’s
(2014) Experiment 1, with participants encountering four-alternative
ranking judgment trials that included either weak or strong items. Two
follow-up studies implemented more complex experiment designs
in which participants encountered sequences of forced-choice and
ranking judgment trials. Across all three studies, the testing of
selective influence followed the same strategy: 2HT models were fit
to ranking or ranking and forced-choice judgments, and the
restriction Dy = D was evaluated.

Before going into the details of each test conducted by Malejka
et al. (2022), some general considerations are in order. First, let us
take a moment to consider the point of contention that motivated
their investigation: The possibility that Kellen and Klauer (2014)
mistook a violation of selective influence in the 2HT model for
evidence for the rival SDT model. This possibility stems from the
fact that a 2HT model violating the selective-influence assump-
tion, such that Dy < Dj, is able to accommodate the observed
pattern of ¢y y < ¢5 ;. But this is only one side of the coin: There is
also the possibility that ranking data generated by SDT, when
fitted by the 2HT model, will look like a violation of selective
influence, with D} < Dj. Coherence therefore demands that the
concerns raised about Kellen and Klauer (2014) also extend to
follow-up investigations attempting to test selective influence in

2HT model empirically. More specifically, any such investigation
must come to terms with the existing ambiguity and provide
assurances that it does not confuse evidence for a given model-
based hypothesis (D,, varies with study strength) with the success
of a rival model (SDT is the data-generating account). To help the
reader understand what is at stake here, Appendix A provides an
analogous but more familiar scenario involving ROC data. In this
scenario, we show how the observation of nonlinear ROCs, when
seen through a 2HT lens, are to be interpreted as evidence against
the selective influence of response-bias manipulations, putting into
question any model comparison based on ROC data (e.g., Kellen
et al., 2013; Malejka & Broder, 2019).

As will become clear below, the empirical investigation
conducted by Malejka et al. (2022) does not live up to the very
standard that motivated it in the first place. This issue is manifested
in the fact that all of their results supporting the claim that D}y < Dj,
are expected when fitting 2HT models to SDT-generated data. In
other words, there is no privileged model-based characterization;
they are ambiguous or nondiagnostic in that sense.

When faced with this kind of ambiguity, researchers are expected
to provide additional arguments supporting their favored interpreta-
tion. As discussed earlier, in their critical tests, Kellen and colleagues
appealed to the characteristics of the experimental design to make a
case for selective influence (see Kellen et al., 2021; Kellen & Klauer,
2014, 2015). Similar appeals have been deployed when discussing
ROC data and the presumption of selective influence in response-
bias manipulations (see Broder & Malejka, 2017; Malejka &
Broder, 2019). But for the present case of ranking judgments,
Malejka et al.’s (2022) criticism is not driven by some perceived
experimental oversight on Kellen and Klauer’s (2014) part but rather
by a theoretical claim about the way people make multiple-item
judgments (see their quote earlier). This means that, in the face of
ambiguous or nondiagnostic results, one should carefully examine
the virtues of the theoretical account being offered (e.g., Kellen
et al., 2018). We will pursue this route later on by conducting a
thorough evaluation of the “contrast 2HT modeling” account
proposed by Malejka et al. We will show that it makes a number of
implausible predictions and fails a critical test. Altogether, we see
no good reason to find this proposed account viable, let alone grant
it some kind of privileged status over any other.

Moreover, in the context of the new experimental paradigm
introduced by Malejka et al. (2022), it is not always the case that
SDT-generated data are consistent with the 2HT model in its
principal variant. As we will discuss in detail below, in the
experimental designs combining forced-choice and ranking judg-
ments (Experiments 2 and 3), there is the possibility of obtaining
negative D, estimates, which are obviously nonpermissible as these
parameters refer to probabilities. In one particular experimental
design (Experiment 3), negative estimates are even expected under
many circumstances, and this is exactly what is found. Rather than
vindicating the viability of the 2HT model (or at least the archetypal
2HT model without post hoc extensions), the experimental designs
developed by Malejka et al. (2022) turn out to reveal a novel critical
test that corroborates SDT predictions derived from first principles.

Ranking Judgements

Malejka et al.’s (2022) first approach to testing selective influence
consisted of estimating D, from four-alternative ranking judgments,
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separately for cases with weak and strong items. The parameter
estimates from their first experiment showed that, indeed, D}, was
generally greater than D}. However, these estimates by themselves
cannot be taken as evidence against selective influence. After all,
they are driven by the observation that ¢, < ¢ 4; that is, the
empirical challenge faced by the 2HT model in the first place. And a
result that is expected under the rival SDT account.

To express this issue in the simplest possible manner, it is
useful to start by framing our discussion in the context of a three-
alternative ranking task. According to the 2HT model, the
corresponding ranking probabilities are:

R1,3 = D, + (1 _DO)D% + (1 _Do)Dn(l _Dn)
1-D - D,)?
L(1=D)(1 =D,
3
1 - D)1 - D,)?
RZ,S = (l _Do)Dn(l _Dn) + ( O)é n) s
(5)
(1 = D,)(1 = D,)*
R 3= 3 ,
with
€3 = _ Rz
7 Ry3+ R

With some rearrangement, we can see that D, is directly
determined by ¢ 3,

_ 1 - 2(,'2’3

D, = (6)

.3 -2 ?

which can then be used to determine D,. These results show that
ranking probabilities—provided that certain accuracy constraints
are satisfied—can be directly translated into D, and D, values.
These constraints are simply that ranking probabilities for the old
item cannot drop below chance nor reach ceiling; thatis, 1/3 <R; 3 < 1
and c,3 > 1/2. It follows then that any two conditions yielding
different c¢,3 values necessarily imply different D, values. For as
shown in Equations 5 and 6, according to the 2HT model, c, 3 is simply
a function of D, and vice versa (see also Kellen & Klauer, 2011).

Now, consider once again the critical-test results originally
reported by Kellen and Klauer (2014). Their report that ¢3 x is
generally greater than ¢y, can be trivially handled by simply
allowing D, to differ between the two conditions. What this means is
that observing differences in D,, across conditions does not provide
any kind of novel insight, regardless of how many times these results
are replicated and the 2HT model is fit to it. All that this course of
action achieves is reiterate the known formal relationship between
model parameters and data. And reiterating this relationship does
not affect the plausibility of selective influence given that ¢ , <
¢ g 1s natively expected by the rival SDT.?

To illustrate this point, consider an artificial scenario where data
are generated from an unequal-variance Gaussian SDT model with
cg = 1.3. As shown in Table 1, changes in the mean of the latent
old-item distribution (p,) affect both R, 5 and ¢, 3. According to the
2HT model, these effects directly map onto D, and D,, both of
which increase alongside p, (see “First Method” column). In this toy
example, we know for a fact that only the old-item distribution is
changing—a simple story of selective influence. But according to
Malejka et al.’s (2022) reasoning, the empirical outcomes of this
scenario are to be interpreted as speaking against selective influence

Table 1
SDT-Generated Predictions and Resulting 2HT Parameters
Estimates

SDT generation 2HT estimation

First Second
Parameter Prediction method method
Ho 62 Rz o3 P2w P95 D, D, AD, B D,
0.2 1.3 40 51 .39 25 09 .01 -22 -56
0.4 1.3 46 55 42 27 15 06 -.15 -.51
0.6 1.3 51 .58 46 29 22 11 -.08 -—-47
0.8 1.3 57 .62 49 31 28 17 =02 —-43

. . . . . . . . -.39
1.2 1.3 .68 .68 .56 34 41 27 12 =35

14 1.3 72 71 .59 35 48 .32 18 =32
1.6 1.3 71 73 .62 37 54 .37 24 =29
1.8 1.3 81 76 .65 38 60 .42 30 =26
2.0 1.3 85 78 .68 39 65 .46 36 .24
22 1.3 88 80 .71 40 70 .51 41 =22
2.4 1.3 90 82 .73 41 75 .55 46  -.19

Note. SDT parameters (i, o2 ) used to generate predictions R 3, ¢, 3,
PS4, and P’,%ﬁn. The 2HT estimates obtained from the ranking (First
Method) and forced-choice predictions (D,; with Second Method Versions
A and B). R, ;3 = probability of old item being assigned Rank 1 given three
alternatives. ¢, 3 = probability of old item being assigned Rank 2, given
that it was not assigned Rank 1. P&, and P/nefgn = correct forced-choice
probabilities in cases where the old item was not Ranked 1 (Versions A
and B of the Second Method, respectively). SDT = signal detection
theory; 2HT = two high-threshold.

in the 2HT model and therefore against the validity of the original
critical test (see also Appendix A).

