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Abstract
Attentional control refers to the ability to maintain and implement a goal and goal-relevant information when facing distrac-
tion. Previous research has failed to substantiate strong evidence for a psychometric construct of attentional control. This 
could result from two methodological shortcomings: (a) the neglect of individual differences in speed–accuracy trade-offs 
when only speed or accuracy is used as dependent variable, and (b) the difficulty of isolating attentional control from measure-
ment error. To overcome both issues, we combined hierarchical Bayesian Wiener diffusion modeling with structural equation 
modeling. We reanalyzed six datasets that included data from three to eight attentional-control tasks, and data from young 
and older adults. Overall, the results showed that measures of attentional control failed to correlate with each other and failed 
to load on a latent variable. Therefore, limiting the impact of differences in speed–accuracy trade-offs and of measurement 
error does not solve the difficulty of establishing attentional control as a psychometric construct. These findings strengthen 
the case against a psychometric construct of attentional control.

Keywords  Executive functions · Cognitive control · Individual differences · Hierarchical Bayesian Wiener diffusion 
model · Structural equation modeling

For more than 20 years, individual-differences researchers 
have put forward attentional control as a cognitive psycho-
metric construct (e.g., Engle et al., 1999; Miyake et al., 
2000). This construct—also referred to as attention control, 
cognitive control, executive control, executive attention, or 
executive functions—refers to a person’s ability to maintain 
and implement a goal and goal-relevant information in the 
face of distraction (von Bastian et al., 2020). This ability is 
meant to be general, contributing to success in many differ-
ent tests and situations demanding attentional control. As 
such, it should be measurable as a latent variable (i.e., fac-
tor) that represents the shared variance of multiple empiri-
cal measures of attentional control. The key prerequisite 
for establishing such a psychometric construct is finding 
substantial positive correlations between multiple meas-
ures of the construct. However, previous research has failed 
to substantiate strong evidence for the existence of such a 
psychometric construct (see, e.g., Karr et al., 2018; Rey-
Mermet et al., 2019; von Bastian et al., 2020). Proponents of 
the attentional-control construct have argued that this state 
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of affairs results from two methodological issues (see, e.g., 
Draheim et al., 2019): (a) the difficulty of isolating atten-
tional control from measurement error, and (b) the neglect 
of individual differences in speed–accuracy trade-offs. The 
purpose of the present study was to establish attentional 
control as a psychometric construct when both issues were 
overcome. To this end, we combined hierarchical Bayesian 
Wiener diffusion modeling with structural equation mod-
eling (SEM).

Why is it difficult to establish attentional 
control at the latent‑variable level?

At first glance, individual differences research was success-
ful in establishing attentional control as a latent variable 
(Chuderski, 2014; Engle et al., 1999; Friedman et al., 2006, 
2008; Friedman & Miyake, 2017; Kane et al., 2004; McCabe 
et al., 2010; Miyake et al., 2000; Redick et al., 2016; Sch-
weizer & Moosbrugger, 2004; Schweizer et al., 2005; Stahl 
et al., 2014; Unsworth et al., 2010, 2014, 2015, 2021; Uns-
worth & McMillan, 2014; Unsworth et al., 2009a, 2009b; 
Unsworth & Spillers, 2010; see Unsworth et al., 2024, for 
a recent meta-analysis). However, recent research has put 
this conclusion into question (see Rey-Mermet et al., 2019; 
Schubert & Rey-Mermet, 2019; von Bastian et al., 2020, 
for overviews). First, in some studies, attentional-control 
tasks did not correlate consistently with each other (e.g., De 
Simoni & von Bastian, 2018; Guye & von Bastian, 2017; 
Paap & Greenberg, 2013; von Bastian et al., 2016), and in 
some cases they failed to load on a factor (Klauer et al., 
2010; Krumm et al., 2009) or they had to be merged with 
other tasks to load on a factor (e.g., Brydges et al., 2012; 
Hedden & Yoon, 2006; Klauer et al., 2010; van der Sluis 
et al., 2007). Second, when a factor was established, it was 
often not coherent (e.g., Chuderski, 2015; Chuderski & 
Necka, 2012; Chuderski et al., 2012; Hull et al., 2008; Kane 
et al., 2016; Pettigrew & Martin, 2014; Shipstead et al., 
2014; Unsworth et al., 2009a, 2009b). That is, one task’s fac-
tor loading was substantially higher than the loadings of the 
remaining tasks. Thus, the factor represented predominant 
variance in one task, rather than common variance across 
multiple measures (see Rey-Mermet et  al., 2018, 2019, 
2020). Third, a reanalysis of previous datasets suggests a 
bias toward the publication of well-fitting but nonreplicable 
structural models of attentional control (Karr et al., 2018).

Proponents of the attentional-control construct have put 
forward two methodological reasons to explain the difficulty 
of establishing attentional control at the latent-variable level. 
The first reason is the contamination of attentional-control 
measures with measurement error (e.g., Hedge et al., 2018a, 
2018b). This problem is severe because these measures must 
isolate attentional control from other sources of variance in 

task performance (e.g., intelligence, mental speed). To do so, 
attentional-control measures typically rely on measuring the 
performance difference between two conditions, one with 
high and one with low demand on attentional control. For 
example, in a color Stroop task, participants have to name 
the color of color words while ignoring the word meaning. 
The usual approach for isolating attentional control is by 
computing the congruency effect—that is, by subtracting the 
mean RT on baseline trials (e.g., congruent trials, such as the 
word “red” printed in red for the color Stroop task) from the 
mean RT on trials with high demand on attentional control 
(i.e., incongruent trials, such as the word “green” printed in 
red). The problem with this approach is that there is much 
trial-by-trial variability in RTs, adding measurement noise to 
the mean RT that is unknown and unaccounted for (Rouder 
& Haaf, 2019; Rouder et al., 2023). Taking the difference of 
two—typically highly correlated—mean RTs removes much 
of the systematic individual-differences variance while com-
pounding the measurement noise. Therefore, RT differences 
between congruent and incongruent conditions often have 
poor reliability (e.g., Hedge et al., 2018a, 2018b).

This shows that there is the need for a better approach 
of isolating true attentional-control variance. One approach 
used to bypass computing a difference score in SEM has 
been to apply a bifactor modeling approach. In this approach, 
two factors are modeled: (a) a general or common factor on 
which all trials with both low and high demand on atten-
tional control are forced to load, and (b) a specific atten-
tional-control factor on which only trials with high demand 
on attentional control are forced to load. The general or com-
mon factor is thus meant to extract all individual differences 
in non-attentional-control processes, whereas the factor 
extracting individual differences in attentional-control pro-
cesses is the specific attentional-control factor. The results of 
several such modelling efforts showed, however, no coherent 
specific factor of attentional control, thus further emphasiz-
ing the difficulty of establishing attentional control at the 
latent-variable level even when difference scores were not 
used (e.g., Keye et al., 2009; Rey-Mermet et al., 2019, 2020).

A second reason for the difficulty of establishing atten-
tional control at the latent-variable level is that most atten-
tional-control measures rely exclusively on response times, 
so that individual differences in speed–accuracy trade-offs 
are disregarded (Draheim et al., 2019). Some participants 
might favor speed over accuracy, while others favor accu-
racy over speed. Hence, a measure that ignores individual 
differences in accuracy could miss a substantial part of the 
variance in attentional-control ability. One way to consider 
individual differences in speed–accuracy trade-offs is to 
integrate both dependent measures (i.e., RTs and accuracy) 
into a single score. Unfortunately, although these scores are 
relatively easy to compute, they are generally not able to 
unambiguously account for differences in speed–accuracy 
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trade-offs (e.g., Liesefeld & Janczyk, 2019; Vandierendonck, 
2017). It has even been put forward that these scores reflect 
speed–accuracy trade-offs, making them difficult to interpret 
(Hedge et al., 2018a, 2018b).

Another way to take into account speed–accuracy 
trade-offs is to push all attentional-control variance into 
accuracy—for example, by measuring attentional control 
under a time limit, which is calibrated according to each 
person’s performance. With such a deadline approach, low 
attentional-control ability would be measured as low accu-
racy, irrespective of whether speed is favored over accu-
racy or accuracy is favored over speed. Previous research 
has implemented this response deadline approach in differ-
ent ways (Draheim et al., 2021, 2024; Rey-Mermet et al., 
2019). For example, Draheim et al. (2021) used a response 
deadline, which changed after every 16 trials. That is, if the 
responses were correct on at least 15 trials, the response 
deadline decreased, thus providing less time to respond. In 
contrast, if fewer than 15 trials were correct, the response 
deadline increased, thus providing more time to respond. 
The change occurred based on performance of both incon-
gruent and congruent trials. In that study, attentional control 
was measured as the response deadline after the final block. 
In a follow-up study, Draheim et al. (2024) adjusted their 
response deadline approach in two ways. First, the response 
deadline changed after every incongruent trial, depending 
on the performance on this trial only. Second, attentional 
control was measured as the average response time of the 
final four trials in which the response deadline reversed (i.e., 
increased after having decreased or decreased after having 
increased). In both studies, the results suggest well-fitting 
models including coherent factors. However, in these stud-
ies, the dependent variable measures how quickly and accu-
rately a person can do the task regardless of congruency con-
dition. Therefore, it is not apparent why the measures should 
capture attentional control and how these measures remove 
variance of other processes, which are not attentional-control 
processes.

Rey-Mermet et al. (2019) overcame these issues by apply-
ing the response deadline on trials with only one relevant 
response feature (so-called neutral trials, such as, e.g., a 
row of red Xs for the color Stroop task). These trials were 
performed in the first block of the attentional-control task. 
In the subsequent blocks, incongruent and congruent trials 
were presented, and the response deadline was fixed to the 
calibrated duration. Attentional control was thus measured 
as the difference in error rates between incongruent and 
congruent trials. With such a response deadline approach, 
Rey-Mermet et al. (2019) reduced the individual differ-
ences in general ability and in the ability to carry out all the 
non-attentional-control processes. SEM, however, identi-
fied no models with good fit statistics and coherent factors. 
Therefore, when differences in speed–accuracy trade-offs 

are taken into account with a response deadline approach 
and when non-attentional-control processes are controlled 
for, it is still difficult to establish attentional control at the 
latent-variable level.

Nevertheless, the response deadline approach may affect 
how participants engage with the tasks. As a consequence, 
for all studies in which the tasks were implemented with a 
response deadline approach (Draheim et al., 2021, 2024; 
Rey-Mermet et al., 2019), this could raise doubts about the 
validity of these tasks as measures of attentional control.

How to overcome the contamination 
of attentional‑control measures 
with measurement error and the neglect 
of individual differences in speed–accuracy 
trade‑offs?

One approach to address both issues—that is, the contamina-
tion of attentional-control measures with measurement error 
and the neglect of individual differences in speed–accuracy 
trade-offs—is to employ a cognitive model, the diffusion 
model (e.g., Donkin & Brown, 2018; Ratcliff & McKoon, 
2008), as measurement model. This means that the param-
eters obtained from the diffusion model are used as meas-
ures of the latent variables of interest, such as the ability to 
control attention.

The diffusion model is a well-validated model of simple 
decisions that uses the full set of behavioral data to estimate 
three parameters of theoretical interest: (1) the drift rate, 
reflecting the rate at which information in favor of one or 
the other decision accumulates over time, (2) the caution 
parameter controlling the speed–accuracy trade-off, and (3) 
the non-decision time capturing primarily the speed of sen-
sory and motor processes. This model addresses the prob-
lem of speed–accuracy trade-off in two ways (see Hedge 
et al., 2018a, 2018b). First, it provides a framework in which 
error rates as well as the RTs of both correct and incor-
rect responses are accounted for. Second, it accounts for the 
effect of speed–accuracy trade-offs by separating the qual-
ity of information processing (i.e., the drift rate) from the 
person’s speed–accuracy setting (i.e., the caution parameter). 
The diffusion model also addresses the problem of meas-
urement error in two ways. First, the diffusion model is fit-
ted to the joint distribution of RT and accuracy, which thus 
considerably reduces the effect of individual RTs, and the 
associated noise, on the parameter estimates compared with 
mean RTs. Second, the diffusion-model parameters jointly 
determine the width of the RT distribution, thereby account-
ing for the trial-by-trial variability of each participant.

So far, only four studies have investigated attentional con-
trol by combining a diffusion modeling approach with SEM 
or at least a correlative approach. In three studies (Löffler 
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et al., 2024; Weigard et al., 2021; Yangüez et al., 2024), the 
standard diffusion model (Ratcliff, 1978) or a simplified ver-
sion of this model (Wagenmakers et al., 2007) was applied. 
In these studies, the drift rates were considered as measures 
of the efficiency of processing decision-relevant information. 
Attentional control was thus assessed in three different ways. 
First, attentional control was measured by subtracting drift 
rates between low and high attentional-control conditions 
(Löffler et al., 2024; Weigard et al., 2021; Yangüez et al., 
2024). Second, attentional control was measured using only 
the drift rates of the high attentional-control conditions (Löf-
fler et al., 2024; Yangüez et al., 2024). Third, attentional 
control was estimated as the remaining variance specific to 
attentional control after controlling for baseline processes 
(e.g., processing speed; Löffler et al., 2024; Yangüez et al., 
2024). SEM identified no model including a coherent factor 
of attentional control different from processing speed.1

In the last study (Hedge et al., 2022), the diffusion model 
for conflict tasks (Ulrich et al., 2015)—an extension of the 
standard diffusion model—was applied to different datasets 
including two to three Stroop-like tasks. In this model, in 
addition to the three typical parameters, a rescaled gamma 
function was included to capture conflict processing (in 
particular, the assumption that the stimulus features to be 
ignored have an early impact on the decision processes). 
This changes the interpretation of the drift-rate parameter 
which, in this case, reflects the processing efficiency once 
the conflict has been resolved (rather than the speed of infor-
mation uptake in the complete decision process, as typically 
interpreted in the standard diffusion model). Therefore, in 
this diffusion model, attentional control is no longer cap-
tured by the drift rate but by the parameters underlying the 
rescaled gamma function. Hedge et al. (2022) reported sig-
nificant zero-order correlations for the parameters reflecting 
non-conflict processing in their diffusion modeling approach 
(e.g., meta-analyzed correlation value = 0.32 for the drift rate 
and meta-analyzed correlation value = 0.54 for the bound-
ary separation). However, the correlations between param-
eters capturing attentional control (i.e., those underlying 
the gamma function) were weak (meta-analyzed correlation 
values = 0.04).

Together, these studies represent a first step by demon-
strating the feasibility of combining diffusion models with 
a correlative approach or SEM. However, these studies have 
some limitations. First, the study of Hedge et al. (2022) has 
two shortcomings. One is that the extension of the diffusion 
model by a conflict-resolution parameter increases the model 
complexity, and with it the risk of overfitting noise in the 
data (e.g., van Ravenzwaaij & Oberauer, 2009). The other is 
that the analyzed datasets included only two to three Stroop-
like tasks, and no SEM was computed. This limits the gen-
erality of these findings. Second, the studies of Löffler et al. 
(2024), Weigard et al. (2021), and Yangüez et al. (2024) 
have their limitation as well: Computing the drift rates sepa-
rately for trials with low and high demand on attentional 
control and then subtracting them compounds the measure-
ment error of the two drift-rate estimates in the same way as 
subtracting mean RTs does. This counteracts the reduction 
of measurement error that can be achieved by applying the 
diffusion model. Finally, all the studies have the limitation 
of applying a two-step procedure (Hedge et al., 2022; Löf-
fler et al., 2024; Weigard et al., 2021; Yangüez et al., 2024). 
That is, the diffusion model parameters were first estimated, 
and the correlations were subsequently calculated on these 
estimates. The two-step procedure ignores the measurement 
error in the parameter estimates, and thereby underestimates 
the uncertainty in the estimated correlations between them. 
Together, this highlights that these studies are not sufficient 
to conclude whether the impact of speed–accuracy trade-offs 
and/or the contamination of attentional-control measures 
by measurement error explain the difficulty of establishing 
attentional control at the latent-variable level.

The present study

The purpose of the present study was to determine whether 
a coherent factor of attentional control can be established 
when individual differences in speed–accuracy trade-offs 
and measurement error were accounted for. To this end, we 
estimated a Wiener diffusion model, as well as the correla-
tions among model parameters, in a hierarchical Bayesian 
framework (e.g., Donkin & Brown, 2018; Ratcliff & McK-
oon, 2008; Vandekerckhove et al., 2011). Then, based on 
these correlations, we computed SEM to determine whether 
a coherent factor of attentional control can be established. 
To perform these analyses, we reused six datasets from three 
studies (Kane et al., 2016; Rey-Mermet et al., 2018; White-
head et al., 2019).

In the present study, we opted for a hierarchical Bayesian 
Wiener diffusion model because this modeling approach has 
three advantages. The first advantage is that it combines the 
strength of the diffusion model with a hierarchical Bayes-
ian statistical framework to reduce measurement error. 

