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Abstract

Attentional control refers to the ability to maintain and implement a goal and goal-relevant information when facing distrac-
tion. Previous research has failed to substantiate strong evidence for a psychometric construct of attentional control. This
could result from two methodological shortcomings: (a) the neglect of individual differences in speed—accuracy trade-offs
when only speed or accuracy is used as dependent variable, and (b) the difficulty of isolating attentional control from measure-
ment error. To overcome both issues, we combined hierarchical Bayesian Wiener diffusion modeling with structural equation
modeling. We reanalyzed six datasets that included data from three to eight attentional-control tasks, and data from young
and older adults. Overall, the results showed that measures of attentional control failed to correlate with each other and failed
to load on a latent variable. Therefore, limiting the impact of differences in speed—accuracy trade-offs and of measurement
error does not solve the difficulty of establishing attentional control as a psychometric construct. These findings strengthen
the case against a psychometric construct of attentional control.

Keywords Executive functions - Cognitive control - Individual differences - Hierarchical Bayesian Wiener diffusion
model - Structural equation modeling

For more than 20 years, individual-differences researchers
have put forward attentional control as a cognitive psycho-
metric construct (e.g., Engle et al., 1999; Miyake et al.,
Alodie Rey-Mermet and Henrik Singmann Shared first authorship. 2000). This construct—also referred to as attention control,
cognitive control, executive control, executive attention, or
executive functions—refers to a person’s ability to maintain
and implement a goal and goal-relevant information in the
face of distraction (von Bastian et al., 2020). This ability is
meant to be general, contributing to success in many differ-
ent tests and situations demanding attentional control. As
such, it should be measurable as a latent variable (i.e., fac-
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of affairs results from two methodological issues (see, e.g.,
Draheim et al., 2019): (a) the difficulty of isolating atten-
tional control from measurement error, and (b) the neglect
of individual differences in speed—accuracy trade-offs. The
purpose of the present study was to establish attentional
control as a psychometric construct when both issues were
overcome. To this end, we combined hierarchical Bayesian
Wiener diffusion modeling with structural equation mod-
eling (SEM).

Why is it difficult to establish attentional
control at the latent-variable level?

At first glance, individual differences research was success-
ful in establishing attentional control as a latent variable
(Chuderski, 2014; Engle et al., 1999; Friedman et al., 2006,
2008; Friedman & Miyake, 2017; Kane et al., 2004; McCabe
et al., 2010; Miyake et al., 2000; Redick et al., 2016; Sch-
weizer & Moosbrugger, 2004; Schweizer et al., 2005; Stahl
et al., 2014; Unsworth et al., 2010, 2014, 2015, 2021; Uns-
worth & McMillan, 2014; Unsworth et al., 2009a, 2009b;
Unsworth & Spillers, 2010; see Unsworth et al., 2024, for
a recent meta-analysis). However, recent research has put
this conclusion into question (see Rey-Mermet et al., 2019;
Schubert & Rey-Mermet, 2019; von Bastian et al., 2020,
for overviews). First, in some studies, attentional-control
tasks did not correlate consistently with each other (e.g., De
Simoni & von Bastian, 2018; Guye & von Bastian, 2017;
Paap & Greenberg, 2013; von Bastian et al., 2016), and in
some cases they failed to load on a factor (Klauer et al.,
2010; Krumm et al., 2009) or they had to be merged with
other tasks to load on a factor (e.g., Brydges et al., 2012;
Hedden & Yoon, 2006; Klauer et al., 2010; van der Sluis
et al., 2007). Second, when a factor was established, it was
often not coherent (e.g., Chuderski, 2015; Chuderski &
Necka, 2012; Chuderski et al., 2012; Hull et al., 2008; Kane
et al., 2016; Pettigrew & Martin, 2014; Shipstead et al.,
2014; Unsworth et al., 2009a, 2009b). That is, one task’s fac-
tor loading was substantially higher than the loadings of the
remaining tasks. Thus, the factor represented predominant
variance in one task, rather than common variance across
multiple measures (see Rey-Mermet et al., 2018, 2019,
2020). Third, a reanalysis of previous datasets suggests a
bias toward the publication of well-fitting but nonreplicable
structural models of attentional control (Karr et al., 2018).
Proponents of the attentional-control construct have put
forward two methodological reasons to explain the difficulty
of establishing attentional control at the latent-variable level.
The first reason is the contamination of attentional-control
measures with measurement error (e.g., Hedge et al., 2018a,
2018b). This problem is severe because these measures must
isolate attentional control from other sources of variance in
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task performance (e.g., intelligence, mental speed). To do so,
attentional-control measures typically rely on measuring the
performance difference between two conditions, one with
high and one with low demand on attentional control. For
example, in a color Stroop task, participants have to name
the color of color words while ignoring the word meaning.
The usual approach for isolating attentional control is by
computing the congruency effect—that is, by subtracting the
mean RT on baseline trials (e.g., congruent trials, such as the
word “red” printed in red for the color Stroop task) from the
mean RT on trials with high demand on attentional control
(i.e., incongruent trials, such as the word “green” printed in
red). The problem with this approach is that there is much
trial-by-trial variability in RTs, adding measurement noise to
the mean RT that is unknown and unaccounted for (Rouder
& Haaf, 2019; Rouder et al., 2023). Taking the difference of
two—typically highly correlated—mean RTs removes much
of the systematic individual-differences variance while com-
pounding the measurement noise. Therefore, RT differences
between congruent and incongruent conditions often have
poor reliability (e.g., Hedge et al., 2018a, 2018b).