The running three-alternative ranking task example is useful
because it renders the relationship between parameters and data as
transparent as it could be. That being said, Malejka et al.’s (2022)
Experiment 1 rankings did not involve three alternatives but four.
Their experimental design with four-alternative ranking trials provides
3 4+ 3 = 6 degrees of freedom, more than enough to estimate the four
2HT parameters DY, D§, Dy, and Dy, (see Equation 3). The remaining
two degrees of freedom were used to test the model’s goodness of fit,
which was generally found to be satisfactory. Model misfits were
statistically significant (p < .05) for only 9% of the participants. In
contrast, the three-alternative ranking example only provides the four
degrees of freedom necessary for parameter estimation, which means
that it does not offer the same opportunities for model corroboration.
The question then is whether going from three to four alternatives is
of any consequence for the point that we are trying to make here—no,
not really. First, note that it is still the case that ¢, 4 (or ¢34 for that
matter) is solely a (strictly increasing) function of new-item detection
(see Equations 2 and 3; see also Equation 4 in Malejka et al., 2022):

o £(2.D,)
24T E(2.D,) + E(3.D,) +E(4.D,)

Q)

This relationship implies that, as in the three-alternative case,
the mere observation that ¢, is greater for strong than weak items
already calls for an estimate of Dj that is greater than its Dy
counterpart.

> Confusions between logical/conceptual relations and empirical evidence
are quite common in psychology, often taking very subtle forms (see M. A.
Wallach & Wallach, 1994, 1998; L. Wallach & Wallach, 2010).
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But what about the goodness-of-fit tests of the 2HT model as a
whole? Could they help overcome the ambiguity surrounding the
¢, 4 differences? Even though the four-alternative ranking design
provides enough degrees of freedom to conduct a test of the 2HT
model, its power is too low for the test results to have any real
diagnostic value, as data coming from SDT can be accommodated
by the 2HT model. To see this, let us simulate data from a unequal-
variance Gaussian SDT model, using the same number of test trials
(75 per condition) conducted in Experiment 1 of Malejka et al.
(2022). Individual pY and p§ parameters were sampled from a
uniform distribution ranging between 0.25 and 2 (these samples
were ordered to ensure that py < p$). In turn, a common o,
parameter was sampled from a uniform distribution ranging
between 1 and 1.5. A total of 5,000 individual samples were taken.
Out of these, the 2HT model only failed to fit 13% of them (with p <
.05). For 81% of the individual cases, Dj was estimated to be greater
than D), with median estimates of .45 and .27, respectively. In turn,
D; was estimated to be larger than D} in 75% of the individual
cases, with medians .29 and .12, respectively. Altogether, these
simulation results show that the basic pattern of results put forth by
Malejka et al. as vindicating the viability of the 2HT model is
essentially what you would expect to see if the data originated from
the rival SDT model.

At this point, one could object that our analysis is one-sided by
always taking SDT to be the true data-generating model. Why not
also consider an alternative scenario where a 2HT model (sans
selective influence) takes on that role? Simply because the question
here is whether we might be fooling ourselves when drawing
conclusions specific to 2HT model (does selective influence hold?)
from these studies. And you address that question by considering
cases where the 2HT model is not generating the data.

Forced-Choice-Then-Ranking Judgements

In Experiments 2 and 3, Malejka et al. (2022) relied on a
somewhat more involved method for estimating D,,, relying on a
selection of forced-choice judgments and subsequent ranking
judgments that included the same test items. Let P, ,, denote the
probability of correctly choosing the new item in a pair that includes
one old item and one new item. According to the 2HT model

Pyon =Dy + (1= Dy)D, + (1= D,)(1=D,)
_ | _=D)-D,) ®
_ 0-0,)

Now, consider the same correct choice probability, only that this
time we are restricting ourselves to the cases in which the old item
was not detected,

(1 - Dn)

PO =1- 5

®
This choice probability, if available to the researcher, would provide
a direct estimate of parameter D,

D, =2P%o — 1. (10)

But how can the researcher identify trials in which old-item
detection failed? Consider follow-up four-alternative ranking
trials that include the old items previously encountered. Under the
assumption that the detection status of items is carried over across

tests (which we will take for granted), every instance in which the
old item is not assigned Rank 1 is also one in which it was not
detected. Hence, these cases can be used to estimate Pne,(,n and
thus D,,.

Malejka et al. (2022) implemented two versions of this method
in their Experiments 2 and 3. We will refer to these versions as A and
B. In Version A (Experiment 2), participants first engaged in the
aforementioned 2AFC judgments. In a subsequent test block,
participants were presented with four-alternative ranking trials. Each
ranking trial was comprised of an old item encountered in the
previous test block alongside three novel new items. In Version B,
each forced-choice trial was immediately followed by a four-
alternative ranking trial that included both items from the previous
trial (i.e., only two of the three new items were novel). The two
experimental designs are illustrated in Figure 4.

The D, estimates obtained with version A replicated the basic
pattern found in Experiment 1, with D}, being generally greater than
Dy'. At first glance, this result can be seen as providing corroborating
evidence for the violation of selective influence. But as before, one
needs to provide assurances that this result is not ambiguous in the
sense of not being obtained if the data were generated by a SDT
model. In short, is SDT expected to produce these results? Once
again, the answer is yes.

Taking for granted the assumption that the familiarity values are
precisely the same across forced-choice and ranking trials, SDT
establishes P,?ﬁn as the probability that the old item, when not
assigned Rank 1 in a K-alternative forced choice trial, has a greater
familiarity than the new item included in the forced-choice trial.
Formally, this corresponds to

por _ Tl oFu()(1 = Fy()*~
o [ fo@)(1 = Fy()k~Ddx

an

with K/2(K + 1) < P94, < 1.°

As shown in Table 1, for the case of three-alternative rankings,
P,?ﬁn increases as a function of p,, which in turn entails that Dy <
D; when data are generated by an SDT model. From this
relationship, which also holds for four alternatives, it follows that
the observation that D} < Dj, is not diagnostic, when trying to
overturn the dismissal of the 2HT model over SDT reported by
Kellen and Klauer (2014).

More interestingly, Table 1 also shows how SDT can predict
Pnefén values below 1/2. These below-chance values, when
plugged into Equation 10, result in negative D, values. At first
glance, it might seem strange that the two models differ on the
lower bound of P,?én and that SDT can in fact predict below-
chance performance. But a closer look shows how this difference
stems from the unique ways in which the two models characterize
recognition judgments.’

The 2HT model postulates that all nondetected items—old and
new alike—are subjected to the same guessing processes without

® For the lower bound, we assume that the latent-strength distribution of
old items is identical to the new items’. That is, we are purposely excluding
cases found in the unequal-variance Gaussian SDT model where the model
makes unreasonable below-chance predictions (e.g., g, = 0 and o, > 1).

" Contrary to many other circumstances where it is the culprit, this
prediction of below-chance accuracy by SDT is not caused by the use of
an unequal-variance Gaussian parametrization (see also Footnote 6; cf.
Kellen & Klauer, 2011).
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Figure 4

Hllustration of the Sequences of Forced-Choice and Ranking Trials Used by Malejka et al.
(2022) Experiments 2 and 3, Implementing Versions A and B of Their Second Method

distinction. This assumption is commonly referred to as conditional
independence (e.g., Kellen et al., 2013; Province & Rouder, 2012).
In a ranking task, this assumption establishes that there is no
difference between a nondetected item that is assigned Rank 2 and
another one assigned Rank 3, for instance—they are all guesses (see
Equation 2). In the forced-choice trial, the worst-case scenario is
when neither item is detected, which means that the response will be
a guess, with 1/2 probability of being correct (see Equation 9).
For SDT, both ranking and forced-choice judgments are based on
the latent strength of each item and how they compare to each other.
When the old items are assigned Ranks 2 and 3, this means that, in
their respective ranking trials, they had the second and third
highest latent strength, respectively. In contrast to the 2HT model,
these items are not treated alike in the case of ranking. In fact, the
expected latent strength of the former item is greater than the

Experiment 2

Delete

Experiment 3

Delete

latter’s. To see this, consider the example in the first row of
Table 1, in which the mean or expected latent strength of old items
(Mo) is 0.2. Conditional on rank k, what is the expected latent
strength? For Ranks 1-3 out of three, the means are 1.09, 0.08, and
—0.89, respectively. Aside from their decreasing order, note how
the latter value is negative, far below the expected latent strength
of new items, which is set to zero by convention (but without loss
of generality). In these instances where the old item is assigned
Rank 3, the probability of its latent strength being greater than a
novel new item’s latent strength—the new item paired with it in
the forced-choice trial—is just .25.