1  In their study, Yangüez et  al. (2024) concluded that when atten-
tional control was measured using only the drift rates of the high 
attentional-control conditions, their results provided evidence for a 
factor of attentional control. However, this conclusion is questionable 
for two reasons. First, Löffler et al. (2024) have shown that when only 
the drift rates of the high attentional-control conditions are used to 
estimate a factor of attentional control, there is no variance left that 
can be explained by attentional control. All the variances could be 
explained by processing speed. Second, Yangüez et al. (2024) focused 
on model comparison and convergence rates. No information was 
provided about whether the models with the best fitting and high con-
vergence rates included coherent factors.
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Specifically, it takes into account measurement error in three 
different ways. First, the Wiener diffusion model addresses 
the problem of measurement error—that is, the noise arising 
from trial-by-trial variability of RTs—because it explicitly 
models the shape of the trial-by-trial RT distribution. Sec-
ond, the hierarchical Bayesian framework (Vandekerckhove 
et al., 2011) substantially reduces the measurement error in 
the individual-level effects because the parameter estimates 
of each individual participant are informed by the data of all 
other participants (e.g., Rouder & Haaf, 2019). Third, we 
modeled the variance–covariance matrix of the individual-
level effects—the basis for the SEM analysis—as a param-
eter of the hierarchical model. This joint estimation approach 
decreased the measurement error in the variance–covariance 
matrix compared with a two-step procedure in which first 
the diffusion model parameters are estimated and the cor-
relations are then subsequently calculated from these esti-
mates (cf. Hedge et al., 2022; Löffler et al., 2024; Weigard 
et al., 2021; Yangüez et al., 2024). Furthermore, because we 
implemented our model in Stan (Carpenter et al., 2017), we 
could use a non-informative LKJ prior for the correlation 
matrix as well as independent weakly informative priors for 
the variances. The non-informative LKJ prior has two ben-
efits over common alternatives in Bayesian approaches, such 
as a (scaled) inverse-Wishart prior for the variance–covari-
ance matrix (e.g., JAGS; Plummer, 2003; Rouder & Haaf, 
2019; see Gelman & Hill, 2007): It is conceptually and com-
putationally simpler and it is less likely to have an effect on 
the estimation of the variance–covariance matrix (see, e.g., 
Klauer, 2010).

The second advantage of our hierarchical Bayesian Wie-
ner diffusion model is that it can be applied to the broad 
variety of tasks used in all the datasets we selected (Rey-
Mermet et al., 2018; Whitehead et al., 2019). This is, for 
example, not the case for the diffusion model for conflict 
tasks. This diffusion model was specifically developed to 
account for the flanker and Simon tasks (Ulrich et al., 2015) 
and then recently extended to Stroop tasks (Ambrosi et al., 
2019; Hedge et al., 2019, 2022), but it cannot be applied to 
all tasks we consider.

The third advantage of using the Wiener diffusion 
model, and not a more complicated diffusion model, such 
as the diffusion model for conflict tasks, is that choosing 
a simpler model variant strikes a good compromise in the 
statistical bias-variance trade-off (e.g., Yarkoni & West-
fall, 2017). Any statistical model needs to strike a balance 
between the ability to adequately describe the signal in the 
data and at the same time avoid overfitting the noise. Our 
model accounts for the main pattern in the data that are 
relevant for our research question (i.e., the impact of the 
speed–accuracy trade-off and measurement error). A more 
complex diffusion model may be able to account for some 
more subtle data patterns of some of the tasks (i.e., achieve 

lower bias), but is more likely to overfit (i.e., higher vari-
ance; White et al., 2018). This is in line with theoretical 
and empirical results showing that simpler diffusion mod-
els outperform complex diffusion models in terms of pre-
dictive ability and parameter stability (Boehm et al., 2018; 
Dutilh et al., 2019; van Ravenzwaaij & Oberauer, 2009).

To sum up, the present study goes beyond previous 
research by investigating attentional control with a dif-
fusion modeling approach (Hedge et al., 2022; Weigard 
et al., 2021) in two ways. First, in contrast to Hedge et al. 
(2022) who applied the diffusion model for conflict tasks, 
we applied a Wiener diffusion model to overcome the risk 
of overfitting noise in the data. Applying the Wiener dif-
fusion model has also the advantage that we can use our 
approach on a larger number of attentional-control tasks. 
Second, in contrast to previous research (Hedge et al., 
2022; Löffler et al., 2024; Weigard et al., 2021; Yangüez 
et  al., 2024) in which the diffusion model parameters 
were first estimated and then the correlations were com-
puted, we applied a joint estimation approach in which 
the correlations are modeled as a parameter of the hier-
archical model. This approach has the advantage that it 
decreased the measurement error in comparison to the 
two-step procedure used in previous research to estimate 
the correlations.

How did we combine the hierarchical Bayesian 
diffusion model with SEM?

Estimating the hierarchical Bayesian diffusion model pro-
duced a posterior distribution of the variance–covariance 
matrix of the diffusion-model parameters across tasks. Then, 
we applied SEM to the posterior distribution of the vari-
ance–covariance matrix. We did this once with the posterior 
means (as point estimates of the variances and covariances), 
and additionally multiple times with samples from the pos-
terior distribution to gauge what the uncertainty in the pos-
teriors implies for the uncertainty of SEM fits and SEM 
parameter estimates. Moreover, we used two approaches to 
isolate the attentional-control variance. Following the pre-
dominant practice in previous research, we used a difference 
coding approach to estimate parameter differences between 
the two conditions (i.e., the difference between trials with 
low and high demand on attentional control). To avoid the 
measurement error from the subtraction of drift rates, we 
directly modeled a difference parameter representing the 
mean difference between trials with low and high demand 
on attentional control. In addition, to overcome the problems 
associated with difference scores, we employed a condition 
coding approach, which starts from diffusion-model param-
eters in each condition and uses a bifactor SEM to extract 
attentional-control variance.
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What are we expecting?

We hypothesized that if the difficulty of establishing atten-
tional control as a psychometric construct results from 
the neglect of individual differences in speed–accuracy 
trade-offs and/or the large measurement error in atten-
tional-control measures, we would find a coherent factor 
of attentional control. The reason is that we employed a 
state-of-the-art computational approach for addressing 
these two issues: The Wiener diffusion model accounts for 
speed–accuracy trade-offs in a theoretically principled way, 
and our hierarchical Bayesian implementation estimated 
the variance–covariance matrix—the basis for the SEM—
as a set of latent model parameters separated from trial-
by-trial noise, thereby minimizing the influence of meas-
urement error. In contrast, if the difficulty of establishing 
attentional control as a psychometric construct reflects the 
true nature of attentional control—namely, that a general 
ability to control attention does not exist—then we would 
expect to find no coherent factor of attentional control.

We expected to establish a coherent factor of attentional 
control on the drift-rate parameter. The reason is that, in the 
diffusion model we used, the drift rate represents the rate at 
which information for the correct response is accumulated in 
a given trial (e.g., Ratcliff & McKoon, 2008). Thus, the drift 
rate captures the efficiency of processing decision-relevant 
information. In attentional-control tasks, the ability to con-
trol attention is assumed to play a primary role in how well 
individuals can extract information from the relevant aspect 
of the stimulus to select the correct response in the face 
of potent distractors, such as in an incongruent trial (e.g., 
Hübner et al., 2010; Ridderinkhof, 2002; Verguts & Note-
baert, 2009; Wiecki et al., 2013). Therefore, a higher ability 
to control attention should contribute to a higher drift rate 
in high-conflict conditions. This implies that relative to a 
condition with low demand on attentional control, the drift 
rate should be reduced in the condition with high demand 
on attentional control because the irrelevant and misleading 
information of this condition pushes the accumulator toward 
the wrong response. Moreover, an individual with better 
attentional-control ability should show a smaller reduction 
of drift rates between both conditions because of their better 
ability to prevent irrelevant and misleading information from 
affecting the drift rate.

If a coherent factor is established not on the drift rate but 
rather on the caution or non-decision-time parameters, this 
would not support attentional control as a psychometric con-
struct. The reason is that these parameters reflect aspects of 
performance that are theoretically unrelated to attention con-
trol ability—namely, as a person’s speed–accuracy trade-off 
preference—and the speed of sensory and motor processes, 
respectively.

Method

Data set selection

We did not aim for a comprehensive reanalysis of all pub-
lished studies with which we could investigate our research 
question. Rather, we chose a number of suitable datasets 
based on the following four inclusion criteria. First, each 
dataset included a minimum number of three conflict tasks, 
such as the Stroop task. We opted for these conflict tasks for 
four reasons. First, in most previous individual-differences 
research, conflict tasks were used to assess attentional con-
trol (see Rey-Mermet et al., 2019; von Bastian et al., 2020, 
for overviews of the tasks used in previous research). Sec-
ond, conflict tasks have been assumed to measure the core 
ability necessary for attentional control (Miyake & Fried-
man, 2012). Third, the conflict tasks are the tasks for which 
critics have emphasized the neglect of individual differences 
in speed–accuracy trade-offs and the difficulty of isolating 
attentional control from measurement error (Draheim et al., 
2019, 2021, 2024). Finally, nearly all previous research with 
the diffusion-modeling approach has applied it to conflict 
tasks (Hedge et al., 2022; Löffler et al., 2024; Weigard 
et al., 2021; Yangüez et al., 2024). We set three tasks as the 
minimum because that number is necessary to estimate a 
latent factor in structural equation modeling. Furthermore, 
each task should include incongruent and congruent trials. 
The reason is that both types of trials are required in order 
to model attentional control as the variance that is left in 
incongruent trials once baseline performance in congruent 
trials has been accounted for. Without taking this into con-
sideration, the measure would lack construct validity, thus 
making it unclear whether the measure assesses attentional 
control or other processes (Löffler et al., 2024).

The second inclusion criterion requires that attentional 
control was measured with both reaction times and error 
rates. This criterion is necessary to allow the application 
of the diffusion model. This leads, however, to the exclu-
sion of studies using a response deadline approach (Dra-
heim et al., 2021, 2024; Rey-Mermet et al., 2019). In those 
studies, the reaction-time distribution is censored, which 
can result in biased estimates for the diffusion model.

The third inclusion criterion concerns the availability 
of trial-level raw data with an appropriate documentation. 
This criterion is necessary because our approach relies on 
data at the trial level.

The last inclusion criterion concerns the diversity of the 
datasets regarding the sample sizes, the numbers of trials and 
the labs where the data were collected. Thus, we selected 
datasets with different sample sizes, different number of trials 
and coming from different labs in order to assess the general-
ity and robustness of the results obtained with our approach.
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Tasks

We reanalyzed eight tasks (i.e., the color Stroop, number 
Stroop, arrow flanker, letter flanker, Simon, global–local, 
positive compatibility, and negative compatibility tasks) 
from Rey-Mermet et al. (2018), three tasks (i.e., the color 
Stroop, spatial Stroop,2 and flanker tasks) from Whitehead 
et al. (2019), and the number Stroop, spatial Stroop, arrow 
flanker, and letter flanker tasks from Kane et al. (2016). 
These were the tasks for which the attentional-control meas-
ure was the difference between congruent and incongruent 
trials, so the same diffusion model could be applied to all 
tasks. The tasks are shortly described in Table 1. A complete 
description of the tasks (including material and procedure) 
can be found in Rey-Mermet et al. (2018), in Whitehead 
et al. (2019), and in Kane et al. (2016), respectively.

Datasets and data preparation

Two datasets from Rey‑Mermet et al. (2018)

For the reanalysis of Rey-Mermet et al.’s (2018) data, we 
considered the data from young and older adults as two dis-
tinct datasets (i.e., Dataset 1 and Dataset 2, respectively). 
Specifically, we used the data from 120 young adults and 
143 older adults—that is, the full sample from the original 
study after removing participants that did not meet their psy-
chiatric or demographic inclusion criteria or for which some 
error occurred during testing.

To prepare the data for a diffusion model analysis, we 
removed, on a by-task basis, the data from participants for 
which more than 2.5% of the trials were outside the response 
window of 2 s. This procedure removed a total of 4.6% of tri-
als. The reason for this is that responses outside this window 
were not recorded (i.e., the RT distribution was censored) and 
applying the diffusion model to an RT distribution where a 
non-negligible part of the distribution is censored can lead 
to biased estimates. The final sample size for each task is 
presented in Table 1. On a by-trial basis, we further excluded 
0.15% of trials where either the computer malfunctioned, par-
ticipants used an illegitimate response key, or responded too 
fast (i.e., faster than 200 ms). We also removed the remaining 
0.1% of trials with responses outside the 2-s response window.

Three datasets from Whitehead et al. (2019)

For the reanalysis of Whitehead et al.’s (2019) data, we used 
each of their three experiments as a separate dataset (i.e., 

Dataset 3 designates the data from Experiment 1, Dataset 4 
designates the data from Experiment 2, and Dataset 5 desig-
nates the data from Experiment 3). We used the same partic-
ipants as analyzed in the original study (i.e., 178 participants 
in Dataset 3, 195 participants in Dataset 4, and 210 partici-
pants in Dataset 5). Because Whitehead et al. (2019) did not 
employ a response window, we did not need to specifically 
prepare the data for diffusion modelling and used the same 
trial-based exclusion criteria as in the original study (i.e., 
excluded responses smaller than 0.2 s and larger than 3 s). 
This results in the exclusion of 1.0% of trials in Dataset 3, 
1.6% of trials in Dataset 4, and 1.4% of trials in Dataset 5.

One dataset from Kane et al. (2016)

For the reanalysis of Kane et al.’s (2016) data, we initially 
included the same 472 participants as analyzed in the 
original study. We prepared the data for a diffusion model 
analysis similar to the previous datasets. First, we applied 
a response window so that we excluded responses smaller 
than 200 ms but larger than 1.5 s for the arrow flanker task 
and 3 s for the other tasks. The upper limit of 1.5 s for the 
arrow flanker task and the upper limit of 3 s for the letter 
flanker task were given because responses outside this win-
dow were not recorded (see Kane et al., 2016). For the two 
other tasks (i.e., Stroop tasks), we used the same upper limit 
as the one we used for the datasets from Whitehead et al. 
(2019). Removing responses smaller than 200 ms resulted in 
the exclusion of 0.5% trials or less for each task. Removing 
responses larger than the upper limit (i.e., 1.5 s for the arrow 
flanker task and 3 s for the other tasks) resulted in the exclu-
sion of 0.8% trials in the arrow flanker task and less than 
0.5% in all other tasks. Similar to the data of Rey-Mermet 
et al. (2018), we then removed, on a by-task basis, the data 
from participants for which more than 2.5% of the trials were 
outside the response window. This resulted in the exclu-
sion of 7.4% of trials. Finally, because some participants 
had accuracy that was both below chance and much lower 
than the average accuracy in some conditions, we excluded 
a further 20 participant-by-task combinations. This was done 
because we did not want individual participants to have an 
outsized influence on the results. After exclusion, we were 
left with data from 443 participants that provided responses 
in at least two tasks. The number of participants per task is 
given in Table 1.

Data analysis

Data were analyzed using R (R Core Team, 2022). We used 
the following packages: brms (Bürkner, 2017), lavaan (Ros-
seel, 2012), psych (Revelle, 2021), semTools (Jorgensen 
et al., 2021), DescTools (Signorell et al., 2020), and ggplot2 
(Wickham et al., 2021).