This shows that there is the need for a better approach
of isolating true attentional-control variance. One approach
used to bypass computing a difference score in SEM has
been to apply a bifactor modeling approach. In this approach,
two factors are modeled: (a) a general or common factor on
which all trials with both low and high demand on atten-
tional control are forced to load, and (b) a specific atten-
tional-control factor on which only trials with high demand
on attentional control are forced to load. The general or com-
mon factor is thus meant to extract all individual differences
in non-attentional-control processes, whereas the factor
extracting individual differences in attentional-control pro-
cesses is the specific attentional-control factor. The results of
several such modelling efforts showed, however, no coherent
specific factor of attentional control, thus further emphasiz-
ing the difficulty of establishing attentional control at the
latent-variable level even when difference scores were not
used (e.g., Keye et al., 2009; Rey-Mermet et al., 2019, 2020).

A second reason for the difficulty of establishing atten-
tional control at the latent-variable level is that most atten-
tional-control measures rely exclusively on response times,
so that individual differences in speed—accuracy trade-offs
are disregarded (Draheim et al., 2019). Some participants
might favor speed over accuracy, while others favor accu-
racy over speed. Hence, a measure that ignores individual
differences in accuracy could miss a substantial part of the
variance in attentional-control ability. One way to consider
individual differences in speed—accuracy trade-offs is to
integrate both dependent measures (i.e., RTs and accuracy)
into a single score. Unfortunately, although these scores are
relatively easy to compute, they are generally not able to
unambiguously account for differences in speed—accuracy



Psychonomic Bulletin & Review

trade-offs (e.g., Liesefeld & Janczyk, 2019; Vandierendonck,
2017). It has even been put forward that these scores reflect
speed—accuracy trade-offs, making them difficult to interpret
(Hedge et al., 2018a, 2018b).

Another way to take into account speed—accuracy
trade-offs is to push all attentional-control variance into
accuracy—for example, by measuring attentional control
under a time limit, which is calibrated according to each
person’s performance. With such a deadline approach, low
attentional-control ability would be measured as low accu-
racy, irrespective of whether speed is favored over accu-
racy or accuracy is favored over speed. Previous research
has implemented this response deadline approach in differ-
ent ways (Draheim et al., 2021, 2024; Rey-Mermet et al.,
2019). For example, Draheim et al. (2021) used a response
deadline, which changed after every 16 trials. That is, if the
responses were correct on at least 15 trials, the response
deadline decreased, thus providing less time to respond. In
contrast, if fewer than 15 trials were correct, the response
deadline increased, thus providing more time to respond.
The change occurred based on performance of both incon-
gruent and congruent trials. In that study, attentional control
was measured as the response deadline after the final block.
In a follow-up study, Draheim et al. (2024) adjusted their
response deadline approach in two ways. First, the response
deadline changed after every incongruent trial, depending
on the performance on this trial only. Second, attentional
control was measured as the average response time of the
final four trials in which the response deadline reversed (i.e.,
increased after having decreased or decreased after having
increased). In both studies, the results suggest well-fitting
models including coherent factors. However, in these stud-
ies, the dependent variable measures how quickly and accu-
rately a person can do the task regardless of congruency con-
dition. Therefore, it is not apparent why the measures should
capture attentional control and how these measures remove
variance of other processes, which are not attentional-control
processes.

Rey-Mermet et al. (2019) overcame these issues by apply-
ing the response deadline on trials with only one relevant
response feature (so-called neutral trials, such as, e.g., a
row of red Xs for the color Stroop task). These trials were
performed in the first block of the attentional-control task.
In the subsequent blocks, incongruent and congruent trials
were presented, and the response deadline was fixed to the
calibrated duration. Attentional control was thus measured
as the difference in error rates between incongruent and
congruent trials. With such a response deadline approach,
Rey-Mermet et al. (2019) reduced the individual differ-
ences in general ability and in the ability to carry out all the
non-attentional-control processes. SEM, however, identi-
fied no models with good fit statistics and coherent factors.
Therefore, when differences in speed—accuracy trade-offs

are taken into account with a response deadline approach
and when non-attentional-control processes are controlled
for, it is still difficult to establish attentional control at the
latent-variable level.

Nevertheless, the response deadline approach may affect
how participants engage with the tasks. As a consequence,
for all studies in which the tasks were implemented with a
response deadline approach (Draheim et al., 2021, 2024;
Rey-Mermet et al., 2019), this could raise doubts about the
validity of these tasks as measures of attentional control.

How to overcome the contamination

of attentional-control measures

with measurement error and the neglect
of individual differences in speed-accuracy
trade-offs?

One approach to address both issues—that is, the contamina-
tion of attentional-control measures with measurement error
and the neglect of individual differences in speed—accuracy
trade-offs—is to employ a cognitive model, the diffusion
model (e.g., Donkin & Brown, 2018; Ratcliff & McKoon,
2008), as measurement model. This means that the param-
eters obtained from the diffusion model are used as meas-
ures of the latent variables of interest, such as the ability to
control attention.