Figure 5 illustrates the results obtained in Malejka et al.’s (2022)
Experiment 2, which implemented Version A of their method. Most
of the Pne,f,n estimates obtained are above 1/2 (left panel), which
correspond to positive D,, estimates (right panel). These results are
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not that diagnostic given that the range of outcomes permitted by the
2HT model are nested within SDT’s, with only a small region of
disagreement (see left panel). Regardless, it is by now clear that the
combination of forced-choice and ranking judgments is able to lay
bare the unique aspects of the two models. The question is whether
there is an experimental design that can amplify them so that
divergent predictions are made in almost all possible circumstances.
It turns out that Version B, implemented in Experiment 3, delivers
on this promise.

In Version B, the old—new item pairs presented in the forced-
choice trials appear together once again in the ranking trials (for an
illustration, see Figure 4). Again, the 2HT model predicts P9Z, to be
determined by new-item detection and guessing, with a lower bound
of 1/2. Malejka et al. (2022) used Equation 10 to estimate D, from
the rate of correct responses in the 2AFC task, given the old item
was not ranked first in the subsequent ranking task. However, for
Version B, this rate—which we here denote by P95 —is not
identical to P95,. The reason for this is that the probability of the
target being ranked first depends on whether the new item that
appears in both tasks was correctly rejected (detected as new) or
not. If the new item was correctly rejected by the participant, for
example, it is more likely that the target will be ranked first than if
the new item was not rejected. At the same time, rejecting this new
item guarantees a correct response in the corresponding 2AFC task.

As a result, the relationship between P nefgn and D, is more complex

than between P95, and D,,. Unfortunately, there is no way to directly
estimate P95, from the data of Malejka et al.”s (2022) Experiment 3.
But presupposing the possibility of non-detected items being freely
rearranged between the forced-choice and ranking judgments and

K = 4, it can be shown that the 2HT model predicts

7 2
P = 12
BN 6 (Dy)? +2D, + 3 (12)

The lower bound of P’,?ﬁn is still 1/2.% This lower bound holds
irrespective of the number of alternatives in the ranking task since
there is no other option but to guess in the 2AFC task when neither
the old item nor the new item are correctly detected.” As per
Equation 12, an estimate of the parameter D, based on P' 5, (with
K = 4) is given by

V= T2AP S8 + 96 8, — 14
D, = , ~ 1 13
7-6P98, (13

In turn, according to SDT, P’?fgn corresponds to the probability
that the latent strength of the old item is above the new item from the
forced-choice trial included in the forced-choice trial but not all of
the remaining K — 2 new items included in the K-alternative ranking
task. Formally:

pon _IZaloF (=A@ 2

[ £ol) (1= Falx)f 1) ax

with K —2/2(K —1) < P$8, <K -2/K - 1."°

Looking back at Table 1 and its three-alternative ranking
example, we see once again how SDT-generated data, when fed
through Equation 13, replicates the Dy < Dj pattern found by

Malejka et al. (2022). But more importantly, we see that SDT

yields P ggn smaller than 1/2 for the entire range of performance
levels considered there. That is, for the three-alternative ranking
case, all estimated D, < 0. These predictions are not specific to the
Gaussian parametrization of SDT, as 1/2 is the upper bound of
P’ne,gn. The reason for this upper bound is straightforward: Given
that the old item was not assigned Rank 1, at least one of the new
items must have surpassed the old item in terms of latent-strength
values. In the case of three alternatives, it follows that the probability
that the old item is ranked higher than the new item that it is paired
against in the forced-choice trial is 1/2 at best.

Given that there is no overlap between the two models’
permissible outcomes, aside from the single point P95, = 1/2,
Version B with three-alternative rankings can be said to be a
maximally diagnostic experimental design. In comparison, an
experimental design with four-alternative rankings, as implemen-
ted by Malejka et al. (2022) in their Experiment 3, is slightly less
diagnostic: As illustrated in the left panel of Figure 6, SDT
postulates an upper bound of P'25, = 2/3, which leads to a small
overlap with the 2HT model’s permissible outcomes. That being
said, SDT still makes a clear prediction for the experimental
design with four-alternative rankings: frequent instances where
P ©8,<1/2. It is also worth noting that the study-strength
manipulation does not play a role in these predictions, although it
can be useful as a way to expand the range of performance
observed.

The P’,?ﬁn estimates coming from Malejka et al.’s (2022)
Experiment 3 are shown in the left panel of Figure 6. For weak
items, 92% of the P’gﬁn estimates are below 1/2. For strong
items, 75%. Per Equation 13, all of these cases correspond to
negative D, estimates. Many of these estimates are well
captured by the range of permissible outcomes allowed by SDT,
whereas the 2HT model’s respective range misses almost all of
them (see Figure 6, left panel). Relative model performance,
quantified via Bayes factors (see Heck & Davis-Stober, 2019),
generally favored SDT’s range of permissible outcomes over
2HT’s, with a median individual-level Bayes factor of 17, and with
values over 10 (strong relative support) obtained for 61% of the
individuals.

Altogether, the results from Malejka et al.’s (2022) Experiments 2
and 3 appear to be more in line with SDT. Its basic tenets are shown
to predict P94, < 1/2 within a limited range of circumstances, and
that is what is found. SDT is also shown to predict P'nef(fn below 1/2
under many circumstances and, once again, that is what is found.
According to SDT, it could not have been any other way. The 2HT
model, on the other hand, has no native ability to accommodate
these differential results."'

8 In Version B, the 2HT model now also predicts an upper bound for PS5,
which for K = 4 turns out to be located at 5/6.

® Again, this presupposes that the order in the ranking task is determined
by the memory states and—when conditioning on the memory states—is
independent of the actual 2AFC response.

'"For the lower bound, we again assume that the latent-strength
distribution of old items is identical to the new items’ (see Footnote 6).

' As previously stated, these predictions presume that the memory states
are carried over from the forced-choice trial to the ranking trial. We
considered a number of different ways in which this assumption could be
violated; for example, for the SDT model, introduce noise to each item’s
latent strength between the two trials. Overall, the kinds of violations
considered led to negligible changes in the predictions made by both models.
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Figure 5

Pr?,én and D,, Estimates Based on the Data From Malejka et al. (2022) Experiment 2
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Note. Leftpanel: P94, estimates obtained by Malejka et al. (2022, Experiment 2). The shaded regions correspond to the values
permitted by SDT (assuming p3 < p) and the 2HT model (assuming that DY < D§ and D} < D}). Note that the region
delineated by the 2HT model is nested inside SDT’s. Right panel: D,, estimates obtained in the same experiment, using Version A
of Malejka et al.’s second estimation method. The shaded area covers nonpermissible value pairs, as D,, is a probability and
therefore must range between 0 and 1. SDT = signal detection theory; 2HT = two high-threshold. See the online article for the

color version of this figure.

The challenges faced by the 2HT model here were acknowl-
edged by Malejka et al. (2022). In response to the negative
D, estimates obtained in their Experiment 3, they proposed a post
hoc revision of the 2HT model that attributes the negative D,
estimates illustrated in Figure 6 to an unaccounted manifestation
of “response consistency.” That is, participants taking for certain
that the nonchosen item in a forced-choice trial is old and therefore
automatically assigning it Rank 1 in the ranking trial that
immediately follows—perhaps because they are trying to save
time or complete the task with as little effort as possible. For
instance, if participants selected the word Cloud over Bread as the
new item in the forced-choice trial, as in the example illustrated in
the bottom half of Figure 4, “response consistency” would entail
that the latter is ranked 1 in the ranking trial that comes
immediately after. To explore this possibility, Malejka et al. fitted
an extended 2HT model that included the possibility of consistent
responding whenever the old item was not detected, which can
decrease the predicted P/,?iﬁn below 1/2. The probability of this
occurrence was quantified by a parameter ¢, which was estimated
to be .46 on average.

Besides its post hoc status, the ‘“response consistency”
hypothesis as an explanation for P'?fgn < 1/2 also has the
notable feature of presuming that the kind of responding that the
experiment was explicitly designed to prevent is in fact a major
driving force. To wit, the forced-choice trials conducted in
Malejka et al.’s (2022) Experiment 3 purposely (a) requested

participants to choose the new item in the pair presented to them,
(b) provided instructions that explicitly informed participants
that new—new pairs are also possible, and (c) randomized item
positions when transitioning from a forced-choice trial to a
ranking trial. The whole point behind these experimental-design
choices was to prevent participants from inferring that the
nonchosen item in the forced-choice trial is necessarily old and
expressing it in the follow-up ranking trial or simply carrying on
their previous responses. Future work attempting to validate the
presence of this strategy (which could be implemented in both
2HT and SDT models) should consider developing new ways to
suppress it.