2  In Whitehead et al. (2019), this task is designated as a Simon task. 
To distinguish this task from the Simon task used by Rey-Mermet 
et  al. (2018) and to be consistent with most previous research (e.g., 
Hedge et  al., 2022; Kane et  al., 2016), we referred to this task as a 
spatial Stroop task.
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Table 1   Tasks analyzed in the present study

Task Decision Sample size

Tasks from Rey-Mermet et al. (2018)a

Color Stroop Color words (i.e., the words “red” “blue,” “green,” or “yellow”) or row of four Xs were 
printed either in red, blue, green, or yellow. Color words were either incongruent to 
the meaning of the words (e.g., the word “green” printed in green), congruent (e.g., 
the word “red” printed in red), or neutral (e.g., XXXX printed in green). Participants 
were instructed to indicate the color of color words while ignoring the meaning of 
the words

Dataset 1 (Young adults): 116
Dataset 2 (Older adults): 125

Number Stroop One to four digits or symbols were displayed centrally. The number of digits could be 
incongruent to the numerical value (e.g., 111), congruent (e.g., 333), or neutral (e.g., 
$$$). Participants were instructed to count the number of characters while ignoring 
the numerical value of digit characters

Dataset 1 (Young adults): 120
Dataset 2 (Older adults): 128

Arrow flanker Five arrows were presented centrally. The direction of the central arrow was either 
incongruent to the four flanking arrows (e.g., ← ← → ← ←), congruent (e.g., → → → 
→ →), or neutral (e.g., –– → ––). Participants were asked to respond to the direction of 
the central arrow (left or right) while ignoring the four flanking characters

Dataset 1 (Young adults): 117
Dataset 2 (Older adults): 138

Letter flanker Five letters were presented centrally. Participants were asked to decide whether the 
central letter was a vowel (E or U) or consonant (S or H) while ignoring the four 
flanking characters. The response to the central letter was either incongruent to the 
response of the flanking letters (e.g., SSESS), congruent (UUEUU or EEEEE), or 
neutral (e.g., ##E##)

Dataset 1 (Young adults): 118
Dataset 2 (Older adults): 140

Simon A square or a circle was presented either on the left or right side of the screen or 
centrally. Participants were asked to indicate the shape (square vs. circle) by using 
manual responses (a left or a right response key) while ignoring the location of the 
shape on the screen. The location of the shape on the screen was either incongru-
ent to the location of the response key (e.g., a square presented on the right side but 
requiring pressing the left key), congruent (e.g., a square presented on the left side 
and requiring pressing the left key), or neutral (e.g., a square presented centrally but 
requiring pressing the left key)

Dataset 1 (Young adults): 119
Dataset 2 (Older adults): 140

Global-localb Element letters forming a large letter (e.g., a large Y built from small Vs) were presented. 
In the global version of the task, participants were asked to identify the global letter (i.e., 
the large Y) while suppressing the response induced by the local elements. In the local 
version of the task, participants were asked to identify the local elements (i.e., the small 
Vs) while suppressing the response induced by the global letter. The local elements were 
either incongruent to the global letter (e.g., a large Y built from small Vs), congruent 
(e.g., a large V built from small Vs), or neutral (e.g., a large Z built from small Vs)

Dataset 1 (Young adults): 118
Dataset 2 (Older adults): 131

Positive compatibility A prime (e.g., “<< ,” “ >>,” or “ == ”) was first presented. To prevent conscious 
identification, the prime was followed by a mask (which consisted of the overlap of 
all prime exemplars). A target arrow (i.e., “<< ” or “ >>”) was then displayed either 
above or below the mask. Participants were asked to indicate the direction of the 
target arrow (i.e., left or right) while ignoring the information induced by the prime. 
The prime and the arrow were either incongruent (e.g., the prime “<<” followed by 
the target “>>”), congruent (e.g., the prime “<<” followed by the target “<<”), or 
neutral (e.g., the prime “==” followed by the target “>>”)

Dataset 1 (Young adults): 114
Dataset 2 (Older adults): 130

Negative compatibility This task was similar to the positive compatibility task, except that a delay of 150 ms 
was introduced between the prime and target. During the delay, the prime is assumed 
to induce a response, which is then automatically suppressed. However, this response 
needs to be reactivated when the target and the prime require the same response (i.e., 
in congruent trials). The negative compatibility effect reflects the time cost of reacti-
vating the primed response after it has been suppressed. Congruent trials are thus the 
trials assumed to induce attentional control, while incongruent trials are baseline trials

Dataset 1 (Young adults): 118
Dataset 2 (Older adults): 132

Tasks from Whitehead et al. (2019)c

Color Stroop This task was similar to the color Stroop task used by Rey-Mermet et al. (2018) Dataset 3 (Experiment 1): 178
Dataset 4 (Experiment 2): 195
Dataset 5 (Experiment 3): 210
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Table 1   (continued)

Task Decision Sample size

Spatial Stroop Directional words (i.e., the words “right,” “left,” “up,” or “down”) were printed either 
in the right, left, top, and bottom part of the screen. Directional words were either 
incongruent to the location of the words (e.g., the word “right” presented in the top 
part) or congruent (e.g., the word “up” presented in the top part). Participants were 
instructed to respond to the direction word while ignoring its location

Dataset 3 (Experiment 1): 178
Dataset 4 (Experiment 2): 195
Dataset 5 (Experiment 3): 210

Flanker Five letters (i.e., D, F, J, and K) were presented centrally. Participants were asked to 
identify the central letter while ignoring the four flanking letters. The response to 
the central letter was either incongruent to the response of the flanking letters (e.g., 
JJDJJ) or congruent (DDDDD)

Dataset 3 (Experiment 1): 178
Dataset 4 (Experiment 2): 195
Dataset 5 (Experiment 3): 210

Tasks from Kane et al. (2016)d

Number
Stroop

This task was similar to the color Stroop task used by Rey-Mermet et al. (2018), except 
for the following two modifications. First, there were no neutral trials. Second, 80% 
of the trials were congruent whereas 20% were incongruent

Dataset 6: 437

Spatial Stroop Directional words (i.e., the words “right,” “left,” “above,” or “below”) and asterisks 
were printed either in the right, left, top, and bottom part of the screen. In addition, 
words were presented either left, right, above, or below the asterisks. Participants 
were instructed to respond to the relative position of the word to the asterisk while 
ignoring the identity of the word and its absolute location. Directional words were 
either incongruent to both the absolute and relative location of the words (e.g., the 
word “left” presented to the right of the asterisk and both presented to the right of 
the fixation) or congruent to both the absolute and relative location of the words and 
(e.g., the word “left” presented to the left of the asterisk and both presented to the 
left of the fixation). There were also trials in which the words were congruent for 
the absolute location but incongruent for the relative position (e.g., the word “left” 
presented to the right of the asterisk and both presented to the left of fixation)

Dataset 6: 412

Arrow flanker This task was similar to the arrow flanker task used by Rey-Mermet et al. (2018), 
except for the following modifications. First, the neutral trials consisted of a target 
arrow amid dots. Second, there were trials in which the target was presented in the 
middle of upward-pointing arrows

Dataset 6: 396

Letter flanker Seven letters or characters were presented centrally. Participants were asked to respond 
to the direction of the middle F (normal vs. backward). The response to the central 
letter was either incongruent to the response of the flanking letters or congruent (e.g., 
FFFFFFF). In addition, there were trials in which the F was presented in the middle 
of dots (neutral trials) and trials in which the target was presented in the middle or 
right- and left-facing Es and tilted Ts

Dataset 6: 395

In all tasks used by Rey-Mermet et al. (2018), there were two types of baseline trials. In nearly all tasks (see the negative-compatibility task for 
an exception), the baseline trials were (1) the congruent trials in which there was no conflict between stimulus or response features, and (2) the 
neutral trials in which there was only one response-relevant feature. Only in the negative compatibility task, the two types of baseline trials are 
incongruent and neutral trials. In all tasks used by Whitehead et al. (2019), there was only one type of baseline trials, that is, the congruent trials. 
In all tasks used by Kane et al. (2016), congruent and incongruent trials were presented. We used the congruent trials as baseline trials. Depend-
ing on the task, there were, however, additional types of trials. Critically, all trials were used to estimate the correlation matrices in the hierarchi-
cal Bayesian Wiener diffusion modeling approach for the condition coding
a Rey-Mermet et al. (2018) tested young and older adults, whose data are referred to as Dataset 1 and Dataset 2 in the present study. In addition to 
the tasks presented in the table, all participants performed an antisaccade task, a stop-signal task, and a task assessing n-2 repetition cost. These 
tasks were not analyzed in the present study because no diffusion modeling can be applied to them
b Similar to Rey-Mermet et al. (2018), we only analyzed the local version of this task because substantial difference scores are predominantly 
observed in this version of the task
c The study from Whitehead et al. (2019) consists of three experiments, whose data are referred to as Dataset 3, Dataset 4, and Dataset 5 in the 
present study. In Dataset 3, the experiment was so designed that congruent and incongruent trials were presented equally often. These trials were 
presented in an alternating-presentation design splitting a four-choice, four-response task into two groups (i.e., two choice, two response). Thus, 
the trials of both groups are presented in alternating order, preventing any feature repetition. In Dataset 4, the design of the experiment was simi-
lar to the first experiment, except that congruent trials were presented in 25% of the trials, whereas incongruent trials were presented in 75% of 
the trials. In Dataset 5, the experiment was so designed that congruent and incongruent trials were presented equally often, and the trials were 
presented in a typical four-alternative forced choice button-press task (i.e., without an alternating-presentation design)
d In addition to the tasks presented in the table, participants in Kane et al. (2016) performed tasks used to measure working memory and thought 
probes. Critically, they also performed further attentional-control tasks (i.e., two antisaccade tasks, a go/no-go task, a cued search task, and a masked 
flanker task). The antisaccade, go/no-go, and cued search tasks could not be analyzed because they did not include a congruent and an incongruent 
condition, or comparable conditions with low vs. high conflict. In the masked flanker task, there was a very short response-deadline (1 s), which 
both censored the data to an unacceptably large degree and created a very high error rate. Thus, no diffusion modeling could be applied
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Diffusion modeling

We used a hierarchical Bayesian variant of the Wiener diffu-
sion model (Vandekerckhove et al., 2011) with an accuracy 
coding. This model accounts for the entire data (i.e., RT dis-
tributions of correct and error trials) with three latent param-
eters: (a) the drift rate, a measure of the efficiency of infor-
mation processing in the decision process, (b) the boundary 
separation, a measure of response caution that controls the 
speed–accuracy trade-off, and (c) the non-decision time. The 
model was applied separately to all individual choices and 
associated RTs across tasks for each dataset (i.e., Datasets 
1 to 6). Furthermore, we applied two different parametriza-
tions—a difference-coding parametrization and a condition-
coding parametrization—to each dataset.

In the difference-coding parametrization, we only consid-
ered the congruent and incongruent trials. For the drift rate, 
we estimated two fixed-effect parameters per task: (a) the 
mean in the congruent trials and (b) a difference parameter 
representing the mean difference between congruent and 
incongruent trials. This difference parameter was our main 
measure of attentional control. In the condition-coding para-
metrization, we considered all trial types (i.e., incongruent, 
congruent, and neutral trials in Datasets 1 and 2, incongru-
ent and congruent trials in Datasets 3 to 5, and incongruent, 
congruent, neutral and other trials in Dataset 6). For the drift 
rate, we estimated a fixed-effect parameter per trial type. 
For example, a mean drift rate was computed separately for 
incongruent, congruent, and neutral trials in Datasets 1 and 
2, and for incongruent and congruent trials in Datasets 3 to 
5. For both parametrizations, we estimated one fixed-effect 
parameter per task for the boundary separation and for the 
non-decision time, respectively.

In addition to the fixed-effect (or group-level) param-
eters, we estimated by-participant random-effects (i.e., the 

variance of parameters over participants), the correlations 
among all random-effects for each fixed-effect param-
eter, and individual-level (displacement) parameters. This 
resulted in quite large models. An overview of the num-
bers of observations and estimated parameters is presented 
in Table 2. The numbers of observations used for estima-
tion across datasets and parameterizations varied between 
approximately 150,000 and 445′000. The total number of 
estimated parameters varied between approximately 5,000 
and 14,500 and the number of estimated correlation param-
eters (which were of central importance) varied between 21 
and 990.

We estimated the models using brms (Bürkner, 2017), 
which uses the probabilistic programming language Stan 
(Carpenter et al., 2017) for model estimation. This allowed 
us to estimate the variance–covariance matrix in two parts—
a correlation matrix and a variance vector. For the corre-
lation matrix, we used a non-informative LKJ prior with 
concentration parameter = 1, and for the variances a weakly 
informative t-distribution prior ( df = 3, scale = 10 ). All 
other priors were also weakly informative (i.e., Cauchy with 
scale of 5 for mean drift-rate parameters for both coding 
parametrizations, and with scale of 2.5 for drift-rate differ-
ence parameters for difference coding). We estimated all 
diffusion-model parameters and correlations on the uncon-
strained real line (i.e., no link functions). In other words, we 
assumed multivariate normal distributions for the individ-
ual-level parameters. The brms syntax for estimating each 
model can be found in the supplemental materials on OSF.

We initially estimated each model using six (Datasets 1 to 
5) or four (Dataset 6) independent chains with 500 warmup 
samples per chain and retained a further 500 post-warmup 
samples. If chain convergence was not good (i.e., �R < 1.05 ) 
for all random-effect parameters, variance parameters, and 
correlations relevant for our research question we refit the 

Table 2   Model overview

N = Number of participants; Total observations = Overall number of trials; Ot = Number of observations/trials per task. For Datasets 1, 2, and 6, 
values before the “/” indicate number for the difference coding parameterization and values after the “/” for the condition coding parameteriza-
tion (for Datasets 3 to 5, the values were the same, as they did not include neutral trials). P = Total number of estimated parameters; C = Num-
ber of estimated correlation parameters; V = Number of estimated fixed effects parameters and number of estimated variance parameters. The 
number of individual-level displacement parameters (i.e., the random-effects) is given by P – C – 2 V. diff = difference coding parameterization; 
cond = condition coding parameterization. For the difference coding parameterization of Datasets 3 to 5, we only estimated correlation param-
eters among each diffusion parameters but not across diffusion parameters (e.g., only among all drift rates, but not between drift rates and bound-
ary separation) to decrease estimation time

Dataset N Total observations Ot (mean) Ot (min) Ot (max) P (diff) C (diff) V (diff) P (cond) C (cond) V (cond)

1 120 157,737 / 236,571 149 / 223 55 / 82 192 / 288 5,023 630 36 6,481 990 45
2 143 177,903 / 266,877 150 / 225 48 / 72 192 / 288 5,815 630 36 7,471 990 45
3 178 402,414 754 634 762 6,526 21 12 6,708 66 12
4 195 445,293 761 63 1534 7,138 21 12 7,320 66 12
5 210 401,669 638 601 1732 7,678 21 12 7,860 66 12
6 443 161,290 / 233,309 98 / 142 61 / 117 149 / 172 7,162 40 16 14,530 288 32
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model with more post-warmup samples until convergence 
was reached. The model requiring the largest number of 
samples to reach convergence was the condition coding 
model for Dataset 6 with 4,500 post-warmup samples. Esti-
mating each model took several weeks on a high-perfor-
mance desktop computer (in case a model required multiple 
refits, this resulted in fitting times of a few months for indi-
vidual datasets).

Structural equation modeling

For each dataset, we first estimated a series of SEMs using 
the posterior means of each value in the variance–covariance 
matrix of the diffusion-model parameters (each analysis only 
used a subset of the full covariance matrix; e.g., only the 
covariances among the difference parameters of the drift 
rate). Then, we fitted the same series of SEMs separately to 
500 variance–covariance matrices sampled from the poste-
rior distribution (i.e., these 500 samples were a subset of all 
post-warmup draws). The latter analysis takes into account 
the uncertainty in the estimate of the covariance matrix, 
which depends in part on the measurement error in the data.

Model fit was evaluated via multiple fit indices (Hu & 
Bentler, 1998, 1999): The χ2 goodness-of-fit statistic, 
Bentler’s comparative fit index (CFI), the standardized root 
mean square residual (SRMR), and the root mean square 
error of approximation (RMSEA). For the χ2 statistic, a 
small, non-significant value indicates good fit. For the CFI, 
values larger than 0.95 indicate good fit, and values between 
0.90 and 0.95 indicate acceptable fit. SRMR values smaller 
than 0.08 indicate good fit. RMSEA values smaller than 0.06 
indicate good fit, and values between 0.06 and 0.08 indicate 
acceptable fit. However, as the RMSEA tends to over-reject 
true population models at smaller sample size (i.e., smaller 
than 250; Hu & Bentler, 1998), this fit index was not taken 
into account when the sample size was smaller than 250 
participants. In this case, it was only provided for the sake 
of completeness.

In addition, the following criteria had to be met for a 
model to be considered an adequate representation of a latent 
variable: (1) the Kaiser–Meyer–Olkin (KMO) index—a 
measure of whether the correlation matrix is factorable—
should be larger than 0.60 (Tabachnick & Fidell, 2019); (2) 
most of the error variances should be lower than 0.90; (3) 
most of the factor loadings should be larger than 0.30; (4) 
no factor should be dominated by a large loading from one 
task; (5) the amount of shared variance across tasks—that 
is, “factor reliability” as assessed by the coefficient ω for the 
single-factor models (Raykov, 2001), and the hierarchical 
omega ωh for the bifactor models (McDonald, 1999)—had to 
be reasonably high (i.e., about 0.70 in single-factor models 
and 0.20 in bifactor models; Gignac & Kretzschmar, 2017).

Results

For each dataset, we first assessed the model fit of the diffu-
sion model by comparing the actual data with the posterior 
predictive distribution (i.e., a distribution of simulated data 
sets, each of the same size as the actual data, generated from 
the estimated model parameters). Second, we examined the 
correlation pattern of all parameters, and investigated the 
relations between them at the latent-variable level through 
SEM.

Dataset 1: Young adults from Rey‑Mermet et al. 
(2018)

Diffusion modeling

Figure 1 shows the fits of the diffusion model and includes 
numerical summaries of fit. We used a measure of absolute 
agreement between observed data and posterior prediction, 
the concordance correlation coefficient (CCC​; Barchard, 
2012). For both parametrizations and all tasks, for both 
posterior predictive mean and across the posterior predic-
tive distribution, mean RTs are recovered almost perfectly 
( CCC ≥ .97 ) and accuracy was recovered reasonably well 
( CCC ≥ .61).

Regarding the congruency effects, recovery was worse 
for the difference coding, which included parameters cap-
turing the congruency effects, than for the condition cod-
ing, which did not include such parameters. Furthermore, 
recovery differed markedly between the posterior predictive 
mean and across the full posterior predictive distribution. 
When only considering the former, recovery was good (with 
few exceptions) for the condition coding. However, recov-
ery across the individual samples of the posterior predictive 
distribution was in many instances poor, suggesting that the 
posterior predictive mean paints a rather optimistic picture. 
The largest misfit was observed for the accuracy congru-
ency effects, where the predicted effects showed a mark-
edly reduced range compared with the observed ones. This 
suggests that even with a large number of observations, the 
information provided by the data was sometimes not enough 
to overwhelm the only weakly informative priors. This par-
ticularly applies to the difference coding. Together, because 
the recovery of the RT congruency effects was still accept-
able and only recovery of the accuracy congruency effects 
was quite weak, individual differences were sufficiently 
recovered for the present purposes.

Correlations and structural equation modeling

Correlations are presented in Table 3 for the drift rate with 
the difference coding, in Table 4 for the drift rate with the 
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condition coding, in Table 5 for the boundary separation, 
and in Table 6 for the non-decision time. SEM results are 
reported next for each of these parameters separately.