The diffusion model is a well-validated model of simple
decisions that uses the full set of behavioral data to estimate
three parameters of theoretical interest: (1) the drift rate,
reflecting the rate at which information in favor of one or
the other decision accumulates over time, (2) the caution
parameter controlling the speed—accuracy trade-off, and (3)
the non-decision time capturing primarily the speed of sen-
sory and motor processes. This model addresses the prob-
lem of speed—accuracy trade-off in two ways (see Hedge
et al., 2018a, 2018b). First, it provides a framework in which
error rates as well as the RTs of both correct and incor-
rect responses are accounted for. Second, it accounts for the
effect of speed—accuracy trade-offs by separating the qual-
ity of information processing (i.e., the drift rate) from the
person’s speed—accuracy setting (i.e., the caution parameter).
The diffusion model also addresses the problem of meas-
urement error in two ways. First, the diffusion model is fit-
ted to the joint distribution of RT and accuracy, which thus
considerably reduces the effect of individual RTs, and the
associated noise, on the parameter estimates compared with
mean RTs. Second, the diffusion-model parameters jointly
determine the width of the RT distribution, thereby account-
ing for the trial-by-trial variability of each participant.

So far, only four studies have investigated attentional con-
trol by combining a diffusion modeling approach with SEM
or at least a correlative approach. In three studies (Loffler
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et al., 2024; Weigard et al., 2021; Yangiiez et al., 2024), the
standard diffusion model (Ratcliff, 1978) or a simplified ver-
sion of this model (Wagenmakers et al., 2007) was applied.
In these studies, the drift rates were considered as measures
of the efficiency of processing decision-relevant information.
Attentional control was thus assessed in three different ways.
First, attentional control was measured by subtracting drift
rates between low and high attentional-control conditions
(Loffler et al., 2024; Weigard et al., 2021; Yangiiez et al.,
2024). Second, attentional control was measured using only
the drift rates of the high attentional-control conditions (Lof-
fler et al., 2024; Yangiiez et al., 2024). Third, attentional
control was estimated as the remaining variance specific to
attentional control after controlling for baseline processes
(e.g., processing speed; Loffler et al., 2024; Yangiiez et al.,
2024). SEM identified no model including a coherent factor
of attentional control different from processing speed.!

In the last study (Hedge et al., 2022), the diffusion model
for conflict tasks (Ulrich et al., 2015)—an extension of the
standard diffusion model—was applied to different datasets
including two to three Stroop-like tasks. In this model, in
addition to the three typical parameters, a rescaled gamma
function was included to capture conflict processing (in
particular, the assumption that the stimulus features to be
ignored have an early impact on the decision processes).
This changes the interpretation of the drift-rate parameter
which, in this case, reflects the processing efficiency once
the conflict has been resolved (rather than the speed of infor-
mation uptake in the complete decision process, as typically
interpreted in the standard diffusion model). Therefore, in
this diffusion model, attentional control is no longer cap-
tured by the drift rate but by the parameters underlying the
rescaled gamma function. Hedge et al. (2022) reported sig-
nificant zero-order correlations for the parameters reflecting
non-conflict processing in their diffusion modeling approach
(e.g., meta-analyzed correlation value=0.32 for the drift rate
and meta-analyzed correlation value =0.54 for the bound-
ary separation). However, the correlations between param-
eters capturing attentional control (i.e., those underlying
the gamma function) were weak (meta-analyzed correlation
values =0.04).

U In their study, Yangiiez et al. (2024) concluded that when atten-
tional control was measured using only the drift rates of the high
attentional-control conditions, their results provided evidence for a
factor of attentional control. However, this conclusion is questionable
for two reasons. First, Loffler et al. (2024) have shown that when only
the drift rates of the high attentional-control conditions are used to
estimate a factor of attentional control, there is no variance left that
can be explained by attentional control. All the variances could be
explained by processing speed. Second, Yangiiez et al. (2024) focused
on model comparison and convergence rates. No information was
provided about whether the models with the best fitting and high con-
vergence rates included coherent factors.
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Together, these studies represent a first step by demon-
strating the feasibility of combining diffusion models with
a correlative approach or SEM. However, these studies have
some limitations. First, the study of Hedge et al. (2022) has
two shortcomings. One is that the extension of the diffusion
model by a conflict-resolution parameter increases the model
complexity, and with it the risk of overfitting noise in the
data (e.g., van Ravenzwaaij & Oberauer, 2009). The other is
that the analyzed datasets included only two to three Stroop-
like tasks, and no SEM was computed. This limits the gen-
erality of these findings. Second, the studies of Loffler et al.
(2024), Weigard et al. (2021), and Yangiiez et al. (2024)
have their limitation as well: Computing the drift rates sepa-
rately for trials with low and high demand on attentional
control and then subtracting them compounds the measure-
ment error of the two drift-rate estimates in the same way as
subtracting mean RTs does. This counteracts the reduction
of measurement error that can be achieved by applying the
diffusion model. Finally, all the studies have the limitation
of applying a two-step procedure (Hedge et al., 2022; Lof-
fler et al., 2024; Weigard et al., 2021; Yangiiez et al., 2024).
That is, the diffusion model parameters were first estimated,
and the correlations were subsequently calculated on these
estimates. The two-step procedure ignores the measurement
error in the parameter estimates, and thereby underestimates
the uncertainty in the estimated correlations between them.
Together, this highlights that these studies are not sufficient
to conclude whether the impact of speed—accuracy trade-offs
and/or the contamination of attentional-control measures
by measurement error explain the difficulty of establishing
attentional control at the latent-variable level.