Interestingly, there is also an alternative interpretation for the
relative success of introducing “response consistency” into the
2HT model. A core assumption of the 2HT model is that new
items cannot be misremembered as old. This assumption has led
to conspicuous problems, as documented in a number of recent
studies (Meyer-Grant & Klauer, 2021; Starns, 2021; Starns et al.,
2018; Starns & Ma, 2018; Voormann et al., in press). According
to SDT, misremembering is not only possible but can be common
under the right experimental conditions. The present case can be
seen as just another instance of the same problem. In fact, if one
considers what “response consistency” actually does for the 2HT
model, it is easy to see that it introduces the possibility of new
items being treated as if they were incorrectly detected (i.e.,
misremembered) as old. In other words, it offers a remedy for a
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Figure 6

P ?ﬁn and D,, Estimates Based on the Data From Malejka et al. (2022) Experiment 3
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permitted by SDT (assuming ) ) and the 2HT model (assuming that DY and D}’ ). Right panel: D, estimates obtained in the same
experiment, using Version B of Malejka et al.’s second estimation method (via Equation 13). The shaded area covers
nonpermissible value pairs, as D, is a probability and therefore must range between 0 and 1. SDT = signal detection theory;
2HT = two high-threshold. See the online article for the color version of this figure.

model shortcoming that researchers working with the 2HT model
have repeatedly encountered before.'?

To evaluate the tenability of this alternative explanation for the
success of the extended 2HT model, we simulated 5,000 individual
data sets from a Gaussian SDT model and fitted them with the
extended 2HT model. Individual py and p parameters were
sampled from a uniform distribution ranging between 0.25 and 2
(these samples were ordered to ensure that py < pg), and a
common o, parameter was sampled from a uniform distribution
ranging between 1 and 1.5."* Out of these 5,000 individual data
sets, the extended 2HT model produced statistically significant
misfits (p < .05) for 9% of them. Moreover, D;, was estimated to be
greater than D} in 69% of the cases, and imposing the restriction
¢ =0 led to statistically significant increases in misfit in 55% of the
times. Once again, the general pattern of 2HT modeling results
observed by Malejka et al. (2022) is found when generating data
from SDT.

Discussion

The reanalysis of Malejka et al. (2022) produced two main
insights. First, the interpretation of their results as evidence pointing
toward a violation of selective influence presupposes that the core
assumptions of the 2HT model are simply taken as given. However,
when adopting a broader perspective by entertaining the idea that the
2HT model could potentially be invalid, the reported results turn
out to be nondiagnostic. That is, they are to be expected when the
data come from the rival SDT model. What this means is that none
of Malejka et al. (2022) results makes a compelling case against

Kellen and Klauer’s (2014) original selective-influence assump-
tion per se, nor against the conclusions that they originally drew.

Second, the results turn out to manifest a signature prediction of
SDT models at large that cannot be accounted for by the 2HT model
without post hoc modifications in need of follow-up experimental

12 Another—perhaps more direct—remedy is to abandon the notion that
thresholds are “high,” which leads to the class of low-threshold models
(Luce, 1963; see also Kellen et al., 2016; McAdoo & Gronlund, 2020; Starns,
2021; Starns & Ma, 2018).

13 The data fitted by Malejka et al. (2022) and the one simulated here differ
in one important aspect. The former included two distinct categories for
logically incongruent responses in the forced-choice and ranking trials (e.g.,
response category “LL”: Choose the new item in the forced-choice trial and
assign it Rank 1 immediately afterward). These categories were handled by
three nuisance parameters (a;, a,, and az). Because the SDT model
implemented here presumes a perfect carryover of familiarity values between
judgments, it assigns probability zero to these incongruent response
categories. This difference effectively reduces the number of degrees of
freedom per individual data set by four, providing a total of 2 X 3 = 6 degrees
of freedom. This reduction is compensated by the fact that the extended
model no longer requires the three aforementioned nuisance parameters,
leaving it with five parameters: DY, Dy, D}, D5, and c. One attractive feature
of the model fits obtained in this simulation is that they are not distorted by
the ability of the nuisance parameters to account for the incongruent
responses that neither model has a satisfactory explanation for at the moment.
One possible explanation for these responses is that, contrary to what has
been assumed so far, familiarity values or detection states are not carried over
across trials, perhaps due to a second retrieval attempt in the ranking trials
(the fact that attempts to relax this assumption do not explain the observed
P95, see Footnote 11, does not imply that it could not play a role here).
Another possibility is that participants are sometimes careless or sloppy.
However, evaluating the merits of these and other possibilities is beyond the
scope of the present work.
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verification. Notably, the modifications introduced to accommodate
the results from this single study affect a 2HT model feature that
has been highlighted by previous critical reports. Namely, the
presumption that new items cannot be misremembered (Meyer-
Grant & Klauer, 2021; Starns, 2021; Starns et al., 2018; Starns &
Ma, 2018; Voormann et al., in press). That said, further research is
needed to investigate the manifestation of “response consistency,”
which can be incorporated into both 2HT and SDT models.

At this point, the viability of the 2HT model depends on two novel
assumptions introduced by Malejka et al. (2022). One of them is the
“response consistency” assumption just discussed, which enables it
to account for the results from Experiment 3. The other one is the
“contrast-processing” assumption that invalidates Kellen and
Klauer’s (2014) conclusions but also boils down to an abandonment
of the selective-influence assumption on account of an unqualified
dismissal of single-item generalization. We turn our attention to this
second proposal and resultant issues in the section below.

Evaluating the Familiarity-Contrast Account

Malejka et al. (2022) showed how embedding a “contrast
process” in the 2HT model yields the prediction that D} < D;. They
also appeal to this account when describing some of their results
(e.g., D, estimates from ranking judgments and their respective
predictions for forced-choice judgments; see their p. 10).

The purpose of this section is to provide a thorough reevaluation
of this contrast account, which takes into consideration its broader
implications for recognition-memory judgments at large. First, we
will discuss how numerous studies have shown that multiple-item
judgments can be successfully predicted from single-item judg-
ments. These results corroborate the general assumption of single-
item generalization that can be traced back to D. M. Green’s (1960)
area theorem. We will then turn our attention to the model proposed
by Malejka et al. (2022). Beyond its impact on selective influence,
we will show that this model produces gross violations of single-
item generalization and other implausible results. Last, we will
discuss a critical test that directly targets the contrast process and
show how the latter entails a prediction that runs counter to
previously published data.

Single-Item Generalization

In the context of recognition memory, single-item generalization
is the assumption that the mnemonic status of items in single-item
judgments also apply to other testing contexts, such as multiple-item
tests. To give a simple example couched in SDT, consider the
respective latent memory strengths of an old and a new item,
denoted here by X, and X,,. For a given response criterion x, the
probabilities of a “yes” judgment to these items are assumed to
correspond to the probabilities that their respective latent strengths
are greater than the response criterion (i.e., X, > x or X, > k). As
illustrated in Figure 1, the relationship between these two
probabilities as a function of response criterion is known as the
single-item ROC function. In turn, in the context of a 2AFC trial, in
which one of the two items is to be chosen as the old one, the
probability of a correct response is assumed to correspond to the
probability that X, is greater than X;,.

D. M. Green (1960) showed that, under these assumptions, the
area under the single-item ROC function corresponds to the
probability of a correct response in a forced-choice trial. This
result, known as the area theorem, does not depend on the
parametric distributions illustrated in Figure 1. According to D. M.
Green (2020), the area theorem “is the critical contribution of the
theory” (p. 222). A lesser-known result by Iverson and Bamber
(1997) generalizes the area theorem to forced-choice judgments
involving more than two options (for a discussion, see Kellen
et al., 2021).