Drift rate with difference coding   In this analysis, we used the 
posterior mean correlations of drift-rate differences between 
congruent and incongruent conditions in each task as the 
measures of attentional control. Nearly all correlations were 
low (≤ 0.20), and none were credibly different from zero (see 
Table 3). Overall, the correlation matrix had a KMO index 

(0.57) slightly under the lower limit of 0.60, indicating only 
marginal factorability of the correlation matrix.

In the next step, we aimed to find a coherent factor of 
attentional control. To this end, we fitted a model in which 
the drift-rate differences from all tasks loaded on a single 
factor. This model, referred to as Model 1, is depicted in 
Fig. 2A. This model provided a good fit to the data, χ2(20, 
N = 120) = 11.72, p = 0.925, CFI = 1, RMSEA [90% CI] = 0 
[0, 0.03], SRMR = 0.05. However, only three measures 
had loadings larger than 0.30, with the loading of the letter 
flanker task dominating the loadings. Moreover, error vari-
ances were high for most measures (see Fig. 2A), and factor 
reliability was low (ω = 0.35). Together, this indicates that 
the factor mainly represents the variance of one measure. 
Thus, although the model provided a good fit to the data, it 
had low explanatory power.

Drift rate with condition coding  This analysis started from 
the posterior mean correlations of mean drift rates of con-
gruent and incongruent conditions, and used a bifactor 
model to extract the variance of attentional control from 
them. As expected, correlations of drift rates between the 
incongruent and congruent trials of the same task were high 
(≥ 0.52) and credible. Furthermore, although all correla-
tions between the different tasks were lower (between 0.04 
and 0.41), many were still credible (see Table 4). Overall, 
the correlation matrix had a good KMO index (0.73).

Fig. 1   Dataset 1: Young adults from Rey-Mermet et  al. (2018). 
Model fit of diffusion models comparing observed (x-axis) with pre-
dicted statistics (y-axis). First four rows show the fit of the difference-
coding parametrization and the last four rows show the fit of the con-
dition-coding parametrization. Each column shows the statistics for 
one of the eight tasks used in the SEM. The first, second, fifth, and 
sixth row show overall mean RT (for correct responses) and accuracy 
across conditions. The third and seventh row, “Effect (RT),” and the 
fourth and eighth row, “Effect (Acc),” show the congruency effects 
for RT and accuracy, respectively. Data points are participants and are 
plotted semitransparently so that overlapping points appear darker. 
The predicted statistics show the mean of 500 samples from the pos-
terior predictive distribution (i.e., synthetic data of the same size as 
the observed data generated from the fitted model). The value in the 
top-left corner of each panel is the concordance correlation coeffi-
cient (CCC), which is 1 in case of perfect absolute agreement, for the 
data points shown. The three values in the lower-left corner represent 
the 2.5% quantile, the median, and the 97.5% quantile of the CCCs 
when calculated individually for each sample of the posterior predic-
tive distribution

◂

Table 3   Dataset 1–Young adults from Rey-Mermet et al. (2018): Posterior mean correlation coefficients and 95% credibility intervals for the 
drift-rate difference estimate of the diffusion model with difference coding (incongruent vs. congruent trials)

Comp. Compatibility. Values in [] are the lower and upper limit of the 95% Bayesian credibility interval (CI). For values printed in bold, the 95% 
CI excludes 0

Measure Color
Stroop

Number
Stroop

Arrow
flanker

Letter
flanker

Simon Local Positive
comp

Color
Stroop

–

Number
Stroop

 − .02
[− .30, .26]

 −

Arrow
flanker

 − .14
[− .42, .17]

.03
[− .23, .30]

 −

Letter
flanker

 − .09
[− .37, .21]

.10
[− .18, .37]

.26
[− .01, .51]

 −

Simon  − .13
[− .40, .17]

.04
[− .18, .27]

.08
[− .15, .31]

.21
[− .04, .45]

 −

Local .11
[− .21, .39]

.03
[− .25, .32]

.06
[− .22, .34]

.09
[− .21, .36]

.19
[− .08, .44]

 −

Positive
comp

 − .02
[− .31, .27]

.03
[− .22, .28]

.00
[− .25, .25]

.16
[− .11, .41]

.11
[− .11, .33]

.07
[− .21, .35]

 −

Negative
comp

 − .04
[− .32, .23]

.16
[− .10, .41]

.06
[− .20, .33]

.12
[− .16, .37]

.02
[− .21, .25]

.04
[− .23, .30]

.09
[− .15, .35]
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In the bifactor model, the drift rates of both congruent 
and incongruent conditions of all tasks were forced to load 
on a general factor, which reflects variance in all abilities 
involved in task performance regardless of the condition’s 
attentional-control demand. The drift rates from the con-
dition assumed to demand more attentional control (i.e., 
the incongruent condition in all tasks, except for the neg-
ative-compatibility task for which the congruent condition 
demands more control) were forced to additionally load on 
an attentional-control factor. In this way, the attentional-
control factor reflects the common variance across tasks 
that is not accounted for by the general factor. In addition, 
error variances from the measures of the same task were 
allowed to correlate. Moreover, to avoid negative variance, 
factor loadings were constrained to be positive. This model, 
thereafter, referred to as Model 2, is depicted in Fig. 2B.

Model 2 provided a good fit to the data, χ2(88, 
N = 120) = 86.86, p = 0.514, CFI = 1, RMSEA [90% CI] = 0 
[0, 0.05], SRMR = 0.06. However, although all measures had 
loadings larger than 0.34 for the general factor, all load-
ings for the attentional-control factor were lower than 0.25. 
Moreover, the factor reliability for this specific factor was 
very low (ωh = 0.08). Thus, the attentional-control factor did 
not represent much common variance across the measures.

Boundary separation  Most correlations were between 0.20 
and 0.43, and credibly differed from zero (see Table 5). 
Overall, the correlation matrix had a good KMO index 
(0.76).

In the next step, we fitted a model in which all tasks 
loaded on a single factor (i.e., Model 3). This model is 
depicted in Fig. 2C. This model provided an acceptable fit 
to the data, χ2(20, N = 120) = 30.44, p = 0.063, CFI = 0.91, 
RMSEA [90% CI] = 0.07 [0, 0.11], SRMR = 0.07. All load-
ings were larger than 0.40, except for one exception (i.e., 
the loading of the negative-compatibility task with a value 
of 0.28). Error variances were low (see Fig. 2C). Factor reli-
ability was also high (ω = 0.70). Thus, these results indicate 
a coherent factor, reflecting individual differences in speed–
accuracy trade-off or caution that generalize across tasks.

Non‑decision time  Most correlations were low (≤ 0.20) and 
did not credibly differ from zero (see Table 6). However, the 
correlation matrix had a good KMO index (0.64).

As before, we fitted a model in which all tasks loaded on 
a single factor (i.e., Model 4). However, this model provided 
a bad fit, χ2(20, N = 120) = 31.95, p = 0.044, CFI = 0.82, 
RMSEA [90% CI] = 0.07 [0.01, 0.11], SRMR = 0.07.

Dataset 2: Older adults from Rey‑Mermet et al. 
(2018)

Diffusion modeling

Figure 3 shows the fit of the diffusion model for Dataset 
2. As for Dataset 1, overall recovery of mean RTs was 
good ( CCC ≥ .98 ). For accuracy, visual inspection shows 

Table 5   Dataset 1–Young adults from Rey-Mermet et al. (2018): Posterior mean correlation coefficients and 95% credibility intervals for the 
boundary separation of the diffusion model with condition coding

Comp. Compatibility. Values in [] are the lower and upper limit of the 95% Bayesian credibility interval (CI). For values printed in bold, the 95% 
CI excludes 0

Measure Color
Stroop

Number
Stroop

Arrow
flanker

Letter
flanker

Simon Local Positive
comp

Color
Stroop

 − 

Number
Stroop

.25
[.10, .40]

 − 

Arrow
flanker

.31
[.17, .45]

.22
[.08, .38]

 − 

Letter
flanker

.21
[.06, .36]

.32
[.16, .47]

.31
[.16, .45]

 − 

Simon .30
[.14, .43]

.13
[− .03, .29]

.23
[.08, .37]

.40
[.26, .54]

 − 

Local .43
[.27, .56]

.20
[.05, .36]

.36
[.21, .49]

.32
[.15, .46]

.29
[.13, .44]

 − 

Positive
comp

.06
[− .09, .22]

.29
[.13, .44]

.12
[− .04, .28]

.35
[.19, .50]

.22
[.06, .37]

.16
[.00, .32]

 − 

Negative
comp

.09
[− .06, .24]

.19
[.03, .35]

.13
[− .02, .28]

.15
[.00, .30]

.11
[− .04, .27]

.15
[− .01, .30]

.27
[.11, .43]
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overall good recovery, although CCC​s are low for cases 
with ceiling effects and reduced variability. For the con-
gruency effect, we saw a very similar pattern as for Data-
set 1. Recovery was better for the condition coding than 
the difference coding, and the posterior predictive mean 
recovered markedly better than individual samples from 
the posterior predictive distribution. One notable dif-
ference was that recovery for the RT congruency effect 
appeared a bit better than for Dataset 1, but recovery of 
the accuracy effect was worse (i.e., the restricted range 
in the predicted accuracy effect was even more notice-
able). However, overall individual differences were still 
sufficiently captured.

Correlations and structural equation modeling

Correlations are presented in Table 7 for the drift rate with 
the difference coding, in Table 8 for the drift rate with the 
condition coding, in Table 9 for the boundary separation, 
and in Table 10 for the non-decision time. SEM results are 
reported next for each of these parameters separately.

Drift rate with difference coding  All correlations between 
drift-rate differences were low (≤ 0.23) and not credible (see 
Table 7), with one exception (i.e., the correlation between 
arrow-flanker and positive-compatibility measures). Over-
all, the correlation matrix had a KMO index (0.56) slightly 
under the limit of 0.60.

Similar to Dataset 1, we fitted a model in which all drift-
rate differences were forced to load on a single factor (i.e., 
Model 1). This model provided a bad fit to the data, χ2(20, 
N = 140) = 24.34, p = 0.228, CFI = 0.85, RMSEA [90% 
CI] = 0.04 [0, 0.09], SRMR = 0.06.

Drift rate with condition coding   Correlations between the drift 
rates of incongruent and congruent conditions of the same task 
were high (≥ 0.71) and credible. Furthermore, although all cor-
relations between the different tasks were lower (between 0.04 
and 0.48), many were still credible (see Table 8). Overall, the 
correlation matrix had a good KMO index (0.61).

In the next step, we fitted the same bifactor model 
(Model 2) as for Dataset 1. This model is depicted in 
Fig. 4A. This model provided a good fit to the data, χ2(88, 
N = 140) = 116.21, p = 0.024, CFI = 0.98, RMSEA [90% 
CI] = 0.05 [0.02, 0.07], SRMR = 0.06. Most measures had a 
loading higher than 0.30 for the general factor. However, all 
loadings for the attentional-control factor were equal to or 
lower than 0.30 (see Fig. 4A). Moreover, the reliability for 
this factor was very low (ωh = 0.05). Thus, this model estima-
tion did not result in a coherent factor of attentional control.

Boundary separation  Most correlations were low (≤ 0.20) 
and not credible (see Table 9). However, the correlation 
matrix had a good KMO index (0.68).

Table 6   Dataset 1–Young adults from Rey-Mermet et al. (2018): Posterior mean correlation coefficients and 95% credibility intervals for the 
non-decision time of the diffusion model with condition coding

Comp. Compatibility. Values in [] are the lower and upper limit of the 95% Bayesian credibility interval (CI). For values printed in bold, the 95% 
CI excludes 0

Measure Color
Stroop

Number
Stroop

Arrow
flanker

Letter
flanker

Simon Local Positive
comp

Color
Stroop

 − 

Number
Stroop

.19
[.02, .33]

 − 

Arrow
flanker

.19
[.03, .34]

.08
[− .08, .22]

 − 

Letter
flanker

.06
[− .09, .22]

.40
[.26, .53]

.20
[.03, .34]

 − 

Simon .22
[.06, .37]

.16
[− .00, .32]

.17
[.01, .32]

.34
[.19, .47]

 − 

Local .17
[.00, .32]

.10
[− .05, .26]

.14
[− .02, .28]

.21
[.05, .35]

.23
[.08, .37]

 − 

Positive
comp

.02
[− .14, .18]

.10
[− .05, .25]

.19
[.05, .34]

.16
[− .01, .30]

.15
[.00, .30]

 − .01
[− .17, .14]

 − 

Negative
comp

.06
[− .09, .21]

.09
[− .06, .25]

.22
[.07, .36]

.15
[− .00, .30]

.10
[− .07, .26]

 − .00
[− .17, .15]

.35
[.21, .48]
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Similar to Dataset 1, we fitted a single-factor model (i.e., 
Model 3). However, this model provided a bad fit, χ2(20, 
N = 140) = 33.44, p = 0.030, CFI = 0.84, RMSEA [90% 
CI] = 0.07 [0.02, 0.11], SRMR = 0.08.

Non‑decision time   Most correlations were low (≤ 0.20) and 
not credible (see Table 10). Overall, the correlation matrix 
had a good KMO index (0.70).

Fig. 2   Dataset 1: Young adults from Rey-Mermet et  al. (2018). A 
Drift rate with difference coding: One-factor model in which all drift-
rate differences between incongruent and congruent trials loaded on 
a single latent variable (Model 1). B Drift rate with condition cod-
ing: Bifactor model in which drift rates from the incongruent and 
congruent trials of all tasks was forced to load on a general factor, 
and drift rates from the conditions reflecting high attentional control 
(i.e., the congruent trials of the negative-compatibility task and the 
incongruent trials of the remaining tasks) were forced to load on an 
attentional-control factor (Model 2). In this model, factor loadings 
were constrained to be positive, and error variances from the meas-
ures of the same task were allowed to correlate. C Boundary separa-
tion: One-factor model in which the boundary-separation parameters 
loaded on a single latent variable (Model 3). For Models 1 and 3, the 

numbers next to the straight, single-headed arrows are the standard-
ized factor loadings (interpretable as standardized regression coeffi-
cients). For Model 2 (bifactor model), for the sake of clarity, these 
factor loadings are aligned to each measure (i.e., next to the measures 
for the general factor and next to the factors for the attentional-control 
factor). For all models, the outward numbers adjacent to each meas-
ure are the error variances, attributable to idiosyncratic task require-
ments and measurement error. The numbers adjacent to the curved, 
double-headed arrows next to each measure in Model 2 (bifactor 
model) are the correlations between the error variances. For all val-
ues, boldface type indicates p < .05. Neg. comp. = Negative compat-
ibility; Pos. comp. = positive compatibility; Num. Stroop = Number 
Stroop; inc. = incongruent; con. = congruent
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Fig. 3   Dataset 2: Older adults from Rey-Mermet et al. (2018). Model fit of diffusion models comparing observed (x-axis) with predicted statis-
tics (y-axis). See Fig. 1 note for details
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As before, we fitted a single-factor model (i.e., Model 
4). This model is depicted in Fig. 4B. This model pro-
vided an acceptable fit to the data, χ2(20, N = 140) = 28.69, 
p = 0.094, CFI = 0.91, RMSEA [90% CI] = 0.06 [0, 0.10], 
SRMR = 0.06. All loadings ranged from 0.24 to 0.67, and 
error variances were moderate (see Fig. 4B). Factor reli-
ability was only of modest size (ω = 0.56). Thus, the results 
suggest a moderately coherent factor.

Dataset 3: Experiment 1 from Whitehead et al. 
(2019)

Diffusion modeling

Figure 5 (Columns 1 to 3) shows the fit of the diffusion model. 
As before, recovery of the response times and accuracy was 
very good ( CCC ≥ .98 and CCC ≥ .82, respectively ). In 
addition, the recovery of the congruency effects both for 
response times ( CCC ≥ .70 ) and accuracy ( CCC ≥ .70 ) 
was very good. Finally, the overall very positive recovery 
of individual differences holds for both posterior predictive 
means and also generally across the individual samples of 
the posterior predictive distributions. Thus, fit is noticeably 
better in Dataset 3 than in Datasets 1 and 2.

Correlations and structural equation modeling

Correlations are presented in the upper part of Table 11 for 
the drift rate with the difference coding, in the upper part 

of Table 12 for the drift rate with the condition coding, in 
the upper part of Table 13 for the boundary separation, and 
in the upper part of Table 14 for the non-decision time. 
SEM results are reported next for each of these parameters 
separately.

Drift rate with difference coding  All correlations between 
drift-rate differences were low (≤ 0.14) and not credible (see 
Table 11, upper part). Overall, the correlation matrix had a 
low KMO index (0.48).

The next step was to find a coherent factor of attentional 
control using the three attentional-control measures. To this 
end, we fitted a saturated model in which the drift-rate dif-
ferences from all three tasks loaded on a single factor (i.e., 
Model 5). However, in line with the low KMO index, this 
model did not converge for Dataset 3.

Drift rate with condition coding  Correlations between the 
drift rates of incongruent and congruent conditions of the 
same task were high (≥ 0.86) and credible. Furthermore, 
although all correlations between the different tasks were 
lower, they were still moderate (between 0.29 and 0.42) and 
credible (see Table 12, upper part). Overall, the correlation 
matrix had a good KMO index (0.61).