The present study

The purpose of the present study was to determine whether
a coherent factor of attentional control can be established
when individual differences in speed—accuracy trade-offs
and measurement error were accounted for. To this end, we
estimated a Wiener diffusion model, as well as the correla-
tions among model parameters, in a hierarchical Bayesian
framework (e.g., Donkin & Brown, 2018; Ratcliff & McK-
oon, 2008; Vandekerckhove et al., 2011). Then, based on
these correlations, we computed SEM to determine whether
a coherent factor of attentional control can be established.
To perform these analyses, we reused six datasets from three
studies (Kane et al., 2016; Rey-Mermet et al., 2018; White-
head et al., 2019).

In the present study, we opted for a hierarchical Bayesian
Wiener diffusion model because this modeling approach has
three advantages. The first advantage is that it combines the
strength of the diffusion model with a hierarchical Bayes-
ian statistical framework to reduce measurement error.
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Specifically, it takes into account measurement error in three
different ways. First, the Wiener diffusion model addresses
the problem of measurement error—that is, the noise arising
from trial-by-trial variability of RTs—because it explicitly
models the shape of the trial-by-trial RT distribution. Sec-
ond, the hierarchical Bayesian framework (Vandekerckhove
et al., 2011) substantially reduces the measurement error in
the individual-level effects because the parameter estimates
of each individual participant are informed by the data of all
other participants (e.g., Rouder & Haaf, 2019). Third, we
modeled the variance—covariance matrix of the individual-
level effects—the basis for the SEM analysis—as a param-
eter of the hierarchical model. This joint estimation approach
decreased the measurement error in the variance—covariance
matrix compared with a two-step procedure in which first
the diffusion model parameters are estimated and the cor-
relations are then subsequently calculated from these esti-
mates (cf. Hedge et al., 2022; Loffler et al., 2024; Weigard
et al., 2021; Yangiiez et al., 2024). Furthermore, because we
implemented our model in Stan (Carpenter et al., 2017), we
could use a non-informative LKJ prior for the correlation
matrix as well as independent weakly informative priors for
the variances. The non-informative LKJ prior has two ben-
efits over common alternatives in Bayesian approaches, such
as a (scaled) inverse-Wishart prior for the variance—covari-
ance matrix (e.g., JAGS; Plummer, 2003; Rouder & Haaf,
2019; see Gelman & Hill, 2007): It is conceptually and com-
putationally simpler and it is less likely to have an effect on
the estimation of the variance—covariance matrix (see, e.g.,
Klauer, 2010).

The second advantage of our hierarchical Bayesian Wie-
ner diffusion model is that it can be applied to the broad
variety of tasks used in all the datasets we selected (Rey-
Mermet et al., 2018; Whitehead et al., 2019). This is, for
example, not the case for the diffusion model for conflict
tasks. This diffusion model was specifically developed to
account for the flanker and Simon tasks (Ulrich et al., 2015)
and then recently extended to Stroop tasks (Ambrosi et al.,
2019; Hedge et al., 2019, 2022), but it cannot be applied to
all tasks we consider.

The third advantage of using the Wiener diffusion
model, and not a more complicated diffusion model, such
as the diffusion model for conflict tasks, is that choosing
a simpler model variant strikes a good compromise in the
statistical bias-variance trade-off (e.g., Yarkoni & West-
fall, 2017). Any statistical model needs to strike a balance
between the ability to adequately describe the signal in the
data and at the same time avoid overfitting the noise. Our
model accounts for the main pattern in the data that are
relevant for our research question (i.e., the impact of the
speed—accuracy trade-off and measurement error). A more
complex diffusion model may be able to account for some
more subtle data patterns of some of the tasks (i.e., achieve

lower bias), but is more likely to overfit (i.e., higher vari-
ance; White et al., 2018). This is in line with theoretical
and empirical results showing that simpler diffusion mod-
els outperform complex diffusion models in terms of pre-
dictive ability and parameter stability (Boehm et al., 2018;
Dutilh et al., 2019; van Ravenzwaaij & Oberauer, 2009).

To sum up, the present study goes beyond previous
research by investigating attentional control with a dif-
fusion modeling approach (Hedge et al., 2022; Weigard
et al., 2021) in two ways. First, in contrast to Hedge et al.
(2022) who applied the diffusion model for conflict tasks,
we applied a Wiener diffusion model to overcome the risk
of overfitting noise in the data. Applying the Wiener dif-
fusion model has also the advantage that we can use our
approach on a larger number of attentional-control tasks.
Second, in contrast to previous research (Hedge et al.,
2022; Loffler et al., 2024; Weigard et al., 2021; Yangiiez
et al., 2024) in which the diffusion model parameters
were first estimated and then the correlations were com-
puted, we applied a joint estimation approach in which
the correlations are modeled as a parameter of the hier-
archical model. This approach has the advantage that it
decreased the measurement error in comparison to the
two-step procedure used in previous research to estimate
the correlations.