Putting aside its formal elegance or historical relevance, in the
context of recognition memory we find ample empirical evidence
supporting the validity of the area theorem and its generalization.
Consider the following examples illustrated in Figure 7:

e Jang et al. (2009) evaluated participants’ confidence judg-
ments in single-item and 2AFC trials. Fitting a single
Gaussian SDT model to both types of trials (thereby
enforcing the Area Theorem, albeit with auxiliary para-
metric assumptions) results in acceptable fits for 90% of
the 63 participants (only six individual data sets with p <
.05). One way to gauge this success is to consider how the
same Gaussian SDT model fares when predicting
accuracy in 2AFC judgments solely on the basis of
single-item yes/no judgments: As shown in the top panel
of Figure 7, there is considerable agreement between the
predicted and observed accuracy, with a rank-correlation
of 0.90, with no indication of systematic under- or over-
prediction (median difference = 0.006; Wilcoxon W =
1,235, p = .121).

e Kellen et al. (2012) reported a study in which thirty
participants engaged in a recognition test that intermixed
single-item and four-alternative ranking trials. Again,
fitting a single Gaussian SDT model to both types of trials
resulted in acceptable fits for 87% of the participants (only
four individual data sets with p < .05). These successful
fits can be qualified in terms of the convergence between
the predicted areas under the yes/no ROC (or 2AFC
accuracy) obtained when fitting single-item ratings and
four-alternative rankings separately. As shown in the
middle panel of Figure 7, the rank correlation between
these predictions is 0.89, with a small deviation in favor
of ratings (median difference = 0.03; Wilcoxon W = 374,
p = .003).

¢ Kellen et al. (2021, Experiment 2) intermixed single-item
yes/no recognition trials with multiple-alternative forced-
choice trials, with the number of alternatives ranging from
two to eight. The judgments obtained from these forced-
choice trials were used in a nonparametric reconstruction of
the yes/no ROC (for details, see Kellen et al., 2021). As
shown in the bottom panel of Figure 7, the data point for the
single-item hit and false rates falls right on top of the
reconstructed yes/no ROC function.

Ideally, any attempt to dispense with single-item generalization
needs to come to terms with these empirical successes, not recast
them as puzzles.



publishers.

and is not to be disseminated broadly.

ghted by the American Psychological Association or one of its allied

article is intended solely for the personal use of the individual user

This document is copyri

This

SINGLE-ITEM GENERALIZATION AND HIGH-THRESHOLDS 13

Figure 7
Lllustration of Different Results Consistent With Single-Item
Generalization

Jang et al. (2009)
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Note. Top panel: Estimates of the area under the yes/no ROC obtained with
confidence ratings and the observed 2AFC accuracy. Data from Jang et al.
(2009). Middle panel: Estimates of the area under the yes/no ROC obtained
with four-alternative ranking judgments and single-item ratings. Data from
Kellen et al. (2012). Bottom panel: Reconstructed yes/no ROC obtained from
ranking judgments, which were in turn derived from forced/choice
judgments (for details, see Kellen et al., 2021). Single yes/no ROC point
collected in the same study. Data from Kellen et al. (2021, Experiment 2).
ROC = receiver operating characteristic; 2AFC = two-alternative forced
choice. See the online article for the color version of this figure.

Two-High Threshold Contrast Model

The two-high threshold contrast (2HTC) model sketched out by
Malejka et al. (2022) postulates that the detection probabilities
emerge from a contrast between the different alternatives presented
at test (for technical details, see their Appendix A). More
specifically, it assumes that each test item has a latent-strength
value y’'. These latent-strength values are independent random
samples from different latent distributions associated with old and
new items. When K test items are encountered simultaneously, as in
the case of the K = 4 alternative ranking task illustrated in Figure 2,
the latent contrast-strength value of each item k, denoted by v, is
computed by subtracting the weighted average of all the other K — 1
items,

Wi =Wy — ZWjW}v 15)
ik
with w; > 0 and ) w; = 1. For simplicity, it can be assumed that
w; = 1/K — 1. It is worth noting that this type of contrast finds
precedent in the “eyewitness-identification” literature, where an
identical proposal is presumed to operate in lineup procedures
(see Wixted et al., 2018). There is also precedent in the “multi-
alternative decision making” literature, where identical or very similar
contrast processes have been proposed (e.g., see Palminteri et al., 2015,
p- 11; Roe et al., 2001, p. 374; Trueblood et al., 2014, p. 186).
According to the 2HTC model, the probability of an old item
being correctly detected as old corresponds to the probability that its
contrast-strength value ,, surpasses an upper threshold #h,,

D, = P(‘"o > hu)~ (16)

The probability of a new item being correctly detected as new
corresponds to the probability of y,, falling below a lower threshold A,

D, =P(y, < h). a7)

Test items for which /) <y < h,, are said to be in an uncertainty state.
Notably, it is assumed that both thresholds are “high,” in the sense
that only old items can surpass &, and only new items can fall below
hy. In other words, P(y, > h,) = P(y, < hy) = 0.

Since a study-strength manipulation is assumed to affect the latent
strength values of old items, their expected value should be larger for
strong items than for weak items. This effect is expected to affect
the detection of both old and new items, such that DY < D} and
DY < D;, which in turn implies the empirically corroborated
prediction that ¢§ < ¢§ (see Figure 3).

For a proper assessment of the relationship between the
familiarity-contrast process and single-item generalization, it
is crucial to understand how the model applies to single-item
judgments. This is easily achieved by appealing to existing
precedent in casting the 2HT model in terms of latent strengths
(for a recent example, see Malejka & Broder, 2019). If only one
item is encountered per test trial, it follows that

D,o = P(W,o 2 hu)’

) / (18)
Dn=P(Wn Shl)~

The similarities between this latent-variable and the continuous
SDT models found in the literature at large are obvious (see Kellen
etal., 2021; Malejka & Broder, 2019; Meyer-Grant & Klauer, 2021;
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Rouder & Morey, 2009). An important distinction, however, is that
the SDT models provide researchers with the means to identify a
common latent scale to the point that one can pin down the relative
distance between latent distributions, as in the case of the SDT index
d’ (see, e.g., Macmillan & Creelman, 2005). But this scaling is only
possible when allowing the latent distributions to cross the imposed
thresholds with nonzero probability.'* But by definition, these
crossovers are not allowed in the case of the 2HTC model, as both of
its /; and h, thresholds are stipulated to be “high.”

The ambiguity surrounding the scaling of the latent variables
under high-threshold assumptions introduces all kinds of strange
predictions when moving from a single item to two items, as in the
classic case of a 2AFC task considered by the area theorem. To
see this, consider the case where ', U(0,1) and ', U(=4, — 1),
with by = =3.5 and h, = 0.75. For reference, “~” stands for
“distributed as” and U(min, max) denotes a uniform distribution
with a given lower (min) and upper bound (max). Based on these
distributions and high thresholds, it follows that

+ Single item: D'y = .25 and D', = .17,
+ 2AFC: D, =1 and D, = .33.

In this specific example, we see a modest performance in single-item
judgments, with a predicted area under the ROC of .69. For
reference, the area entailed by chance performance is .50. But when
presented with two items at a time (one old and one new),
performance skyrockets to perfect accuracy by virtue of D, = 1. This
discrepancy is a gross violation of the area theorem, according to
which both values, the area under the single-item ROC and the
2AFC accuracy, should coincide.'”

Alternatively, let ', U(6, 10) and ', U(0,2), with h; = 0.5 and
hy, =8,

+ Single item: D'y = .50 and D', = .25,
* 2AFC: D, = .25and D, = 1.

Here, we see that presenting a new item alongside an old one halves
the amount of times that the latter are expected to be detected, while
also rendering the correct detection of new items a virtual certainty.
Again, these predictions violate the area theorem (predicted area is
.81, predicted accuracy is 1).'°

In reaction, one could object to these examples by arguing that the
latent variables (i.e., ', and y',) that govern recognition in these
situations are assumed to be different across tasks. Taking this one step
further, one might also be inclined to argue that by stipulating task-
invariant thresholds, our approach constitutes an illegitimate extension
of the 2HTC to the single-item case. But for all its ostensible
plausibility, this line of reasoning ultimately proves specious. Not only
would it mean that the 2HTC model has an undisclosed (and
unexplained) limit condition, but it does also not preclude potential
violations of the area theorem. In fact, violations are expected under
most circumstances, as the area under the single-item ROC function
according to the 2HTC model can be shown to equal (1 + D', +
D', —D,D,)/2 and the probability for a correct response in the
2AFC task is given by (1 + D, + D, — D,D,,)/2. The theorem is thus
only satisfied when D', = D, and D', = D,,, as well as in the rather
implausible cases where the thresholds and/or distributions in both
tasks are somehow precisely coordinated such that changes between
D', and D, are exactly offset by changes between D', and D,,.