In the next step, we aimed to establish a coherent 
factor of attentional control using a bifactor-modeling 
approach. Accordingly, in Model 6, the drift rates of both 
congruent and incongruent conditions of all three tasks 
were forced to load on a general factor, and the drift 

Table 7   Dataset 2–Older adults from Rey-Mermet et  al. (2018): Posterior mean correlation coefficients and 95% credibility intervals for the 
drift-rate difference estimate of the diffusion model with difference coding (incongruent vs. congruent trials)

Comp. Compatibility. Values in [] are the lower and upper limit of the 95% Bayesian credibility interval (CI). For values printed in bold, the 95% 
CI excludes 0

Measure Color
Stroop

Number
Stroop

Arrow
flanker

Letter
flanker

Simon Local Positive
comp

Color
Stroop

 − 

Number
Stroop

.11
[− .12, .33]

 − 

Arrow
flanker

 − .06
[− .25, .14]

 − .07
[− .29, .17]

 − 

Letter
flanker

 − .06
[− .28, .15]

.09
[− .18, .33]

.22
[− .01, .44]

 − 

Simon  − .09
[− .28, .09]

.07
[− .18, .32]

.13
[− .08, .33]

.21
[− .03, .42]

 − 

Local .13
[− .11, .35]

.05
[− .22, .32]

.07
[− .18, .31]

.08
[− .18, .33]

.05
[− .20, .29]

 − 

Positive
comp

.14
[− .10, .36]

 − .01
[− .26, .24]

.27
[.03, .50]

.23
[− .01, .46]

.04
[− .20, .29]

 − .06
[− .31, .19]

 − 

Negative
comp

 − .14
[− .38, .12]

 − .03
[− .31, .25]

 − .12
[− .38, .15]

 − .08
[− .35, .20]

 − .09
[− .33, .18]

.02
[− .26, .30]

 − .25
[− .48, .03]
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rates of incongruent trials were also forced to load on an 
attentional-control factor. In addition, in line with the 
previous computations of the bifactor models in the pre-
sent study, error variances from the measures of the same 
task were allowed to correlate, and factor loadings were 

constrained to be positive. However, the SEM estimation 
showed that the standard errors could not be computed, 
and some estimated observed variances were negative, 
suggesting that Model 6 was not identified.

Table 9   Dataset 2–Older adults from Rey-Mermet et  al. (2018): Posterior mean correlation coefficients and 95% credibility intervals for the 
boundary separation of the diffusion model with condition coding

Comp. Compatibility. Values in [] are the lower and upper limit of the 95% Bayesian credibility interval (CI). For values printed in bold, the 95% 
CI excludes 0

Measure Color
Stroop

Number
Stroop

Arrow
flanker

Letter
flanker

Simon Local Positive
comp

Color
Stroop

 − 

Number
Stroop

.36
[.21, .49]

 − 

Arrow
flanker

.09
[− .06, .23]

 − .06
[− .21, .09]

 − 

Letter
flanker

.21
[.06, .34]

.08
[− .07, .22]

.26
[.11, .40]

 − 

Simon .01
[− .13, .15]

 − .03
[− .18, .12]

.25
[.10, .39]

.37
[.23, .49]

 − 

Local .12
[− .03, .26]

.09
[− .07, .24]

.18
[.01, .34]

.36
[.20, .50]

.29
[.13, .44]

 − 

Positive
comp

.06
[− .09, .21]

.02
[− .14, .18]

.14
[− .02, .28]

.21
[.06, .35]

.22
[.08, .36]

.19
[.02, .36]

 − 

Negative
comp

.20
[.05, .34]

.12
[− .04, .27]

.11
[− .03, .26]

.16
[.02, .31]

.02
[− .13, .17]

.06
[− .09, .22]

.20
[.05, .35]

Table 10   Dataset 2–Older adults from Rey-Mermet et al. (2018): Posterior mean correlation coefficients and 95% credibility intervals for the 
non-decision time of the diffusion model with condition coding

Comp. Compatibility. Values in [] are the lower and upper limit of the 95% Bayesian credibility interval (CI). For values printed in bold, the 95% 
CI excludes 0

Measure Color
Stroop

Number
Stroop

Arrow
flanker

Letter
flanker

Simon Local Positive
comp

Color
Stroop

 − 

Number
Stroop

.26
[.11, .40]

 − 

Arrow
flanker

.13
[− .03, .28]

.11
[− .04, .26]

 − 

Letter
flanker

.21
[.05, .36]

.25
[.09, .39]

.33
[.19, .46]

 − 

Simon .14
[− .01, .29]

.22
[.07, .37]

.34
[.20, .47]

.41
[.26, .53]

 − 

Local .10
[− .05, .26]

.07
[− .09, .22]

.26
[.10, .40]

.31
[.16, .45]

.18
[.03, .32]

 − 

Positive
comp

.02
[− .13, .17]

.06
[− .10, .21]

.17
[.02, .32]

.14
[− .02, .28]

.19
[.04, .33]

.10
[− .05, .25]

 − 

Negative
comp

.16
[− .00, .31]

 − .01
[− .18, .15]

.11
[− .04, .25]

.13
[− .02, .27]

.14
[− .01, .28]

.05
[− .10, .20]

.35
[.21, .48]
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Boundary separation  All correlations were moderate 
(between 0.37 and 0.46) and credible (see Table 13, upper 
part). Furthermore, the correlation matrix had a good KMO 
index (0.66).

In the next step, we fitted a model in which all tasks 
loaded on a single factor (i.e., Model 7). This model is 
depicted in Fig. 6A. This model converged, and as it is satu-
rated, it provided a perfect fit to the data. All loadings were 
relatively high (i.e., larger than 0.58), and error variances 
were relatively low (see Fig. 6A). Factor reliability was quite 
high (ω = 0.69). Thus, these results support the view of a 
coherent factor reflecting individual differences in speed–
accuracy trade-off or caution that generalize across tasks.

Non‑decision time  All correlations were moderate 
(between 0.33 and 0.43) and credible (see Table 14, upper 
part). Overall, the correlation matrix had a good KMO 
index (0.65).

As before, we fitted a model in which all tasks loaded 
on a single factor (i.e., Model 8). This model is depicted 
in Fig. 6B. As this model is saturated, it provided a per-
fect fit to the data. All loadings were relatively high (i.e., 
larger than 0.53), and error variances were relatively low 
(see Fig. 6B). Factor reliability was quite high (ω = 0.66). 
Thus, the results suggest a coherent factor for the non-
decision time.

Dataset 4: Experiment 2 from Whitehead et al. 
(2019)

Diffusion modeling

Figure  5 (Columns 4 to 6) shows the fit of the diffu-
sion model. Recovery was very good for response times 
( CCC ≥ .96 ) and accuracy ( CCC ≥ .75 ). For congruency 
effects, recovery was also good. The only exception was 

Fig. 4   Dataset 2: Older adults from Rey-Mermet et  al. (2018). A 
Drift rate with condition coding: Bifactor model in which drift rates 
from the incongruent and congruent trials of all tasks was forced to 
load on a general factor, and drift rates from the conditions reflect-
ing high attentional control (i.e., the congruent trials of the negative-
compatibility task and the incongruent trials of the remaining tasks) 

were forced to load on an attentional-control factor (Model 2). In this 
model, factor loadings were constrained to be positive, and error vari-
ances from the measures of the same task were allowed to correlate. 
B Non-decision time: One-factor model in which the non-decision-
time parameters loaded on a single latent variable (Model 4). See 
Fig. 2 note for details
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Fig. 5   Datasets 3, 4, and 5—Experiments 1, 2, and 3, respectively, from Whitehead et  al. (2019): Model fit of diffusion models comparing 
observed (x-axis) with predicted statistics (y-axis). See Fig. 1 note for details
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the accuracy congruency effect for the flanker task with 
CCC ≈ .40 (all other CCC ≥ .58 ). Overall, this indicates a 
good fit for the posterior predictive means. The same result 
was observed for the individual samples from the posterior 
predictive distribution. The only exception was that the RT 
and accuracy congruency effects of the flanker task showed 
lower CCC​s. Therefore, these results were similar to Dataset 
3 and showed that individual differences were well recovered.

Correlations and structural equation modeling

Correlations are presented in the middle part of Table 11 
for the drift rate with the difference coding, in the mid-
dle part of Table 12 for the drift rate with the condition 
coding, in the middle part of Table 13 for the boundary 
separation, and in the middle part of Table 14 for the 
non-decision time. SEM results are reported next for each 
of these parameters separately.

Drift rate with difference coding  All correlations 
between drift-rate differences were of modest size 
(≤ 0.31), but only one correlation was not credible (see 
Table 11, middle part). Overall, the correlation matrix 
had a KMO index (0.57) slightly under the lower limit 
of 0.60, indicating only marginal factorability of the cor-
relation matrix.

Similar to Dataset 3, we fitted a model in which the drift-rate 
differences from all three tasks loaded on a single factor (i.e., 
Model 5). This model is depicted in Fig. 7. As this model is satu-
rated, it provided a perfect fit to the data. All loadings were larger 
than 0.30, with the loading of the spatial Stroop task being higher 
than the other loadings. Error variances were moderate, and fac-
tor reliability was only of modest size (ω = 0.51). Together, these 
results suggest a low to moderately coherent factor at best.

Drift rate with condition coding   Correlations between 
the drift rates of incongruent and congruent conditions 
of the same task were high (≥ 0.88) and credible. Fur-
thermore, although all correlations between the different 
tasks were lower, they were still moderate (between 0.37 
and 0.47) and credible (see Table 12, middle part). Over-
all, the correlation matrix had a good KMO index (0.62).

In the next step, we fitted the same bifactor model 
(Model 6) as for Dataset 3. This model is depicted in 
Fig.  7B. This model provided a good fit to the data, 
χ2(3, N = 195) = 0.78, p = 0.854, CFI = 1, RMSEA [90% 
CI] = 0 [0, 0.07], SRMR = 0. All loadings for the general 
factor were relatively high (i.e., larger than 0.55). How-
ever, all loadings for the attentional-control factor were 
low (≤ 0.24, see Fig. 7B). Moreover, the reliability for 
this specific factor was very low (ωh = 0.04). Thus, this 
model estimation did not result in a coherent factor of 
attentional control.

Boundary separation    All correlations were quite high 
(between 0.49 and 0.53) and credible (see Table 13, middle 
part). Furthermore, the correlation matrix had a good KMO 
index (0.69).

Similar to Dataset 3, we fitted the model in which all tasks 
loaded on a single factor (i.e., Model 7). This model is depicted 
in Fig. 7C. As this model is saturated, it provided a perfect fit 
to the data. All loadings were high (i.e., larger than 0.68), and 
error variances were low (see Fig. 7C). Factor reliability was 
high (ω = 0.75). Thus, these results are again in line with a 
coherent factor representing individual differences in speed–
accuracy trade-off or caution that generalize across tasks.

Non‑decision time   The correlations were low to moderate 
(between 0.23 and 0.37) and credible (see Table 14, middle 
part). Overall, the correlation matrix had an acceptable KMO 
index (0.60).

As before, we fitted a model in which all tasks loaded on 
one factor (i.e., Model 8). This model is depicted in Fig. 7D. 
As this model is saturated, it provided a perfect fit to the data. 
All loadings were larger than 0.40. However, error variances 
were moderate (see Fig. 7D), and factor reliability was only of 

Table 11   Datasets 3, 4, and 5–Experiments 1, 2, and 3, respectively, 
from Whitehead et al. (2019): Posterior mean correlation coefficients 
and 95% credibility intervals for the drift-rate difference estimate of 
the diffusion model with difference coding (incongruent vs. congru-
ent trials)

Values in [] are the lower and upper limit of the 95% Bayesian cred-
ibility interval (CI). For values printed in bold, the 95% CI excludes 0

Dataset Measure Color
Stroop

Spatial
Stroop

3 Color
Stroop

 − 

Spatial
Stroop

.14
[− .04, .31]

 − 

Flanker .08
[− .10, .26]

 − .02
[− .20, .15]

4 Color
Stroop

 − 

Spatial
Stroop

.20
[.01, .39]

 − 

Flanker .14
[− .10, .38]

.31
[.08, .52]

5 Color
Stroop

 − 

Spatial
Stroop

.17
[.01, .32]

 − 

Flanker .26
[.07, .46]

.30
[.10, .47]
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modest size (ω = 0.56). Thus, the results suggest a moderately 
coherent factor.

Dataset 5: Experiment 3 from Whitehead et al. 
(2019)

Diffusion modeling

Figure  5 (Columns 7 to 9) shows the fit of the diffu-
sion model. Recovery was very good for response times 
( CCC ≥ .97 ) and not much worse for accuracy ( CCC ≥ .69 ). 
For congruency effects, recovery was good for the color 
and spatial Stroop tasks ( CCC ≥ .58 ), but less good for the 

flanker task ( CCC ≥ .24 ). Thus, for the posterior predictive 
means, recovery was good in all measures with the excep-
tion of the flanker congruency effects. The same pattern was 
observed for individual samples from the posterior predic-
tive distribution. Therefore, these results were similar to 
Datasets 3 and 4 and showed that individual differences were 
overall well recovered.

Correlations and structural equation modeling

Correlations are presented in the lower part of Table 11 
for the drift rate with the difference coding, in the lower 
part of Table 12 for the drift rate with the condition coding, 
in the lower part of Table 13 for the boundary separation, 

Table 12   Datasets 3, 4, and 5–Experiments 1, 2, and 3, respectively, from Whitehead et al. (2019): Posterior mean correlation coefficients and 
95% credibility intervals for the drift-rates estimates with condition coding

Inc. Incongruent, Con. Congruent. Values in [] are the lower and upper limit of the 95% Bayesian credibility interval (CI). For values printed in 
bold, the 95% CI excludes 0

Dataset Task Trial
type

Color Stroop Spatial Stroop Flanker

Inc Con Inc Con Inc

3 Color
Stroop

Inc  − 
Con .86

[.81, .90]
 − 

Spatial
Stroop

Inc .42
[.30, .54]

.40
[.27, .51]

 − 

Con .37
[.24, .49]

.38
[.25, .49]

.88
[.84, .92]

 − 

Flanker Inc .33
[.20, .45]

.29
[.14, .41]

.32
[.20, .45]

.38
[.26, .50]

 − 

Con .33
[.21, .46]

.31
[.16, .43]

.34
[.21, .47]

.38
[.26, .51]

.94
[.91, .96]

4 Color
Stroop

Inc  − 
Con .88

[.84, .91]
 − 

Spatial
Stroop

Inc .45
[.34, .56]

.39
[.26, .50]

 − 

Con .40
[.27, .50]

.37
[.25, .49]

.93
[.91, .95]

 − 

Flanker Inc .41
[.29, .52]

.37
[.24, .49]

.47
[.36, .57]

.46
[.35, .56]

 − 

Con .40
[.28, .52]

.38
[.25, .50]

.46
[.35, .57]

.47
[.36, .58]

.97
[.96, .98]

5 Color
Stroop

Inc  − 
Con .92

[.89, .94]
 − 

Spatial
Stroop

Inc .36
[.24, .48]

.25
[.12, .37]

 − 

Con .30
[.18, .42]

.25
[.12, .36]

.83
[.78, .88]

 − 

Flanker Inc .32
[.19, .44]

.25
[.12, .37]

.44
[.33, .55]

.46
[.34, .56]

 − 

Con .34
[.21, .45]

.29
[.16, .41]

.40
[.28, .51]

.44
[.32, .54]

.99
[.98, .99]
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and in the lower part of Table 14 for the non-decision time. 
SEM results are reported next for each of these parameters 
separately.

Drift rate with difference coding  All correlations between 
drift-rate differences were of modest size (≤ 0.30) but cred-
ible (see Table 11, lower part). Overall, the correlation 
matrix had a KMO index (0.59) slightly under the lower 
limit of 0.60, indicating only marginal factorability of the 
correlation matrix.

Similar to Datasets 3 and 4, we fitted the model in which 
the drift-rate differences from all three tasks loaded on a sin-
gle factor (i.e., Model 5). This model is depicted in Fig. 8A. 
As this model is saturated, it provided a perfect fit to the 
data. All loadings were larger than 0.30, with the loading 
of the flanker task dominating the remaining loadings (see 
Fig. 8A). Error variances were moderate, and factor reli-
ability was low (ω = 0.41). Together, this indicates that the 
factor mainly represents the variance of the flanker measure, 
suggesting that the model had low explanatory power.