How did we combine the hierarchical Bayesian
diffusion model with SEM?

Estimating the hierarchical Bayesian diffusion model pro-
duced a posterior distribution of the variance—covariance
matrix of the diffusion-model parameters across tasks. Then,
we applied SEM to the posterior distribution of the vari-
ance—covariance matrix. We did this once with the posterior
means (as point estimates of the variances and covariances),
and additionally multiple times with samples from the pos-
terior distribution to gauge what the uncertainty in the pos-
teriors implies for the uncertainty of SEM fits and SEM
parameter estimates. Moreover, we used two approaches to
isolate the attentional-control variance. Following the pre-
dominant practice in previous research, we used a difference
coding approach to estimate parameter differences between
the two conditions (i.e., the difference between trials with
low and high demand on attentional control). To avoid the
measurement error from the subtraction of drift rates, we
directly modeled a difference parameter representing the
mean difference between trials with low and high demand
on attentional control. In addition, to overcome the problems
associated with difference scores, we employed a condition
coding approach, which starts from diffusion-model param-
eters in each condition and uses a bifactor SEM to extract
attentional-control variance.
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What are we expecting?

We hypothesized that if the difficulty of establishing atten-
tional control as a psychometric construct results from
the neglect of individual differences in speed—accuracy
trade-offs and/or the large measurement error in atten-
tional-control measures, we would find a coherent factor
of attentional control. The reason is that we employed a
state-of-the-art computational approach for addressing
these two issues: The Wiener diffusion model accounts for
speed—accuracy trade-offs in a theoretically principled way,
and our hierarchical Bayesian implementation estimated
the variance—covariance matrix—the basis for the SEM—
as a set of latent model parameters separated from trial-
by-trial noise, thereby minimizing the influence of meas-
urement error. In contrast, if the difficulty of establishing
attentional control as a psychometric construct reflects the
true nature of attentional control—namely, that a general
ability to control attention does not exist—then we would
expect to find no coherent factor of attentional control.

We expected to establish a coherent factor of attentional
control on the drift-rate parameter. The reason is that, in the
diffusion model we used, the drift rate represents the rate at
which information for the correct response is accumulated in
a given trial (e.g., Ratcliff & McKoon, 2008). Thus, the drift
rate captures the efficiency of processing decision-relevant
information. In attentional-control tasks, the ability to con-
trol attention is assumed to play a primary role in how well
individuals can extract information from the relevant aspect
of the stimulus to select the correct response in the face
of potent distractors, such as in an incongruent trial (e.g.,
Hiibner et al., 2010; Ridderinkhof, 2002; Verguts & Note-
baert, 2009; Wiecki et al., 2013). Therefore, a higher ability
to control attention should contribute to a higher drift rate
in high-conflict conditions. This implies that relative to a
condition with low demand on attentional control, the drift
rate should be reduced in the condition with high demand
on attentional control because the irrelevant and misleading
information of this condition pushes the accumulator toward
the wrong response. Moreover, an individual with better
attentional-control ability should show a smaller reduction
of drift rates between both conditions because of their better
ability to prevent irrelevant and misleading information from
affecting the drift rate.

If a coherent factor is established not on the drift rate but
rather on the caution or non-decision-time parameters, this
would not support attentional control as a psychometric con-
struct. The reason is that these parameters reflect aspects of
performance that are theoretically unrelated to attention con-
trol ability—namely, as a person’s speed—accuracy trade-off
preference—and the speed of sensory and motor processes,
respectively.
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Method
Data set selection

We did not aim for a comprehensive reanalysis of all pub-
lished studies with which we could investigate our research
question. Rather, we chose a number of suitable datasets
based on the following four inclusion criteria. First, each
dataset included a minimum number of three conflict tasks,
such as the Stroop task. We opted for these conflict tasks for
four reasons. First, in most previous individual-differences
research, conflict tasks were used to assess attentional con-
trol (see Rey-Mermet et al., 2019; von Bastian et al., 2020,
for overviews of the tasks used in previous research). Sec-
ond, conflict tasks have been assumed to measure the core
ability necessary for attentional control (Miyake & Fried-
man, 2012). Third, the conflict tasks are the tasks for which
critics have emphasized the neglect of individual differences
in speed—accuracy trade-offs and the difficulty of isolating
attentional control from measurement error (Draheim et al.,
2019, 2021, 2024). Finally, nearly all previous research with
the diffusion-modeling approach has applied it to conflict
tasks (Hedge et al., 2022; Loffler et al., 2024; Weigard
etal., 2021; Yangiiez et al., 2024). We set three tasks as the
minimum because that number is necessary to estimate a
latent factor in structural equation modeling. Furthermore,
each task should include incongruent and congruent trials.
The reason is that both types of trials are required in order
to model attentional control as the variance that is left in
incongruent trials once baseline performance in congruent
trials has been accounted for. Without taking this into con-
sideration, the measure would lack construct validity, thus
making it unclear whether the measure assesses attentional
control or other processes (Loffler et al., 2024).