An objection against the notion that the distributions of ', and
', are invariant between single-item and multiple-item tests would
also fail to address the issues that arise when simply varying the
number of alternatives. Let ' ,U(1.5,2.5) and ', U(0, 1), with iy =
—1.5 and h, = 1.5. Under these parameter values, the expected
detection probabilities for 2AFC trials take on reasonable values but
the detection of new items drops to near zero as soon as a single
additional alternative is introduced,

e 2AFC: D, = .50 and D, = .50,
e 3AFC: D, = .50 and D, = .01.

Aside from the drastic drop in D,, these expected detection
probabilities imply accuracy rates of Pyapc = .875 and P3apc = .668
in 2AFC and 3AFC trials, respectively. These rates violate a
multiplicative inequality that is implied by the assumption that the
latent variables underlying decisions are independent (Sattath &
Tversky, 1976; see also Kellen et al., 2021),

Piarc = (Paarc)* (19)

However, .875° ~ 766, which is noticeably greater than .668. This
violation is particularly interesting for two reasons: First, ROC
reconstructions, such as the one illustrated in the bottom panel
of Figure 7, are predicated on this and similar multiplicative
inequalities holding true (Kellen et al., 2021; Sattath & Tversky,
1976). Second, to the best of our knowledge, there is no empirical
evidence even suggesting that these inequalities are violated. The only
studies directly testing them, namely the first two experiments reported
by Kellen et al. (2021), show them passing with flying colors.

As before, one could attempt to brush aside this issue by
dismissing the assumption that the same “high” thresholds apply
across different numbers of alternatives. But such a maneuver would
only further undermine the prospects of the 2HTC model ever
linking different types of judgments—links that are established
under the rival SDT model. One would be essentially committing
high-threshold modeling to a strong operationist stance that has
long been dismissed as unworkable for any substantive research
program (see C. D. Green, 1992; Koch, 1992; Leahey, 1980).17

'4 The inability to compute indices such as SDT’s d’ with hit or false-alarm
rates of 0 or 1 is a reflection of this requirement.

'S As pointed out by a reviewer, the 2HTC model was developed with
ranking judgments in mind, not forced-choice judgments. That much
granted, we still believe that it is acceptable to assume that the processes
involved in assigning an item Rank 1 are the same as those involved in
selecting that item as old.

' These examples may appear to present fairly extreme cases with
nonoverlapping signal and noise distributions. However, when distributions are
overlapping, such as when we let y , U(0, 1) and y/ , U(l, ), where [ € (0, 1)
and u > 1, it follows that the smallest possible value that the contrast y,, =
W, — W, can take is [ — 1 < 0. But this implies that the high-threshold
assumption postulated for the detection probabilities in Equations 16 and 17
cannot be upheld under stable thresholds for the two tasks since positive
values of D, in the single-item task necessitate that #; > 0 and therefore
P(y, < hy) > 0.

17 Strong operationism is not necessarily problematic in the context of a
cognitive-psychometric research program, where the focus is on a
characterization that is tailored to a specific experimental paradigm
(e.g., Batchelder, 2010; Riefer et al., 2002). But one should not confuse the
application of threshold models in this context with their analysis as
substantive hypotheses, as in the case of Kellen and Klauer (2014) or
Province and Rouder (2012).
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All things considered, the cost of taking the 2HTC model
seriously appears to be too high. The model does succeed in
providing a high-threshold answer to Kellen and Klauer’s (2014)
and Kellen et al.’s (2021) critical-test results. But this is achieved
at the expense of more basal relationships between single-item and
multiple-item judgments.

Perhaps as a measure of last resort, one could argue that the
present analysis is predicated on an overly strong reading of the
2HTC model, which was only meant as an illustration of how
violations of selective influence could occur. We do not see how this
defensive position could be tenable. As discussed earlier, Malejka
et al. (2022) questioned Kellen and Klauer’s (2014) assumption of
selective influence in part based on theoretical considerations
materialized in the 2HTC model. But if not this theoretical account,
which one then? Without proposing one, the renunciation of selective
influence on account of some undisclosed process could be easily
mistaken for a whim. And Malejka et al. themselves appeal to the
2HTC’s predictions for different numbers of alternatives (e.g., see their
p. 10); so it is unclear to us on what grounds one could reasonably
accept these appeals while finding the present analysis to be beyond
the pale. Finally, we note that the cases provided here are not
unflattering exceptions but representative examples of the predictions
obtained when exploring the 2HTC model (e.g., see Footnote 16).

A New Critical Test

Fortunately, it is possible to evaluate a contrast account while
leaving the technical issues found in the 2HTC model aside. At the
heart of this account is a mutual dependency among the multiple test

Figure 8

items. That is, experimental manipulations affecting the recognition
of old items are bound to affect the recognition of new items and
vice versa.

The predicted increase in D,, as a result of the strengthening of old
items is therefore only one side of the coin. On the other side is the
predicted influence of new-item manipulations on D,. Equation 15
can be used to illustrate this: Manipulating the y’ values associated
to new items will affect the y values for old items and therefore D,,.
For instance, increasing ', values will result in lower D, values.

Meyer-Grant and Klauer (2021) reported a study that speaks
directly to this mutual dependency and the effect of manipulating
new items on old-item detection D,. Their study involved a
simultaneous detection and identification paradigm (see, e.g.,
Macmillan & Creelman, 2005) in which participants, after studying
a list of faces, encountered test trials comprised of pairs of faces.
In one half of the trials, both faces were new. In the other half, one
of the faces was old. Upon encountering each face pair at test,
participants were first requested to make a detection judgment,
indicating whether they believed that one of the faces was old. A
“detection hit” was said to occur whenever a participant correctly
indicated that an old—new pair included an old face. This detection
judgment was followed by an identification judgment that pinpointed
the face found to be old. Figure 8 sketches out this experimental
design.

A crucial element of Meyer-Grant and Klauer’s (2021)
experiment was the manipulation of new-item similarity: In some
of the test trials, the new faces encountered were similar to studied
but untested faces (similar new items), whereas in the rest of the
trials the new faces were not similar to any of the studied ones in any

Hllustration of the Experimental Design Used by Meyer-Grant and Klauer (2021)

Study Phase

Test Phase: Old vs. Regular New Item

Is one of these faces old? (detection)
Which one is more likely to be old? {identification)

Test Phase: Old vs. Similar New Item

Is one of these faces old? (detection)
Which one is more likely to be old? (identification)

Note. This illustration does not depict all possible test trials (i.e., “Regular New vs. Similar New Item” and
“Regular New vs. Regular New Item” were omitted). Furthermore, it is important to point out that participants
first had to complete the detection task (in form of a four-level confidence rating ranging from “sure that no old
face is present” to “sure that an old face is present”) and only afterward had to complete the identification task
(i.e., they were asked to select one of the two faces as being more likely old).
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systematic way (regular new items). The goal of this manipulation
was to implement a critical test for the 2HT model. Meyer-Grant
and Klauer showed that the 2HT model must predict that detection
hit-rates (Pyp;) are smaller for pairs including a similar new face
compared to pairs including a new face that bore no such similarity
(Phit, similar new < Phit, regular news fOr a detailed proof, see their
Proposition 10). This prediction turns out to be grossly incorrect—
detection hit-rates turn out to be greater when the pair includes a
new face that is similar to a studied one (see Figure 9, bottom panel).
In contrast, this result is easily accommodated by a Gaussian SDT
model presuming single-item generalization. All that it takes is
assuming that the latent-strength distribution associated with similar
new items falls in between the distributions for regular new items
and old items (see both panels of Figure 9; for a similar
characterization, see Starns et al., 2007).

Introducing a contrast process to either the 2HT or SDT model
brings no benefit whatsoever. In fact, it undermines both models.
For the 2HT model, it exacerbates its incorrect prediction. For the
SDT model, it forces the model to shift from a correct prediction to
an incorrect one (see Figure 9, bottom panel). Formal proofs of the
2HT and SDT predictions are provided in Appendix B and in
Meyer-Grant and Klauer (2022), respectively.

In response, one could argue that the simultaneous detection and
identification paradigm utilized by Meyer-Grant and Klauer (2021)
may elicit cognitive processes that differ from those involved in the
ranking tasks specifically targeted by Malejka et al. (2022). But
given that in Meyer-Grant and Klauer’s experiment, two test items
were always presented simultaneously, this would stand in direct
contradiction to Malejka et al.’s own reasoning (see the earlier
quote) as to why ranking judgments supposedly involve a contrast
process; namely because a ranking task requires the assessment of
multiple items per trial, as opposed to tasks requiring the assessment
of only a single item. Of course, one could try to dismiss the
contradiction by simply declaring that the contrast process exclusively
operates on ranking judgments, and that it does not extend to
simultaneous detection and identification. The reason for this
exception would be a theoretical puzzle for someone to figure out in
the future. SDT modelers presuming single-item generalization, on
the other hand, will find themselves in very different circumstances,
as they are able to apply a single, consistent account, without having
to quarantine every possible experimental-task variant away from
each other, nor having to issue any kind of promissory notes.