Drift rate with condition coding   Correlations between the 
drift rates of incongruent and congruent conditions of the 
same task were high (≥ 0.83) and credible. Furthermore, the 

Table 13   Datasets 3, 4, and 5–Experiments 1, 2, and 3, respectively, 
from Whitehead et al. (2019): Posterior mean correlation coefficients 
and 95% credibility intervals for the boundary separation of the diffu-
sion model with condition coding

Values in [] are the lower and upper limit of the 95% Bayesian cred-
ibility interval (CI). For values printed in bold, the 95% CI excludes 0

Dataset Measure Color
Stroop

Spatial
Stroop

3 Color
Stroop

 − 

Spatial
Stroop

.37
[.24, .50]

 − 

Flanker .46
[.34, .57]

.41
[.29, .53]

4 Color
Stroop

 − 

Spatial
Stroop

.53
[.42, .63]

 − 

Flanker .50
[.38, .60]

.49
[.37, .60]

5 Color
Stroop

 − 

Spatial
Stroop

.51
[.40, .61]

 − 

Flanker .56
[.46, .65]

.60
[.50, .69]

Table 14   Datasets 3, 4, and 5–Experiments 1, 2, and 3, respectively, 
from Whitehead et al. (2019): Posterior mean correlation coefficients 
and 95% credibility intervals for the non-decision time of the diffu-
sion model with condition coding

Values in [] are the lower and upper limit of the 95% Bayesian cred-
ibility interval (CI). For values printed in bold, the 95% CI excludes 0

Dataset Measure Color
Stroop

Spatial
Stroop

3 Color
Stroop

 − 

Spatial
Stroop

.33
[.20, .46]

 − 

Flanker .43
[.31, .55]

.37
[.24, .49]

4 Color
Stroop

 − 

Spatial
Stroop

.26
[.11, .38]

 − 

Flanker .37
[.24, .49]

.23
[.10, .35]

5 Color
Stroop

 − 

Spatial
Stroop

.29
[.16, .41]

 − 

Flanker .49
[.37, .59]

.38
[.26, .49]

Fig. 6   Dataset 3: Experiment 1 from Whitehead et  al. (2019). A 
Boundary separation: One-factor model in which the boundary-sep-
aration parameters loaded on a single latent variable (Model 7). B 
Non-decision time: One-factor model in which the non-decision-time 
parameters loaded on a single latent variable (Model 8). See Fig.  2 
note for details
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correlations between the different tasks were lower, ranging 
from low to moderate (between 0.25 and 0.46), but all were 
still credible (see Table 12, lower part). Overall, the KMO 
index for the correlation matrix (0.57) is slightly under the 
lower limit of 0.60, indicating only marginal factorability of 
the correlation matrix.

In the next step, we fitted the same bifactor model 
(Model 6) as for Datasets 3 and 4. This model is depicted 
in Fig. 8B. This model provided a good fit to the data, χ2(3, 

N = 210) = 25.70, p < 0.001, CFI = 0.99, RMSEA [90% 
CI] = 0.19 [0.13, 0.26], SRMR = 0.02. All loadings for the 
general factor were larger than 0.40. However, all loadings 
for the attentional-control factor were low (≤ 0.31), with the 
loading of the spatial Stroop task being higher than the other 
loadings (see Fig. 8B). Moreover, the reliability for this 
specific factor was very low (ωh = 0.07). Thus, this model 
estimation did not result in a coherent factor of attentional 
control.

Fig. 7   Dataset 4: Experiment 2 from Whitehead et al. (2019). A Drift 
rate with difference coding: One-factor model in which all drift-
rate differences between incongruent and congruent trials loaded on 
a single latent variable (Model 5). B Drift rate with condition cod-
ing: Bifactor model in which drift rates from the incongruent and 
congruent trials of all tasks was forced to load on a general factor, 
and drift rates from the incongruent trials were forced to load on an 
attentional-control factor (Model 6). In this model, factor loadings 
were constrained to be positive, and error variances from the meas-
ures of the same task were allowed to correlate. C Boundary separa-
tion: One-factor model in which the boundary-separation parameters 
loaded on a single latent variable (Model 7). D Non-decision time: 
One-factor model in which the non-decision-time parameters loaded 
on a single latent variable (Model 8). See Fig. 2 note for details

Fig. 8   Dataset 5: Experiment 3 from Whitehead et al. (2019). A Drift 
rate with difference coding: One-factor model in which all drift-
rate differences between incongruent and congruent trials loaded on 
a single latent variable (Model 5). B Drift rate with condition cod-
ing: Bifactor model in which drift rates from the incongruent and 
congruent trials of all tasks was forced to load on a general factor, 
and drift rates from the incongruent trials were forced to load on an 
attentional-control factor (Model 6). In this model, factor loadings 
were constrained to be positive, and error variances from the meas-
ures of the same task were allowed to correlate. C Boundary separa-
tion: One-factor model in which the boundary-separation parameters 
loaded on a single latent variable (Model 7). D Non-decision time: 
One-factor model in which the non-decision-time parameters loaded 
on a single latent variable (Model 8). See Fig. 2 note for details
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Boundary separation  All correlations were quite high 
(between 0.51 and 0.60) and credible (see Table 13, lower 
part). Furthermore, the correlation matrix had a good KMO 
index (0.70).

Similar to Datasets 3 and 4, we fitted the model in 
which all tasks loaded on one factor (i.e., Model 7). This 
model is depicted in Fig. 8C. As it saturated, it provided a 
perfect fit to the data. All loadings were high (i.e., larger 
than 0.69), and error variances were low (see Fig. 8C). 
Factor reliability was high (ω = 0.80). Thus, these results 
show a coherent factor reflecting individual differences 
in speed–accuracy trade-off or caution that generalize 
across tasks.

Non‑decision time    The correlations were moderate 
(between 0.29 and 0.49) and credible (see Table 14, lower 
part). Overall, the correlation matrix had a good KMO index 
(0.62).

As before, we fitted a model in which all tasks loaded 
on a single factor (Model 8). This model is depicted in 
Fig. 8D. As this model is saturated, it provided a perfect fit 
to the data. All tasks were larger than 0.47, and error vari-
ances were moderate (see Fig. 8D). Factor reliability was 
slightly under the lower limit of 0.70 (ω = 0.69). Together, 
the results suggest a coherent factor.

Dataset 6: Kane et al. (2016)

Diffusion modeling

Figure  9 shows the fit of the diffusion model. For 
the spatial Stroop and arrow flanker tasks recov-
ery was as before very good for both response times 
and accuracy (  CCC ≥ .96 and CCC ≥ .84, respectively  ) 
as well as the associated congruency effects 
( CCC ≥ .65 and CCC ≥ .75, respectively ). For the num-
ber Stroop task, the recovery was similar for mean response 
time and accuracy, but recovery of congruency effects was 
somewhat worse ( CCC ≈ .5 ). For the letter flanker task, we 
again saw good recovery for response times ( CCC = 1 ) and 
associated congruency effects ( CCC ≥ .77 ), but recovery of 
accuracy and associated congruency effects was low due to a 
reduced range (i.e., a ceiling effect). The pattern for the indi-
vidual samples from the posterior distribution was also very 
similar, with the only cases showing poor recovery being the 
ones mentioned before. Overall, fit is similar to the fit of the 
previous datasets—somewhat worse than for Datasets 3 to 5, 
but better than for Datasets 1 and 2—and recovers individual 
differences reasonably well, if such differences were present 
(i.e., not for accuracy of the letter flanker task).

Correlations and structural equation modeling

Correlations are presented in Table 15 for the drift rate with 
the difference coding, in Table 16 for the drift rate with the 
condition coding, in Table 17 for the boundary separation, 
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Fig. 9   Dataset 6: Kane et  al. (2016). Model fit of diffusion models 
comparing observed (x-axis) with predicted statistics (y-axis). See 
Fig. 1 note for details
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and in Table 18 for the non-decision time. SEM results are 
reported next for each of these parameters separately.

Drift rate with difference coding   All correlations between 
drift-rate differences were of modest size (≤ 0.32) and only 
half were credible (see Table 15). Overall, the correlation 
matrix had a KMO index of 0.60.

The next step was to find a coherent factor of attentional 
control using the four attentional-control measures. To this end, 
we fitted a model in which the drift-rate differences from all 
four tasks loaded on a single factor (i.e., Model 9). However, 
this model provided a fit that would just be acceptable by con-
ventional criteria for the SEM fit indices, χ2(2, N = 443) = 8.01, 

p = 0.018, CFI = 0.94, RMSEA [90% CI] = 0.08 [0.03, 0.15], 
SRMR = 0.04. This model is depicted in Fig. 10A. The loadings 
ranged from 0.10 to 0.56, and error variances were moderate 
(see Fig. 10A). The factor reliability was low (ω = 0.44). Thus, 
the results suggest a moderately coherent factor.

Because previous research has suggested a well-fitting 
model with a factor on which the number Stroop, arrow flanker 
and letter flanker tasks loaded (Rey-Mermet et al., 2018), we 
fitted an additional model using these three tasks only (i.e., 
Model 10). This model is depicted in Fig. 10B. As this model 
is saturated, it provided a perfect fit to the data. All loadings 
were larger than 0.44, but error variances were moderate (see 
Fig. 10b). The factor reliability was of modest size (ω = 0.52). 
Thus, the results suggest a moderately coherent factor.

Drift rate with condition coding   Correlations between the 
drift rates of incongruent and congruent conditions of the 
same task were in the upper range (≥ 0.50) and credible. In 
contrast, all correlations between the different tasks were 
in the lower range (between 0.07 and 0.52) but still mostly 
credible with only two exceptions (see Table 16). Overall, 
the correlation matrix had a good KMO index (0.62).

In the next step, we aimed to establish a coherent factor 
of attentional control using the bifactor-modeling approach. 
Following the procedure used for the previous datasets, we 
fitted Model 11 as follows. The drift rates of both congru-
ent and incongruent conditions of all four tasks loaded on 
a general factor. The drift rates of incongruent trials had 

Table 15   Dataset 6 from Kane et al. (2016): Posterior mean correla-
tion coefficients and 95% credibility intervals for the drift-rate differ-
ence estimate of the diffusion model with difference coding (incon-
gruent vs. congruent trials)

Values in [] are the lower and upper limit of the 95% Bayesian cred-
ibility interval (CI). For values printed in bold, the 95% CI excludes 0

Measure Number
Stroop

Spatial
Stroop

Arrow
flanker

Number
Stroop

 − 

Spatial
Stroop

.15
[− .02, .30]

 − 

Arrow
flanker

.25
[.10, .39]

.04
[− .10, .17]

 − 

Letter
flanker

.25
[.04, .46]

.00
[− .20, .20]

.32
[.13, .50]

Table 16   Dataset 6 from Kane et al. (2016): Posterior mean correlation coefficients and 95% credibility intervals for the drift-rates estimates 
with condition coding

Inc. Incongruent, Con. Congruent. Values in [] are the lower and upper limit of the 95% Bayesian credibility interval (CI). For values printed in 
bold, the 95% CI excludes 0

Task Trial
type

Number Stroop Spatial Stroop Arrow flanker Letter flanker

Inc Con Inc Con Inc  Con Inc

Number
Stroop

Inc  − 
Con .77

[.71, .83]
 − 

Spatial
Stroop

Inc .15
[.04, .26]

.25
[.16, .35]

 − 

Con .09
[− .02, .20]

.24
[.14, .33]

.74
[.68, .79]

 − 

Arrow
flanker

Inc .45
[.35, .55]

.37
[.27, .46]

.14
[.02, .24]

.07
[− .03, .18]

 − 

Con .32
[.22, .43]

.39
[.30, .48]

.27
[.17, .37]

.23
[.12, .33]

.52
[.43, .60]

 − 

Letter
flanker

Inc .23
[.12, .34]

.31
[.21, .41]

.24
[.12, .35]

.17
[.07, .27]

.20
[.09, .30]

.30
[.20, .40]

 − 

Con .20
[.10, .31]

.32
[.23, .41]

.26
[.15, .36]

.20
[.10, .29]

.13
[.03, .24]

.34
[.34, .43]

.90
[.86, .93]
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additional loadings on an attentional-control factor. Error 
variances from the measures of the same task were allowed 
to correlate, and factor loadings were constrained to be 
positive. This model is depicted in Fig. 10C. This model 
provided a good fit to the data, χ2(12, N = 443) = 37.60, 
p < 0.001, CFI = 0.99, RMSEA [90% CI] = 0.07 [0.05, 
0.10], SRMR = 0.04. All measures for the general factor 
were larger than 0.36. However, for the attentional-control 
factor, most loadings were lower than 0.30, with the loading 
of the arrow flanker task dominating the other loadings (see 
Fig. 10C). In line with these observations, the reliability 
for this specific factor was low (ωh = 0.13). Therefore, this 
model estimation did not result in a coherent factor of atten-
tional control.

Similar to the drift rate with difference coding, we fitted 
a bifactor model in which only the number Stroop, arrow 
flanker, and letter flankers were included (Model 12). This 

model provided a bad fit to the data, χ2(3, N = 443) = 19.32, 
p < 0.001, CFI = 0.99, RMSEA [90% CI] = 0.11 [0.07, 0.16], 
SRMR = 0.04.

Boundary separation    All correlations were moderate 
(between 0.32 and 0.63) and credible (see Table 17). Fur-
thermore, the correlation matrix had a good KMO index 
(0.70).

In the next step, we fitted a model in which all four 
tasks loaded on a single factor (i.e., Model 13). This model 
provided a bad fit to the data, χ2(2, N = 443) = 15.45, 
p < 0.001, CFI = 0.97, RMSEA [90% CI] = 0.12 [0.07, 
0.18], SRMR = 0.03. As before, we fitted a further model 
in which only the number Stroop, arrow flanker, and letter 
flanker tasks loaded on a single factor (i.e., Model 14). This 
model is depicted in Fig. 10D. As this model is saturated, 
it provided a perfect fit. All loadings were larger than 0.47, 
and error variances were relatively low (see Fig. 10D). Fac-
tor reliability was quite high (ω = 0.67). Thus, these results 
support the view of a coherent factor reflecting individual 
differences in speed–accuracy trade-off or caution that gen-
eralize across tasks.

Non‑decision time   All correlations were low to moderate 
(between 0.14 and 0.41) and all credible (see Table 18). 
Overall, the correlation matrix had a good KMO index (0.63).

As before, we first fitted a model in which all four tasks 
loaded on a single factor (i.e., Model 15). This model provided a 
bad fit to the data, χ2(2, N = 443) = 14.555, p = 0.001, CFI = 0.92, 
RMSEA [90% CI] = 0.12 [0.07, 0.18], SRMR = 0.05. Then, we 
fitted the model in which only the number Stroop, arrow flanker, 
and letter flanker tasks loaded on a single factor (i.e., Model 16). 
This model is depicted in Fig. 10E. As this model is saturated, 
it provided a perfect fit to the data. The loadings ranged from 
0.25 to 0.75 (see Fig. 10E). This resulted in a factor reliability of 
modest size (ω = 0.54), suggesting a moderately coherent factor 
for the non-decision time.

SEM analyses on 500 covariance matrices sampled 
from the posterior distribution

All SEM models so far were performed on the posterior mean 
covariance matrices. Next, we fitted the models for all param-
eters (i.e., the drift rates in both difference and condition coding 
parametrizations, as well as the boundary separation, and the 
non-decision time) in all datasets (1 to 6) to 500 covariance 
matrices sampled from the posterior distribution. This gener-
ated a distribution of 500 SEM fits that reflects the uncertainty 

Table 17   Dataset 6 from Kane et al. (2016): Posterior mean correla-
tion coefficients and 95% credibility intervals for the boundary sepa-
ration of the diffusion model with condition coding

Values in [] are the lower and upper limit of the 95% Bayesian cred-
ibility interval (CI). For values printed in bold, the 95% CI excludes 0

Measure Number
Stroop

Spatial
Stroop

Arrow
flanker

Number
Stroop

 − 

Spatial
Stroop

.42
[.31, .51]

 − 

Arrow
flanker

.63
[.55, .70]

.37
[.25, .47]

 − 

Letter
flanker

.32
[.21, .43]

.32
[.20, .43]

.43
[.32, .53]

Table 18   Dataset 6 from Kane et  al. (2016): Posterior mean corre-
lation coefficients and 95% credibility intervals for the non-decision 
time of the diffusion model with condition coding

Values in [] are the lower and upper limit of the 95% Bayesian cred-
ibility interval (CI). For values printed in bold, the 95% CI excludes 0

Measure Number
Stroop

Spatial
Stroop

Arrow
flanker

Number
Stroop

 − 

Spatial
Stroop

.23
[.12, .32]

 − 

Arrow 
flanker

.41
[.32, .50]

.29
[.19, .39]

 − 

Letter
flanker

.19
[.08, .29]

.26
[.15, .36]

.14
[.02, .25]
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of the correlation estimates, and a corresponding distribution 
of 500 values for each statistic reflecting model fit and model 
adequacy, approximating their posterior distribution.

An overview of the goodness-of-fit statistics of these 
model assessments is presented in Fig. 11 for Datasets 1 and 
2, in Fig. 12 for Datasets 3, 4 and 5, and in Fig. 13 for Dataset 
6. As shown in Fig. 11, only a few models for Datasets 1 and 
2 provided an acceptable fit to the data, whereas the major-
ity of the models provided a bad fit. For Datasets 3 to 5, the 
single-factor models were saturated, thus provided perfect fit 
to the data (see Fig. 12). Nevertheless, for the single-factor 
models with the drift rate, there is a substantial number of 
cases in which the models were either only identified with 
warnings or did not converge at all. For the non-saturated 
models (i.e., the bifactor models with the drift rates), only 
about half of the models showed good fit statistics. For Data-
set 6, when the models included the four tasks, most models 
provided a bad fit, were identified with warnings or did not 
converge at all (see Fig. 13A). In contrast, when the models 
included only three tasks (i.e., the number Stroop, the arrow 
flanker, and the letter flanker task), most models provided 
good fit to the data (see the bifactor model with the drift rates 
for an exception; Fig. 13B).