The second inclusion criterion requires that attentional
control was measured with both reaction times and error
rates. This criterion is necessary to allow the application
of the diffusion model. This leads, however, to the exclu-
sion of studies using a response deadline approach (Dra-
heim et al., 2021, 2024; Rey-Mermet et al., 2019). In those
studies, the reaction-time distribution is censored, which
can result in biased estimates for the diffusion model.

The third inclusion criterion concerns the availability
of trial-level raw data with an appropriate documentation.
This criterion is necessary because our approach relies on
data at the trial level.

The last inclusion criterion concerns the diversity of the
datasets regarding the sample sizes, the numbers of trials and
the labs where the data were collected. Thus, we selected
datasets with different sample sizes, different number of trials
and coming from different labs in order to assess the general-
ity and robustness of the results obtained with our approach.
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Tasks

We reanalyzed eight tasks (i.e., the color Stroop, number
Stroop, arrow flanker, letter flanker, Simon, global-local,
positive compatibility, and negative compatibility tasks)
from Rey-Mermet et al. (2018), three tasks (i.e., the color
Stroop, spatial Stroop,” and flanker tasks) from Whitehead
et al. (2019), and the number Stroop, spatial Stroop, arrow
flanker, and letter flanker tasks from Kane et al. (2016).
These were the tasks for which the attentional-control meas-
ure was the difference between congruent and incongruent
trials, so the same diffusion model could be applied to all
tasks. The tasks are shortly described in Table 1. A complete
description of the tasks (including material and procedure)
can be found in Rey-Mermet et al. (2018), in Whitehead
et al. (2019), and in Kane et al. (2016), respectively.

Datasets and data preparation
Two datasets from Rey-Mermet et al. (2018)

For the reanalysis of Rey-Mermet et al.’s (2018) data, we
considered the data from young and older adults as two dis-
tinct datasets (i.e., Dataset 1 and Dataset 2, respectively).
Specifically, we used the data from 120 young adults and
143 older adults—that is, the full sample from the original
study after removing participants that did not meet their psy-
chiatric or demographic inclusion criteria or for which some
error occurred during testing.

To prepare the data for a diffusion model analysis, we
removed, on a by-task basis, the data from participants for
which more than 2.5% of the trials were outside the response
window of 2 s. This procedure removed a total of 4.6% of tri-
als. The reason for this is that responses outside this window
were not recorded (i.e., the RT distribution was censored) and
applying the diffusion model to an RT distribution where a
non-negligible part of the distribution is censored can lead
to biased estimates. The final sample size for each task is
presented in Table 1. On a by-trial basis, we further excluded
0.15% of trials where either the computer malfunctioned, par-
ticipants used an illegitimate response key, or responded too
fast (i.e., faster than 200 ms). We also removed the remaining
0.1% of trials with responses outside the 2-s response window.

Three datasets from Whitehead et al. (2019)

For the reanalysis of Whitehead et al.’s (2019) data, we used
each of their three experiments as a separate dataset (i.e.,

2 In Whitehead et al. (2019), this task is designated as a Simon task.
To distinguish this task from the Simon task used by Rey-Mermet
et al. (2018) and to be consistent with most previous research (e.g.,
Hedge et al., 2022; Kane et al., 2016), we referred to this task as a
spatial Stroop task.

Dataset 3 designates the data from Experiment 1, Dataset 4
designates the data from Experiment 2, and Dataset 5 desig-
nates the data from Experiment 3). We used the same partic-
ipants as analyzed in the original study (i.e., 178 participants
in Dataset 3, 195 participants in Dataset 4, and 210 partici-
pants in Dataset 5). Because Whitehead et al. (2019) did not
employ a response window, we did not need to specifically
prepare the data for diffusion modelling and used the same
trial-based exclusion criteria as in the original study (i.e.,
excluded responses smaller than 0.2 s and larger than 3 s).
This results in the exclusion of 1.0% of trials in Dataset 3,
1.6% of trials in Dataset 4, and 1.4% of trials in Dataset 5.

One dataset from Kane et al. (2016)

For the reanalysis of Kane et al.’s (2016) data, we initially
included the same 472 participants as analyzed in the
original study. We prepared the data for a diffusion model
analysis similar to the previous datasets. First, we applied
a response window so that we excluded responses smaller
than 200 ms but larger than 1.5 s for the arrow flanker task
and 3 s for the other tasks. The upper limit of 1.5 s for the
arrow flanker task and the upper limit of 3 s for the letter
flanker task were given because responses outside this win-
dow were not recorded (see Kane et al., 2016). For the two
other tasks (i.e., Stroop tasks), we used the same upper limit
as the one we used for the datasets from Whitehead et al.
(2019). Removing responses smaller than 200 ms resulted in
the exclusion of 0.5% trials or less for each task. Removing
responses larger than the upper limit (i.e., 1.5 s for the arrow
flanker task and 3 s for the other tasks) resulted in the exclu-
sion of 0.8% trials in the arrow flanker task and less than
0.5% in all other tasks. Similar to the data of Rey-Mermet
et al. (2018), we then removed, on a by-task basis, the data
from participants for which more than 2.5% of the trials were
outside the response window. This resulted in the exclu-
sion of 7.4% of trials. Finally, because some participants
had accuracy that was both below chance and much lower
than the average accuracy in some conditions, we excluded
a further 20 participant-by-task combinations. This was done
because we did not want individual participants to have an
outsized influence on the results. After exclusion, we were
left with data from 443 participants that provided responses
in at least two tasks. The number of participants per task is
given in Table 1.