Furthermore, this caveat does also not apply to similar results of a
recently conducted experiment implementing a ranking task that
varied the number of alternatives (i.e., K € {3, 4, 5}; Meyer-Grant &
Jakob, in press). It can be shown that the contrast process outlined by
Malejka et al. (2022) should lead to a decrease in D, when K
increases under fairly general conditions. According to this process,
D, is determined by comparing a new item’s latent-strength value
with the weighted average of the remaining K — 1 values (see
Equation 15). Since it only includes a single value coming from the
old-item distribution, this average will tend to decrease with an
increase in K. This results in a less pronounced difference compared
to the single new-item value and, consequently, a decrease in D,,.
Contrary to this prediction, however, Meyer-Grant and Jakob (in
press) observed data that call for an increase of D, with K. What is
more, these results are once again to be expected if the data had been
generated by an SDT model.

Figure 9
Lllustration of the SDT Model and Its Predictions for the Data From
Meyer-Grant and Klauer (2021)

Estimated Memory-Stregth Distributions
(Meyer-Grant & Klauer, 2021)
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Note. Top panel: Latent-strength distributions estimated by Meyer-Grant
and Klauer (2021). The top density plot illustrates the latent-strength
distributions for old, regular new, and similar new items. The bottom density
plot illustrates the distributions of the maximum latent strength when pairing
an old item with a regular new item or a similar new item. Bottom panel:
Observed detection hit rates for pairing of an old item with a regular new item
or a similar new item. These rates are accompanied by their respective 95%
bootstrap confidence intervals. The SDT model predictions obtained from the
latent-strength distributions illustrated above are given by the solid black
line. The range of predictions allowed by the 2HT and 2HTC models is given
by the shaded area. SDT = signal detection theory; 2HT = two high-
threshold; 2HTC = two high-threshold contrast. See the online article for the
color version of this figure.
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General Discussion

As the saying goes, there is no free lunch. The same can be said of
models and theories; their predictions must be paid upfront in the
form of auxiliary assumptions. But whenever possible, researchers
should attempt to scrutinize the latter. The work of Malejka et al.
(2022) is an attempt to do so. In it, they correctly identified that the
dismissal of the 2HT model reported by Kellen and Klauer (2014)
depended on selective influence being satisfied. In hindsight, Kellen
and Klauer should have done a better job laying out the rationale for
this assumption. But as pointed out earlier, Kellen and Klauer’s
experiments were designed with the plausibility of this assumption
in mind. Regardless, selective influence could be false for theoretical
reasons, such as the operation of a contrast process. The problem
with Malejka et al.’s conclusions is that what they took to be
evidence against selective influence turns out to be expected in data
generated from SDT. Rather than reclaiming the viability of the 2HT
model, their results could very well be reiterating the alignment of
people’s judgments with SDT. Their observation of negative D,
estimates in one of their studies is consistent with this possibility. To
make matters worse, the theoretical motivation offered by their
contrast account yields implausible predictions, including a critical-
test prediction that is empirically rejected (for similar results, see
Meyer-Grant & Jakob, in press). As it stands, we see no empirical or
theoretical grounds to renounce Kellen and Klauer’s (2014)
dismissal of the 2HT model.

However, the present lack of evidence against selective influence
and single-item generalization does not mean that there are no good
reasons to doubt them elsewhere. For instance, it seems plausible
that single-item judgments do not generalize well to circumstances
where multiple similar items (i.e., items that are similar to each
other) are presented simultaneously, as in the case of eyewitness-
identification lineups (see Wixted et al., 2018). 18 Indeed, the finding
that performance in different kinds of lineups is superior to
performance in single-item “showups” speaks directly against the
assumption (e.g., Kellen & McAdoo, 2022; Wixted et al., 2018).
That being said, these circumstances are markedly different from the
ones considered in the present work. Therefore, such findings do not
necessarily speak against single-item generalization at large. Rather,
they contribute toward a better delineation of its scope.

Preoccupations surrounding scope bring us to another important
issue, namely the importance of distinguishing between cases in
which a prediction fails from those in which no prediction can be
made (for a relevant discussion, see Kellen et al., 2023). Again,
consider the case of D. M. Green’s (1960) area theorem. The
theorem rests on the assumption that, when shown two items in a
forced-choice trial, participants will select the one that maximizes a
given latent-strength variable (i.e., select the most familiar item). In
other words, it is presumed that both items are in fact evaluated and
compared. However, it is easy to think of circumstances where this
is not the case; for example, when making the inspection of
individual items costly. Any claim that the area theorem is violated
under such circumstances is logically invalid given that one of its
key premises fails to hold. For example, Starns et al. (2017) reported
a study showing that participants often failed to make a comparison
in 2AFC trials (ca. 20%-33%), basing their choices on the
evaluation of a single item. However, it is worth noting that items in
these 2AFC trials were kept wide apart on the screen, which could
have encouraged participants to adopt such a strategy. Researchers

should be aware of this risk when developing and implementing new
tests (for relevant discussions, see Chechile & Dunn, 2021; Szollosi
et al., 2023; Szollosi & Newell, 2020).

An interesting development coming out of the present work is the
discovery of signature predictions on P',?fﬁn that do not require the
deployment of study-strength or response-bias manipulations and their
respective selective-influence assumptions. Coincidentally, another
signature prediction operating under similar circumstances was recently
discovered by Chechile and Dunn (2021). They showed that the
distributions of conditional old-item ranking probabilities (c2 k. 3k,
Cak, -..) predicted by the 2HT model are monotonically increasing,
whereas a large family of SDT models predicts nonmonotonic
conditional ranking probabilities. McCormick and Semmler (2023)
tested these diverging predictions and reported results in favor of
nonmonotonic conditional ranking probabilities, as predicted by
SDT." As alternative testing methods in researchers’ toolboxes, the
application of Malejka et al.’s Versions A and B as methods for
evaluating high-threshold accounts strike us as quite promising.

It should also be noted that not all critical-test results reported so
far speak in favor of the SDT account and against the rival 2HT
model. For instance, Kellen and Klauer (2015) reported a critical test
of confidence-rating judgments for unrecognized items that turned
out to be in line with the 2HT model. In short, they found that the
conditional distribution of confidence-ratings for unrecognized
items was unaffected by study-repetition manipulations. This result
runs counter to the SDT prediction that for strong old items, errors
should be rarer but also less extreme (less confident). However, we
do not think that this discrepant result undermines the overall
support reviewed so far. Looking at the SDT model, the culprit is its
assumption that confidence ratings result from direct overlaying of
confidence criteria on the latent-strength scale. Specifically, this
assumption appears to be at fault whenever participants judge
studied items as “new.” It is possible that the problem lies in the way
participants engage with the recognition task, especially when
there are no ostensive task demands (e.g., Delay & Wixted, 2021;
Klauer & Kellen, 2010). If this turns out to be the case, then
researchers should be able to mitigate it by tinkering with their
experimental designs.*”

Given its track record and outlook, what is to be made of the 2HT
model? Well, that depends on what you are trying to do with it. A
common issue in debates between proponents of continuous and

'8 In this particular case, the new items are similar to the old item included
in that trial (in the context of a lineup, a guilty suspect paired with filler faces
matching the suspect description). Speaking of similarity in this sense should
be distinguished from a new item’s similarity with another old item not
presented at test (e.g., Meyer-Grant & Klauer, 2021). For a discussion on
these different senses, see Meyer-Grant and Klauer (2022; see also Heathcote
et al., 2009; Tulving, 1981).

19 These results are consistent with our own indirect assessments. Using
formal results described by Kellen et al. (2021), it is possible to derive
ranking probabilities from forced-choice judgments. These derivations are
part of the process through which the ROC found in the bottom panel of
Figure 7 is obtained. The conditional ranking probabilities obtained through
this process, using the data from Kellen et al., turn out to be nonmonotonic.