For the models with acceptable to good fit statistics, we then 
assessed the factor reliability. These estimates are presented in 
Fig. 14 for Datasets 1 and 2, in Fig. 15 for Datasets 3, 4, and 
5, and in Fig. 16 for Dataset 6. Overall, the reliability of the 
attentional-control factor for the drift-rate parameters was gener-
ally low (≤ 0.60 for single-factor models and ≤ 0.10 for bifactor 
models), thus indicating that no coherent factor of attentional 
control was established. For Dataset 4 (see Fig. 15B) and, to 
a lesser extent, for Dataset 5 (see Fig. 15C) and Dataset 6 with 
the models including three tasks (see Fig. 16B), the range of the 
reliability extended beyond 0.70. However, this wide distribu-
tion reflects a high degree of uncertainty for this parameter, thus 
challenging the view of a coherent factor of attentional control in 
this case as well. For boundary separation, the factor reliability 

was higher, ranging from 0.60 to 0.85 for nearly all datasets 
(see Dataset 2 for an exception in which the factor reliability 
ranged from 0.40 to 0.60). Thus, except for Dataset 2, these 
results on the boundary separation indicate a coherent factor 
reflecting individual differences in speed–accuracy trade-off. For 
non-decision time, the factor reliability was more moderate and 
with a wider range, varying from 0.40 to 0.80 across the differ-
ent datasets. This suggests at best a moderately coherent factor 
for non-decision time.

Fig. 10   Dataset 6: Kane et  al. (2016). A Drift rate with difference 
coding and all four tasks: One-factor model in which all drift-rate dif-
ferences between incongruent and congruent trials loaded on a sin-
gle latent variable (Model 9). B Drift rate with difference coding and 
only three tasks: One-factor model in which all drift-rate differences 
between incongruent and congruent trials loaded on a single latent 
variable (Model 10). C Drift rate with condition coding and all four 
tasks: Bifactor model in which drift rates from the incongruent and 
congruent trials of all tasks was forced to load on a general factor, 
and drift rates from the incongruent trials were forced to load on an 
attentional-control factor (Model 11). In this model, factor loadings 
were constrained to be positive, and error variances from the meas-
ures of the same task were allowed to correlate. D Boundary sepa-
ration with only three tasks: One-factor model in which the bound-
ary-separation parameters loaded on a single latent variable (Model 
14). E Non-decision time with only three tasks: One-factor model in 
which the non-decision-time parameters loaded on a single latent var-
iable (Model 16). See Fig. 2 note for details

▸
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Robustness of the results

To test the robustness of our results, we reran the analyses 
by applying the following modifications. First, because the 
hierarchical Bayesian Wiener diffusion modeling with the 
difference coding did not recover the data for all measures 
well in Datasets 1 and 2 (see Figs. 1 and 3), we estimated 
the models to several subsets of data in which the tasks 
with a poor diffusion-model fit were excluded. The excluded 
tasks are listed in Table 19 for each dataset separately. 

Second, because Datasets 1 and 2 included neutral trials 
as baseline as well, we also fitted bifactor models in which 
neutral conditions, rather than congruent conditions, were 
included as baseline conditions that loaded only on the 
general factor. Third, in Dataset 6, the single- and bifactor 
models were modified by modeling two attentional-control 
factors. That is, the number and spatial Stroop tasks loaded 
on a Stroop attentional-control factor. The arrow and letter 
flanker tasks loaded on a flanker attentional-control factor. 
Finally, in all datasets (1 to 6), all bifactor models were 

Fig. 11   Datasets 1 and 2 from Rey-Mermet et  al. (2018): Overview 
of the goodness-of-fit statistics for the models computed with each of 
the 500 covariance matrices sampled from the full posterior distribu-
tion. A model fit was considered as good if the Bentler’s comparative 
fit index (CFI) was larger than .95 and the standardized root mean 
square residual (SRMR) was smaller than .08. A model fit was con-
sidered acceptable if the CFI ranged from .90 to .95 and the SRMR 
was smaller than .08. Otherwise, the model fit was considered as bad. 

For the sake of completeness, we separately reported the cases in 
which the model computation resulted in some warnings (e.g., some 
estimated variances were negative) and the cases in which the model 
computation did not converge. The results for the model computa-
tions with the covariance matrix from the mean posterior distribution 
are presented in red. A Dataset 1: Young adults from Rey-Mermet 
et  al. (2018). (B) Dataset 2: Older adults from Rey-Mermet et  al. 
(2018). (Color figure online)
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Fig. 12   Datasets 3, 4, and 5 from Whitehead et  al. (2019): Over-
view of the goodness-of-fit statistics for the models computed with 
each of the 500 covariance matrices sampled from the full posterior 
distribution. See Fig. 11 note for details. A Dataset 3: Experiment 1 

from Whitehead et al. (2019). B Dataset 4: Experiment 2 from White-
head et al. (2019). C Dataset 5: Experiment 3 from Whitehead et al. 
(2019). (Color figure online)
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estimated with different constraints: (a) factor loadings were 
constrained to be positive, (b) error variances were con-
strained to be positive, and (c) neither factor loadings nor 
error variances were constrained to be positive.

The goodness-of-fit statistics of these model assess-
ments and the parameter estimates can be found at 

https://​osf.​io/​tyv9g/. None of these estimations resulted 
in a well-fitting model with a coherent factor of atten-
tional control (i.e., with a high factor reliability, low 
error variances, and significant but non-dominant load-
ings for the attentional-control factor).

Fig. 13   Dataset 6 from Kane et al. (2016): Overview of the goodness-
of-fit statistics for the models computed with each of the 500 covari-
ance matrices sampled from the full posterior distribution. In this 
dataset, the sample size consisted of 443 participants and thus was 
larger than 250. For this reason, the root mean square error of approx-
imation (RMSEA) was taken into account when evaluating the model 
fit. Accordingly, a model fit was considered as good if the Bentler’s 
comparative fit index (CFI) was larger than .95, the standardized root 
mean square residual (SRMR) was smaller than .08, and the RMSEA 

values were smaller than .06. A model fit was considered as accept-
able if the CFI was larger than .90, the SRMR was smaller than .08, 
and the RMSEA values were between .06 and .08. Otherwise, the 
model fit was considered as bad. See Fig. 11 note for the other details. 
A Dataset 6: Kane et al. (2016) with the models including four tasks. 
B Dataset 6: Kane et al. (2016) with the models including only three 
tasks (i.e., the number Stroop, arrow flanker, and letter flanker tasks). 
(Color figure online)

https://osf.io/tyv9g/
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Discussion

The purpose of the present study was to establish a coher-
ent factor of attentional control when individual differences 
in speed–accuracy trade-offs and measurement error were 
accounted for. To this end, we reanalyzed the data from Rey-
Mermet et al. (2018), from Whitehead et al. (2019) and from 
Kane et al. (2016) by computing SEM using the correlations 
parameters of a hierarchical Bayesian Wiener diffusion model 
(i.e., drift rates, or congruency effects on drift rates, boundary 
separation, and non-decision time). This combines a well-
tested cognitive model of response selection—including 
speed–accuracy trade-offs—as measurement model with the 
current gold standard for statistical modelling of trial-by-trial 
noise (Rouder et al., 2023).

A summary of the results is presented in Table 20. Over-
all, the results showed that for all datasets, the congruency 
effects on drift rates hardly correlated across tasks. More-
over, irrespective of how we isolate attentional-control 
variance (i.e., using drift-rate differences in a single-factor 
model, or through a bifactor model of drift rates), SEM 
identified a model including a factor that generalizes across 
tasks in two cases only (i.e., in the drift-rate differences in 
Dataset 4 and in Dataset 6). In these cases, the reliability 
of the factor was of modest size, suggesting a moderately 
coherent factor of attentional control. However, the analy-
ses on 500 covariance matrices sampled from the posterior 
distribution emphasized the uncertainty in the estimate of 
the factor reliability. Moreover, no coherent factor of atten-
tional control was observed when the bifactor-modeling 

Fig. 14   Datasets 1 and 2 from Rey-Mermet et  al. (2018): Omega 
coefficients of factor reliability for single-factor models and hierar-
chical omegas for the attentional-control factor in bifactor models for 
which the fit statistics was acceptable to good. Fit statistics were com-
puted with each of the 500 covariance matrices sampled from the full 
posterior distribution. Omegas for the model fits with the covariance 

matrix from the mean posterior distribution are presented in red. A 
Dataset 1: Young adults from Rey-Mermet et al. (2018). B Dataset 2: 
Older adults from Rey-Mermet et al. (2018). Please note that there is 
no distribution for the single-factor model in Dataset 2 because only 
one model provided an acceptable fit to the data (see Fig. 11b, ω = .41 
for this model). (Color figure online)
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Fig. 15   Datasets 3, 4, and 5 from Whitehead et  al. (2019): Omega 
coefficients of factor reliability for single-factor models and hierar-
chical omegas for the attentional-control factor in bifactor models for 
which the fit statistics was acceptable to good. See Fig. 14 note for 

details. A Dataset 3: Experiment 1 from Whitehead et al. (2019). B 
Dataset 4: Experiment 2 from Whitehead et al. (2019). C Dataset 5: 
Experiment 3 from Whitehead et al. (2019). (Color figure online)
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approach was used on Datasets 4 and 6. Together, this chal-
lenges the view of a coherent factor even in Datasets 4 
and 6.

Boundary separation and non‑decision time

Besides the drift rates, the results showed a coherent fac-
tor for the boundary separation in nearly all datasets (see 
Table 20). Only in Dataset 2, which includes the perfor-
mance of older adults, and in Dataset 6, which includes the 
four tasks, no factor was identified. As boundary separation 
is typically interpreted as a measure of response caution 
(Wagenmakers, 2009), such as when preferring accuracy 
over speed, or speed over accuracy, establishing a coherent 
factor with that parameter suggests that participants applied 

the same response style across several tasks (see also Hedge 
et al., 2022; Weigard et al., 2021). This seems in line with 
the assumption of a consistent meta-control state (Hommel 
& Wiers, 2017), which enables participants to implement a 
response style and to vary it if required. Apparently, setting 
this response style is implemented less consistently by older 
adults and may not affect all tasks similarly.

The present study also yielded at least a moderately coher-
ent factor for the non-decision time in most datasets (see 
Dataset 1 and Dataset 6 including four tasks for exceptions). 
Although this finding is in line with the results reported by 
Weigard et al. (2021), it was still surprising to observe a fac-
tor in this case because the non-decision time is defined as 
a parameter reflecting task-specific processes (Wagenmak-
ers, 2009). One way to interpret this result may be to relate 

Fig. 16   Dataset 6 from Kane et al. (2016): Omega coefficients of fac-
tor reliability for single-factor models and hierarchical omegas for the 
attentional-control factor in bifactor models for which the fit statis-
tics was acceptable to good. See Fig. 14 note for details. A Dataset 6: 

Kane et al. (2016) with the models including four tasks. B Dataset 6: 
Kane et al. (2016) with the models including only three tasks (i.e., the 
number Stroop, arrow flanker, and letter flanker tasks). (Color figure 
online)
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it to the finding that non-decision time has been reported to 
capture to the ability to predict the timing of forthcoming 
events (Van Den Brink et al., 2021). Critically, this ability 
to predict timing has been suggested to be related to atten-
tional-control abilities (Broadway & Engle, 2011a, 2011b). 
Although this interpretation seems attractive, there exists, 
however, a more parsimonious way to interpret the coher-
ent factor for non-decision time. Our hierarchical Bayesian 
approach does not consider contaminant responses (Ratcliff 
& Tuerlinckx, 2002). Thus, the individual differences in 

non-decision time may reflect individual differences in the 
fastest RTs. In this case, a factor in the non-decision time 
means that individual differences in the fastest RTs have a 
similar ordering across tasks. This similar ordering seems 
to be more or less pronounced, depending on the tasks used 
and the samples tested.

One may wonder why in addition to modeling separate 
drift rates for congruent and incongruent trials, we did not 
take a similar approach for the boundary separation and 
non-decision time. The main argument against this is again 

Table 19   List of excluded tasks to test the robustness of the results from single-factor models in Datasets 1 and 2

Excluded tasks in Dataset 1 Excluded tasks in Dataset 2

Color Stroop Negative compatibility
Global–local Negative compatibility and letter flanker
Color Stroop and global–local Negative compatibility and positive compatibility
Color Stroop and letter flanker Negative compatibility, letter flanker, and positive compatibility
Color Stroop, global–local, and letter flanker Negative compatibility, letter flanker, and number Stroop
Color Stroop, letter flanker, and negative compatibility Negative compatibility, letter flanker, positive compatibility, and number 

Stroop
Color Stroop, global–local, letter flanker, and negative compatibility Negative compatibility, letter flanker, positive compatibility, number 

Stroop, and Simon
Color Stroop, global–local, letter flanker, and number Stroop Negative compatibility, letter flanker, positive compatibility, number 

Stroop, and arrow flanker
Color Stroop, global–local, letter flanker, negative compatibility, and 

number Stroop
Color Stroop, global–local, letter flanker, negative compatibility, and 

positive compatibility

Table 20   Summary of the results

For Dataset 6, the models were computed in two ways. First, all four tasks were used. Second, following previous research (Rey-Mermet et al., 
2018), only three tasks—that is, the number Stroop, arrow flanker, and letter flanker tasks—were used. For the sake of clarity, results suggesting 
a coherent factor or a moderately coherent factor are presented in bold
a The results on the posterior mean covariance matrix suggest a moderately coherent factor of attentional control. However, the results on the 500 
covariance matrices sampled from the posterior distribution emphasized the uncertainty of the estimate for the factor reliability, thus challenging 
the view of a coherent factor

Dataset Drift rate
with difference coding

Drift rate
with condition coding

Boundary
separation

Non-decision
time

1 No coherent factor
of attentional control

No coherent factor
of attentional control

A coherent factor No factor

2 No factor
of attentional control

No coherent factor
of attentional control

No factor A moderately
coherent factor

3 No factor
of attentional control

No factor
of attentional control

A coherent factor A coherent factor

4 A moderately coherent factor
of attentional control but uncertaina

No coherent factor
of attentional control

A coherent factor A moderately
coherent factor

5 No coherent factor
of attentional control

No coherent factor
of attentional control

A coherent factor A coherent factor

6–four tasks A moderately coherent factor
of attentional control but uncertaina

No coherent factor
of attentional control

No factor No factor

6–three tasks A moderately coherent factor
of attentional control but uncertaina

No factor of attentional control A coherent factor A moderately
coherent factor
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the statistical bias-variance trade-off (Yarkoni & Westfall, 
2017). We want our diffusion model to be as complex as 
necessary to account for the main pattern in the data, but 
not any more complex. In line with this idea, psychomet-
ric applications of the diffusion model (e.g., van der Maas 
et al., 2011; Vandekerckhove, 2014) usually apply the sim-
plest possible model variants, similar to our approach here. 
Nevertheless, we also attempted to estimate models in which 
either all three parameters, or only the drift rate and the 
boundary separation, were allowed to differ across congru-
ent and incongruent trials. However, these models failed to 
converge and produced “divergent transitions” in the MCMC 
sampling process, indicating a pathological likelihood sur-
face or, more colloquially, a mis-specified model (e.g., 
Betancourt, 2017). Thus, at least given the available data, 
and with the goal in mind to estimate the variance–covari-
ance matrix with a non-informative prior for the correla-
tion matrix (which we believe is one of the unique strengths 
of our approach), the model in which only the drift rate is 
allowed to vary between congruent and incongruent trials is 
not only the theoretically most appropriate model, but also 
the only computationally feasible diffusion model.

Attentional control does not exist as a psychometric 
construct: Is this conclusion warranted?

Overall, the results of the present study indicate that even if 
we limit the impact of individual differences in speed–accu-
racy trade-offs and the impact of measurement error on the 
attentional-control measures, no coherent factor of atten-
tional control emerges. Moreover, bypassing difference 
scores by applying a bifactor-modeling approach did not 
solve the issue (see also Rey-Mermet et al., 2018, 2019, 
2020; cf. Draheim et al., 2019, 2021). These findings sug-
gest that the difficulty of establishing attentional control as a 
psychometric construct is not primarily a measurement prob-
lem. Therefore, these findings challenge attentional control 
as a psychometric construct. The issues we are facing when 
establishing attentional control as a psychometric construct 
are no longer methodological but theoretical. In particular, 
we need to rethink either how we assess attentional control 
or how we think about attentional control as a psychometric 
construct.

One may argue, nevertheless, that these conclusions are 
not warranted. We next argue why, in our view, they are 
warranted.

Sufficient power?

A first concern may be whether, in the datasets we used, 
we had enough statistical power to establish attentional 
control at the latent-variable level or to accept the null 
hypothesis (i.e., to determine that attentional control at 

the latent-variable level has no empirical basis). Statis-
tical power—the probability of obtaining a significant 
effect, given that there is a true effect—is only defined in 
the framework of null-hypothesis significance testing and 
therefore cannot be applied to our Bayesian analysis. In 
the present context, an approximately equivalent concept in 
Bayesian statistics is the precision of the posterior distribu-
tions. Like power, it depends on the amount of information 
in the data, that is, on the sample size and the number of 
trials per participant and condition: Less informative data 
translate into less precise parameter estimates, reflecting 
less certainty about their values. Unlike power, the preci-
sion of posteriors reflects the informativeness of the data 
not only for showing a true effect but also for providing evi-
dence for the absence of a non-existing effect. Also, unlike 
power, precision does not depend on the a priori choice of 
an effect size.