Data analysis

Data were analyzed using R (R Core Team, 2022). We used
the following packages: brms (Biirkner, 2017), lavaan (Ros-
seel, 2012), psych (Revelle, 2021), semTools (Jorgensen
et al., 2021), DescTools (Signorell et al., 2020), and ggplot2
(Wickham et al., 2021).
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Table 1 Tasks analyzed in the present study

Task

Decision

Sample size

Tasks from Rey-Mermet et al. (2018)?

Color Stroop

Number Stroop

Arrow flanker

Letter flanker

Simon

Global-local®

Positive compatibility A prime (e.g., “<<,

Color words (i.e., the words “red” “blue,” “green,” or “yellow”) or row of four Xs were
printed either in red, blue, green, or yellow. Color words were either incongruent to
the meaning of the words (e.g., the word “green” printed in green), congruent (e.g.,
the word “red” printed in red), or neutral (e.g., XXXX printed in green). Participants
were instructed to indicate the color of color words while ignoring the meaning of
the words

One to four digits or symbols were displayed centrally. The number of digits could be
incongruent to the numerical value (e.g., 111), congruent (e.g., 333), or neutral (e.g.,
$$9). Participants were instructed to count the number of characters while ignoring
the numerical value of digit characters

Five arrows were presented centrally. The direction of the central arrow was either
incongruent to the four flanking arrows (e.g.,«— «<— — «—«—), congruent (e.g.,— — —
— —), or neutral (e.g., ———). Participants were asked to respond to the direction of
the central arrow (left or right) while ignoring the four flanking characters

Five letters were presented centrally. Participants were asked to decide whether the
central letter was a vowel (E or U) or consonant (S or H) while ignoring the four
flanking characters. The response to the central letter was either incongruent to the
response of the flanking letters (e.g., SSESS), congruent (UUEUU or EEEEE), or
neutral (e.g., ##E##)

A square or a circle was presented either on the left or right side of the screen or
centrally. Participants were asked to indicate the shape (square vs. circle) by using
manual responses (a left or a right response key) while ignoring the location of the
shape on the screen. The location of the shape on the screen was either incongru-
ent to the location of the response key (e.g., a square presented on the right side but
requiring pressing the left key), congruent (e.g., a square presented on the left side
and requiring pressing the left key), or neutral (e.g., a square presented centrally but
requiring pressing the left key)

Element letters forming a large letter (e.g., a large Y built from small Vs) were presented.
In the global version of the task, participants were asked to identify the global letter (i.e.,
the large Y) while suppressing the response induced by the local elements. In the local
version of the task, participants were asked to identify the local elements (i.e., the small
Vs) while suppressing the response induced by the global letter. The local elements were
either incongruent to the global letter (e.g., a large Y built from small Vs), congruent
(e.g., alarge V built from small Vs), or neutral (e.g., a large Z built from small Vs)

<

>>" or “==") was first presented. To prevent conscious
identification, the prime was followed by a mask (which consisted of the overlap of
all prime exemplars). A target arrow (i.e., “<<” or “>>") was then displayed either
above or below the mask. Participants were asked to indicate the direction of the
target arrow (i.e., left or right) while ignoring the information induced by the prime.
The prime and the arrow were either incongruent (e.g., the prime “<<” followed by
the target “>>"), congruent (e.g., the prime “<<” followed by the target “<<”), or
neutral (e.g., the prime “==" followed by the target “>>")

Negative compatibility This task was similar to the positive compatibility task, except that a delay of 150 ms

was introduced between the prime and target. During the delay, the prime is assumed
to induce a response, which is then automatically suppressed. However, this response
needs to be reactivated when the target and the prime require the same response (i.e.,
in congruent trials). The negative compatibility effect reflects the time cost of reacti-
vating the primed response after it has been suppressed. Congruent trials are thus the
trials assumed to induce attentional control, while incongruent trials are baseline trials

Tasks from Whitehead et al. (2019)¢

Color Stroop

This task was similar to the color Stroop task used by Rey-Mermet et al. (2018)

Dataset 1 (Young adults): 116
Dataset 2 (Older adults): 125

Dataset 1 (Young adults): 120
Dataset 2 (Older adults): 128

Dataset 1 (Young adults): 117
Dataset 2 (Older adults): 138

Dataset 1 (Young adults): 118
Dataset 2 (Older adults): 140

Dataset 1 (Young adults): 119
Dataset 2 (Older adults): 140

Dataset 1 (Young adults): 118
Dataset 2 (Older adults): 131

Dataset 1 (Young adults): 114
Dataset 2 (Older adults): 130

Dataset 1 (Young adults): 118
Dataset 2 (Older adults): 132

Dataset 3 (Experiment 1): 178
Dataset 4 (Experiment 2): 195
Dataset 5 (Experiment 3): 210
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Table 1 (continued)