*n our view, this revision of the SDT model is less demanding than
Malejka et al.”s (2022) introduction of “response consistency.” The reason is
simply that the explanation given for the recalcitrant confidence judgments
does not imply that participants somehow acted against the instructions given
by the experimenter. Whereas in the case of “response consistency,” one
must buy into the idea that participants often refused to engage with the novel
test items presented to them in the ranking trials.
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discrete-state accounts is a confusion regarding the role played by
the latter. One thing is for the 2HT model to stand as a proxy for a
substantive hypothesis—in that case, we believe that there are
clear grounds for its dismissal. Another is for 2HT model to serve
as a pragmatic option in a cognitive-psychometric enterprise (cf.
Batchelder, 2010; Chechile, 2018; Riefer et al., 2002). Depending
on the application, a case could be made that specific failures are
negligible or perhaps even irrelevant (see Batchelder & Alexander,
2013; but see also Brady et al., 2023; Dubé et al., 2013; Pazzaglia
et al., 2013; Williams et al., 2023). Please note that SDT can also
be deployed as a proxy for a substantive hypothesis or as a
cognitive-psychometric tool.

In closing, it is important to dispel a negative reading of the
present 2HT/SDT debate. Given that the 2HT model has long been
seen by many as empirically inadequate (e.g., Egan, 1958), one
could perceive the present discussion as an example of how research
in psychology is intellectually bankrupt, with failed theories not
being given a proper funeral as long as enough people are interested
in them (see Meehl, 1978). The problem with such a reading is that it
ignores the fact that the core principles of the 2HT model have for
the longest time been dismissed on invalid grounds (see Broder &
Schiitz, 2009; Klauer & Kellen, 2010; Malmberg, 2002). Recent
efforts to address this problem have led to many new tests, such as
the ones discussed here, ultimately producing a stronger case that
rests on a much deeper understanding of how different memory
judgments relate to each other. From where we stand, it looks like
progress.
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Appendix A

Example of Ambiguous Evidence Against Selective Influence

Imagine a researcher who intends to utilize a 2HT model for
quantifying latent memory and guessing processes in an experiment
implementing a 2AFC paradigm that includes a three-level
“response-bias” and a two-level memory-strength manipulation.
The “response-bias” manipulation is presumed to selectively
influence the 2HT model’s guessing parameter g (i.e., the
probability of selecting the left item given that none of the items
was detected). The model only includes a single detection
parameter D: = D,(1 — D,) + (1 — D,)D, + D,D,, which
corresponds to the probability that at least one of the two items
will be correctly detected. In addition, D is allowed to differ
depending on the memory-strength manipulation (i.e., D* < D).
Furthermore, the researcher defines a “hit” as participants
correctly selecting the left item of a pair with the old item on
the left, whereas if participants incorrectly select the left item of
a pair with the old item on the right, this is considered a
“false alarm.”

Panel A of Figure Al depicts hypothetical data obtained from
such an experiment in ROC space. As can be seen, the ROC
data clearly exhibit nonlinearity. This, however, should lead the
researcher to question the empirical adequacy of the 2HT model, as
it is bound to predict strictly linear ROCs in the present case
(Figure A1, Panel B). Indeed, fitting a 2HT model to the data
reveals a clear inability to accurately predict the observed patterns
(GX(7) = 36.28, p < .001; with D¥ = .27, D* = .53, and ¢ =
(.92, .46, .08)T).

But after some contemplation, the researcher might realize that this
conclusion hinges on the tacit assumption that the alleged “response-
bias” manipulation selectively influences the 2HT model’s guessing
parameter. In other words, if one would allow for a violation of this
assumption, one could reconcile the 2HT account with the recalcitrant
data by arguing that the detection probability D is reduced when
participants are put in biased conditions. In this case, the ROC data can
be well described by multiplying parameter D with a reduction factor
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Lllustration of How Incorrect Model Assumptions Can Lead to Illusory Evidence Against Selective Influence
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Panel A depicts hypothetical data of an experiment implementing a two-alternative forced-choice paradigm that includes

a three-level “response-bias” and a two-level memory-strength manipulation. In each condition, there were 300 observations. For
half of those, the old item was presented on the left, and for the other half, it was presented on the right. The crossed lines
correspond to 95% bootstrap confidence intervals. Panel B depicts a fitted 2HT model that enforces selective influence of the
“response-bias” manipulation. Panel C depicts a fitted 2HT model that relaxes this assumption by including a reduction factor 0 <
a < | that decreases detection performance in biased conditions. Panel D depicts the true data-generating Gaussian SDT model.
SDT = signal detection theory; 2HT = two high-threshold. See the online article for the color version of this figure.

0 <a <1 (see Figure A1, Panel C): Fitting this modified 2HT model
suggests that it can successfully account for the present data (G*(6) =
470, p = .58; with D¥ = .39, D* = .73, § = (.91, .46, .08)T, and
& =.62).

Following the line of reasoning advocated by Malejka et al.
(2022), the researcher should therefore conclude that selective
influence is violated based on the above-outlined analyses. Put
differently, the data should apparently be taken to suggest that the
“response-bias” manipulation also affects detection accuracy. But as
it turns out, this conclusion must not necessarily be correct—in fact,
in the present example, it is not.

To see why this is the case, consider a reality in which the data
were generated by a Gaussian SDT model. Moreover, suppose

that selective influence holds true; that is, the “response-bias”
manipulation only affects the position of the SDT model’s
response criterion k. Such a model will predict curvilinear ROC
shapes that match the ROC data depicted in Figure A1l. By now, it
might come as a no surprise that the hypothetical data considered
thus far were indeed generated by that very model (see Figure A1,
Panel D; with d'% = 0.5, d°* = 1.0, and ¥ = (-1, 0, l)T). This
(artificial) reality entails that the researcher’s conclusion regarding
selective influence is factually incorrect, despite the supporting test
results obtained.

The problem encountered here, which is the same found in
the case of Malejka et al. (2022), is the treatment of the core
assumptions of the 2HT model (such as the high-threshold
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assumption) as axioms; that is, these assumptions are not scrutinized
and simply taken at face value. In the present example, however,
they happen to be violated. As a consequence, the researcher
erroneously clings to an untenable model (viz. the 2HT model) by
mistaking evidence against it for evidence against selective

influence. Of course, no modeler is exempt from this problem;
after all, models are always approximations of an unknown but in all
likelihood more complex reality. This is why the comparison with
known competitors is so important; it allows one to scrutinize the
relative merits of the unique accounts that they offer.

Appendix B

Proof of Familiarity-Contrast Predictions

First, we recall that—according to both the 2HT and the 2HTC
model—the probability of a detection hit (i.e., a correct “old item
present” response) in a situation where two test items (an old and a
new one) are simultaneously presented is given by

Pyip = Dy + (1 = Do)Dygq0,13 + (1 = Do) (1 = Dy)gr0,05 (BD
where gioo; is the guessing parameter (i.e., the conditional
probability of giving a “old item present” response) if both items
entered an uncertainty state and g0, is the guessing parameters for
the situation in which only one of the items (i.e., the old one) entered
an uncertainty state while the new item was correctly detected as
such (Meyer-Grant & Klauer, 2021). Furthermore, Meyer-Grant and
Klauer (2021, Proposition 10) established that g0} < go,1; must
hold in order to account for apparent patterns in their data.

As already discussed earlier, it follows from the contrast
mechanism at the heart of the 2HTC model that a manipulation
of new item similarity should not only affect D,,, but also D,. More
specifically, decreasing D, by making a new item systematically
similar to an old one (Meyer-Grant & Klauer, 2021) should also
decrease D, (Malejka et al., 2022, Appendix A).

However, it turns out that both a decrease in D,, and a decrease in
D,, can each only reduce the hit probability predicted by the 2HTC
model for the detection tasks conducted by Meyer-Grant and Klauer
(2021). To see why this is the case, we first take the partial derivative
of Equation B1 with respect to D, which yields

0 Py

oD, (1=Dy)(g0,1} — &{0,0})- (B2)

Clearly, the right-hand side of Equation B2 is always positive since
80,0y < &o,1} and D, < 1. Thus, Equation B1 is strictly increasing in
D,. Next we also take the partial derivative of Equation B1 with
respect to D, which yields

0 P

=1- B
oD, (B3)

Dng{o,l} -(1- Dn)g{O,O}'

In order for Equation B1 to be strictly increasing in D,, it must
consequently always hold that

1 = Dygro.1y — (1 = Dy)go,03) > 0. (B4)

After some algebraic manipulations where we take into account that
80,0} — &(o,1y < 0, we find that Equation B4 is equivalent to

8{0,0} — 1
8{0,0} — 8{0,1}

> D,. (B5)

But this is clearly always true since the left-hand side of Equation BS
must always be greater than one and D, < 1.
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