The question is now: Were our correlation estimates 
precise enough? Inspection of Tables 3, 4, 5, 6, 7, 8, 9, 10, 
11, 12, 13, 14, 15, 16, 17 and 18 shows that the correlation 
coefficients, which form the basis for the SEMs, are esti-
mated quite precisely in most cases. More specifically, in 
most cases in which the correlations do not differ credibly 
from zero, the Bayesian 95% credible intervals, reflect-
ing the width of the posteriors, are quite narrow around 
zero and generally exclude medium or large correlations 
as improbable. The data provide sufficient evidence that 
nearly all of the correlations of the drift-rate difference 
parameters across tasks are small at best (see Tables 3, 7, 
11, and 15). Moreover, most of their posteriors had sub-
stantial mass on both sides of zero, implying that the cor-
relations are equally likely to be positive (the predicted 
direction) or negative (which is incompatible with the idea 
of a general attentional control factor). More specifically, 
among all 71 drift-rate difference correlation parameters, 
only three had credible intervals with an upper bound 
above 0.50 (i.e., 0.50 twice and 0.52 once), whereas three 
correlations had a lower bound smaller than − 0.40 (with 
the smallest lower bound being − 0.48). This suggests that 
our correlation coefficients are precise enough to warrant 
our conclusions.

A complementary perspective on the precision of the 
correlations is to consider the strength of evidence for posi-
tive correlations among drift-rate parameters for both the 
difference and condition coding parametrizations. We con-
sider two different metrics—both shown in Table 21—the 
probability that the average correlation is larger than a given 
threshold and the probability that all correlations are larger 
than a given threshold. The “average correlations” columns 
tell us something about the average precision of the correla-
tion estimates. If a dataset was completely uninformative, 
we would expect a probability of 0.50 for average correla-
tions > 0, and a probability of between 0.20 (for three tasks) 
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and 0.05 (for eight tasks) for average correlations > 0.5.3 
The degree of deviation from this pattern provides informa-
tion regarding both location and precision of the average 
pairwise correlations. The “all correlations” columns tell 
us something about the evidence for the positive manifold 
across tasks, the assumption that all pair-wise correlations 
among drift rates or drift-rate differences are positive. If 
a dataset was completely uninformative, we expect the 
probability for all correlations > 0 to be only 0.16 for three 
tasks and only 0.04 for four tasks. These values thus allow 
a direct assessment of whether a given dataset can provide 
evidence for a coherent factor of attentional control.

For the difference coding parameterizations, we gener-
ally find good evidence for average correlations > 0, with the 
only exceptions being Datasets 1 and 2. At the same time, we 
also find evidence that the average correlations are generally 
small in magnitude with no data set having more than 0.1 
probability for correlations > 0.4. This suggests that the data 
overall is informative for the drift-rate difference correla-
tions, but these correlations are likely positive and small. In 
line with this interpretation, for three of the datasets (Data-
sets, 4, 5, and 6 including three tasks), we additionally found 
strong evidence that all correlations are > 0. Even in these 
cases, however, the vast majority of posterior probability is 
concentrated on small correlations between 0 and 0.2.

For the condition coding parameterizations, the evidence 
for the average correlations between drift rates being > 0 is 
much stronger than for difference coding; it approaches 
1. For Datasets 1, 2 and 6, most of the evidence points to 
medium sized correlations with the majority of posterior 
probability concentrated on values between 0.1 and 0.3 or 
0.4. For the other datasets, the majority of the posterior 
probability is concentrated on higher average probabilities. 
For example, for Dataset 4, most of the posterior probabil-
ity is concentrated on average correlations between 0.3 and 
0.5 with even 0.3 probability for correlations > 0.5. If we 
consider the evidence for the positive manifold that all cor-
relations are positive, only Datasets 1 and 2 show strong evi-
dence against that assumption. For all other datasets, there 
is substantial posterior probability that all correlations are 
positive. For Datasets 3, 4, and 5, there is even evidence that 
all correlations are > 0.2. Thus, the data considered here is 
clearly informative with respect to the precision, location, 
and even direction of the pairwise correlations. Neverthe-
less, in the structural equation modeling approach, we failed 
to find evidence for a coherent factor of attentional control 
when using the bifactor model. Thus, the positive manifold 
we observed among drift rates only supports the general fac-
tor but not the specific attentional control factor.

The generally positive assessment of the precision with 
which we estimated the correlations contrast with the results 
reported by Rouder et al. (2023) who also used Datasets 1 
and 2. Their results showed low correlations suffering from 
a large degree of imprecision (i.e., wide posterior distribu-
tions). However, even though they also used a hierarchical 
Bayesian model, their model assumed that response times 
follow a normal distribution, an assumption that the data 
clearly violates. Thus, it appears that our approach of using 
a response time distribution more appropriate for the data, 
the Wiener diffusion model, improves the precision of the 
correlation estimates to a noticeable degree.4 With such an 
approach, it is possible to draw conclusions from existing 
studies using attentional-control tasks. The conclusion that 
the data suggests is that no psychometric construct of atten-
tional control exists.

What about reliability?

One may also wonder why we did not compute reliability 
estimates, although we were interested in the impact of 
measurement error. The reason is that we used a Bayesian 
modelling approach, which treats measurement error differ-
ently from classical test theory. In classical test theory, there 
is a conceptual separation between true score and error. In 
Bayesian parameter estimation, there is no such separation. 
Measurement error is instead represented in the precision of 
the posterior distribution. High precision of the posterior dis-
tribution indicates low measurement error, whereas low pre-
cision indicates high measurement error. Thus, in a Bayesian 
modelling approach, it is not appropriate to compute reliabil-
ity as proposed in classical test theory to assess the measure-
ment error. As highlighted above, the results of our approach 
showed that the correlations were estimated quite precisely 
in most cases. Therefore, we can conclude that our approach 
successfully reduced the impact of measurement error.

One may, nevertheless, argue that we could still compute 
reliability estimates by splitting the data into two halves and 
estimating the Bayesian model independently to each half. 
However, this approach is unsuitable. The reason is that this 
approach would only use half of the data for each estimation 

3  These values were obtained via simulation; see R code here: https://​
osf.​io/​h9qu4

4  Rouder et al. (2023) also report (their Footnote 2) that in their sim-
ulations, the inverse-Wishart prior for the variance–covariance matrix 
showed “better performance” than an approach using an LKJ prior. 
They attribute this to the ability of the inverse-Wishart prior to con-
strain the scale of individual differences on the level of the response 
times. In our approach, the diffusion model already constrains the 
scale of the data by explicitly modelling the right-skewed shape of 
response time distribution. Furthermore, individual differences are 
not modelled on the level of the response times but on the level of 
the diffusion model parameters, for which prior information about 
the scale is not readily available. Thus, given the general preference 
for the LKJ prior in the literature (e.g., McElreath, 2020), it seems 
unlikely that the same would hold here.

https://osf.io/h9qu4
https://osf.io/h9qu4


	 Psychonomic Bulletin & Review

step, which would decrease the amount of information used 
to compute the parameter estimates. Because the parameter 
estimates of each individual participant are informed by all 
data of all other participants (e.g., Rouder & Haaf, 2019), 
this would counteract the reduction of the measurement 
error that should be achieved with a hierarchical Bayes-
ian framework. Thus, the measurement error may bias the 
reliability estimate to an unknown degree downwards, thus 
making such reliability estimates less or uninformative.

Another approach to compute reliability estimates would 
be to estimate the reliability of a parameter from the cor-
responding trial-by-trial variability (Rouder et al., 2023, 
Footnote 1). This is in principle possible as the full diffusion 
model includes a parameter for the trial-by-trial variability 
of drift rate. However, estimating this variability parameter 
reliably is itself extremely difficult (Boehm et al., 2018). 
Thus, it is unclear whether a reliability estimate based on 
an unreliable variability parameter would be particularly 
insightful. Furthermore, to strike a good balance between 
bias and variance when estimating the diffusion model, we 
decided not to include trial-by-trial variability parameters 
in our model.

The right diffusion model?

A third concern may be whether we used the right diffusion-
modeling approach. Previous research has put forward, for 
example, the diffusion model for conflict tasks (e.g., Ambrosi 
et al., 2019; Hedge et al., 2019, 2022; Ulrich et al., 2015) or its 
revision (Lee & Sewell, 2024). As these models were devel-
oped to explain experimental patterns associated with some 
attentional-control tasks, one may argue that these models are 
more suitable to estimate parameters. However, so far, this is 
by no means certain. The reason is that to explain these subtle 
experimental patterns, the diffusion models for conflict tasks 
are more complex. More complex models increase the risk 
of overfitting noise. When it comes to estimating parameters 
on the levels of individuals, simplified models can have better 
parameter recovery (see Boehm et al., 2018; van Ravenzwaaij 
& Oberauer, 2009). Because noise is idiosyncratic to each task, 
this may result in reduced correlations among tasks. Thus, the 
weak across-task correlations between parameters of the diffu-
sion model for conflict tasks observed by Hedge et al. (2022) 
may be explained by the complexity of that model. The goal of 
the present study was to create optimal conditions for observ-
ing substantial correlations among the attentional-control tasks. 
For this reason, it was more appropriate to use simpler models, 
such as the Wiener diffusion model, which prevents the risk of 
overfitting noise in the data. Nevertheless, it is a question for 
further research to determine to what extent the diffusion model 
for conflict tasks or its revision are adequate to estimate correla-
tions and parameters at the level of individuals.

Too much control for non‑attentional‑control processes?

A fourth concern may be whether our efforts to control 
for processes unrelated to attentional control might have 
removed specific attentional-control variance. In particular, 
using a design in which incongruent and congruent trials 
were intermixed within the same block and occurred with 
the same frequency could be considered suboptimal. The 
reason is that under these conditions (i.e., a mixed-block 
design with equal frequency of both trial types), attentional 
control has been suggested to affect performance on congru-
ent trials (e.g., Heitz & Engle, 2007; Kane & Engle, 2003; 
Unsworth et al., 2004). This was interpreted as the result of 
attentional control being overused. That is, in a design in 
which half of the trials are incongruent, it might be parsimo-
nious to use attentional control on all trials, including those 
trials that do not require attentional control (i.e., congruent 
trials). This argument may be valid for Datasets 3 and 5 
in which incongruent and congruent trials were presented 
equally often. It may also apply for Dataset 4 in which incon-
gruent trials were presented more often than congruent trials 
(see Whitehead et al., 2019), thus favorizing the overuse of 
attentional control for congruent trials. However, the argu-
ment of attentional control being overused is less plausible 
for Datasets 1, 2 and 6. The reason is that in these datasets, 
different types of trials or different ratio of incongruent ver-
sus congruent trials were used (see Table 1). For example, 
in Datasets 1 and 2, neutral trials were presented intermixed 
with incongruent and congruent trials (see the Simon task 
for an exception; see Rey-Mermet et al., 2018). Thus, incon-
gruent trials—that is, trials in which attentional control is 
assumed to be required—were rare (i.e., 33%) in comparison 
with trials in which attentional control is not assumed to be 
required (i.e., congruent and neutral trials). Together, this 
indicates that the present results cannot be explained by the 
argument of attentional control being overused.

Similarly, one might argue that congruent trials are question-
able as a baseline because they may involve a task conflict (e.g., 
Steinhauser & Hübner, 2009). For example, in the color Stroop 
task, when the word “red” is presented in the print color red, 
it may be unclear whether the decision to be performed is the 
one about the print color or the one about the word meaning 
(although both decisions would result in the same response). 
This uncertainty or task conflict may require attentional control, 
thus making congruent trials an inappropriate baseline. How-
ever, in the present study, no coherent factor of attentional con-
trol was established when neutral trials—that is, trials in which 
there is no task conflict because only response-relevant features 
are presented—were used as baseline in the bifactor-modeling 
analyses from Datasets 1 and 2. Together, these results challenge 
the assumption that congruent trials are not an appropriate base-
line to remove non-attentional-control processes.
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Full account for individual indifferences in speed–accuracy 
trade‑offs and the difficulty of isolating attentional control 
from measurement error?

A further concern may be whether our modeling approach in 
which we combined hierarchical Bayesian Wiener diffusion 
modeling with SEM did fully account for speed–accuracy 
trade-offs and measurement error. We should acknowledge that 
no analysis, irrespective of its sophistication, can completely 
eliminate all the effects of speed–accuracy trade-offs and 
measurement error. Similarly, no analysis can faultlessly recon-
struct what the data would have been without such contaminat-
ing sources of variance. For example, individual differences in 
speed–accuracy trade-offs are never fully accounted for by an 
analysis, unless the measurement model is perfect. However, 
no model is perfect. In this regard, the diffusion model has 
been the subject of much debate concerning how effectively it 
captures speed–accuracy trade-offs (e.g., Hedge et al., 2018a, 
2018b; Rafiei & Rahnev, 2021). The reason is that instructed 
speed–accuracy trade-offs have been found to affect multiple 
parameters (e.g., boundary separation, drift rate, nondecision 
time). Moreover, these parameters can trade off against each 
other, potentially leading to unstable parameters across par-
ticipants. One of the advantages of the hierarchical Bayesian 
framework is that it substantially limits this problem. Never-
theless, the speed–accuracy trade-offs can fluctuate to varying 
degrees across multiple participants.

This highlights that there is always the possibility that a 
more sophisticated modelling approach coupled with even 
more data is eventually able to reliably uncover a coher-
ent latent variable reflecting general attention-control abil-
ity. However, given the considerable effort that has been 
invested in this question and the overall meager success rate 
(e.g., von Bastian et al., 2020), we argue that this possibility 
seems more theoretical than realistic.

Are the tasks used to measure attentional control 
adequate?

A final concern may regard the tasks used to measure atten-
tional control. In line with previous research (e.g., Faßbender 
et al., 2023; Gärtner & Strobel, 2021; Löffler et al., 2024; 
Rey-Mermet et al., 2018, 2019, 2020), the results of the 
present study showed that when attentional control is meas-
ured with the tasks used most often for that purpose, like 
the Stroop task, attentional control cannot be established 
as a psychometric construct. This emphasizes that the typi-
cal tasks are not doing the job that we want them to do for 
the measurement of individual differences. As pointed out 
by Hedges et al. (2018b), in most situations, the typical 
attentional-control tasks do not produce sufficient individual 
variation in attentional control relative to measurement error 

(see also Rouder et al., 2023). Advanced individual-differ-
ences analyses, such as the analyses reported in the present 
study, can reduce the impact of this problem. It is the rea-
son why we observed quite precise correlation coefficients. 
However, we should acknowledge that the present approach 
cannot completely eliminate this problem if the tasks do not 
produce sufficient individual variation in attentional control.

The difficulty of the attentional-control tasks in produc-
ing sufficient individual variation in attentional control has 
motivated researchers to seek alternative ways for measuring 
attentional control. For example, Rey-Mermet and Rothen 
(2025) have tested the replicability and robustness of the 
early structural equation models in which attentional con-
trol was extracted at the latent-variable level using working-
memory tasks and short-term memory tasks (Engle et al., 
1999; Kane et al., 2004). These tasks are used to assess the 
temporary maintenance of information and the temporary 
maintenance and manipulation of information, respec-
tively. Critically, these tasks have been assumed to require 
attentional control (Engle et al., 1999; Miyake et al., 2000; 
see also Baddeley, 1996). Rey-Mermet and Rothen (2025) 
showed, however, that the models used to extract attentional 
control were not replicable. These results challenge the idea 
of using these models as an alternative to estimate atten-
tional control at the latent-variable level. Furthermore, these 
results question the common assumption that attentional 
control is involved in working-memory tasks.

Other researchers have developed new tasks to measure 
attentional control as a psychometric construct (e.g., Bur-
goyne et al., 2023; Draheim et al., 2021, 2024; Martin et al., 
2021). The validity of these new tasks has been assessed 
using zero-order and/or latent correlations between the 
new tasks and the typical tasks, as well as tasks used to 
assess other constructs, such as working memory, process-
ing speed, fluid intelligence (i.e., the ability to reason with 
novel information). However, this approach is problematic 
for two reasons (see also Rey-Mermet & Rothen, 2025). 
First, using the typical measures of attentional control as a 
criterion is questionable because the results of the present 
study as well as those of previous research showed that these 
measures do not assess the general attentional-control abil-
ity (e.g., Faßbender et al., 2023; Gärtner & Strobel, 2021; 
Hedge et al., 2018a, 2018b; Löffler et al., 2024; Rey-Mermet 
et al., 2018, 2019, 2020; Rouder et al., 2023). Second, the 
correlations observed between the new tasks and working-
memory, fluid-intelligence, or processing-speed tasks may 
be driven by other processes than attentional control. The 
reason is that it has not been clarified for the new tasks 
how attentional control was isolated from other processes. 
Together, this emphasizes the necessity of being cautious 
when using these new tasks because we do not know what 
we are measuring.
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Conclusion

In sum, the results of the present study show that no fac-
tor of attentional control could be established even if we 
limit the impact of individual differences in speed–accu-
racy trade-offs and the impact of measurement error on the 
attentional-control measures. The present study is, thus, the 
first to address an influential critique of difference scores 
(Draheim et al., 2021) by showing that using improved data-
analytic methods that circumvent the limitations of differ-
ence scores do not lead to more optimistic conclusions con-
cerning the existence of a general attention-control factor. 
This highlights that the difficulty of establishing attentional 
control as a psychometric construct is not primarily a meas-
urement problem. Taken together, the available evidence 
challenges the existence of attentional control as a psycho-
metric construct. This calls into question the widely held 
assumption that people differ in a general ability to control 
attention. It also questions research in which a general atten-
tional-control ability is used as a construct explaining group 
differences, as for example, in developmental psychology, 
aging research, bilingualism, and psychopathology.
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