Task Decision Sample size
Spatial Stroop Directional words (i.e., the words “right,” “left,” “up,” or “down”) were printed either = Dataset 3 (Experiment 1): 178
in the right, left, top, and bottom part of the screen. Directional words were either Dataset 4 (Experiment 2): 195

incongruent to the location of the words (e.g., the word “right” presented in the top ~ Dataset 5 (Experiment 3): 210
part) or congruent (e.g., the word “up” presented in the top part). Participants were
instructed to respond to the direction word while ignoring its location

Flanker Five letters (i.e., D, F, J, and K) were presented centrally. Participants were asked to Dataset 3 (Experiment 1): 178
identify the central letter while ignoring the four flanking letters. The response to Dataset 4 (Experiment 2): 195
the central letter was either incongruent to the response of the flanking letters (e.g., Dataset 5 (Experiment 3): 210

JIDIJJ) or congruent (DDDDD)
Tasks from Kane et al. (2016)¢

Number This task was similar to the color Stroop task used by Rey-Mermet et al. (2018), except Dataset 6: 437
Stroop for the following two modifications. First, there were no neutral trials. Second, 80%
of the trials were congruent whereas 20% were incongruent

Spatial Stroop Directional words (i.e., the words “right,” “left,” “above,” or “below”) and asterisks Dataset 6: 412
were printed either in the right, left, top, and bottom part of the screen. In addition,
words were presented either left, right, above, or below the asterisks. Participants
were instructed to respond to the relative position of the word to the asterisk while
ignoring the identity of the word and its absolute location. Directional words were
either incongruent to both the absolute and relative location of the words (e.g., the
word “left” presented to the right of the asterisk and both presented to the right of
the fixation) or congruent to both the absolute and relative location of the words and
(e.g., the word “left” presented to the left of the asterisk and both presented to the
left of the fixation). There were also trials in which the words were congruent for
the absolute location but incongruent for the relative position (e.g., the word “left”
presented to the right of the asterisk and both presented to the left of fixation)

Arrow flanker This task was similar to the arrow flanker task used by Rey-Mermet et al. (2018), Dataset 6: 396
except for the following modifications. First, the neutral trials consisted of a target
arrow amid dots. Second, there were trials in which the target was presented in the
middle of upward-pointing arrows

Letter flanker Seven letters or characters were presented centrally. Participants were asked to respond Dataset 6: 395
to the direction of the middle F (normal vs. backward). The response to the central
letter was either incongruent to the response of the flanking letters or congruent (e.g.,
FFFFFFF). In addition, there were trials in which the F' was presented in the middle
of dots (neutral trials) and trials in which the target was presented in the middle or
right- and left-facing Es and tilted T's

In all tasks used by Rey-Mermet et al. (2018), there were two types of baseline trials. In nearly all tasks (see the negative-compatibility task for
an exception), the baseline trials were (1) the congruent trials in which there was no conflict between stimulus or response features, and (2) the
neutral trials in which there was only one response-relevant feature. Only in the negative compatibility task, the two types of baseline trials are
incongruent and neutral trials. In all tasks used by Whitehead et al. (2019), there was only one type of baseline trials, that is, the congruent trials.
In all tasks used by Kane et al. (2016), congruent and incongruent trials were presented. We used the congruent trials as baseline trials. Depend-
ing on the task, there were, however, additional types of trials. Critically, all trials were used to estimate the correlation matrices in the hierarchi-
cal Bayesian Wiener diffusion modeling approach for the condition coding

*Rey-Mermet et al. (2018) tested young and older adults, whose data are referred to as Dataset 1 and Dataset 2 in the present study. In addition to
the tasks presented in the table, all participants performed an antisaccade task, a stop-signal task, and a task assessing n-2 repetition cost. These
tasks were not analyzed in the present study because no diffusion modeling can be applied to them

bSimilar to Rey-Mermet et al. (2018), we only analyzed the local version of this task because substantial difference scores are predominantly
observed in this version of the task

“The study from Whitehead et al. (2019) consists of three experiments, whose data are referred to as Dataset 3, Dataset 4, and Dataset 5 in the
present study. In Dataset 3, the experiment was so designed that congruent and incongruent trials were presented equally often. These trials were
presented in an alternating-presentation design splitting a four-choice, four-response task into two groups (i.e., two choice, two response). Thus,
the trials of both groups are presented in alternating order, preventing any feature repetition. In Dataset 4, the design of the experiment was simi-
lar to the first experiment, except that congruent trials were presented in 25% of the trials, whereas incongruent trials were presented in 75% of
the trials. In Dataset 5, the experiment was so designed that congruent and incongruent trials were presented equally often, and the trials were
presented in a typical four-alternative forced choice button-press task (i.e., without an alternating-presentation design)

4In addition to the tasks presented in the table, participants in Kane et al. (2016) performed tasks used to measure working memory and thought
probes. Critically, they also performed further attentional-control tasks (i.e., two antisaccade tasks, a go/no-go task, a cued search task, and a masked
flanker task). The antisaccade, go/no-go, and cued search tasks could not be analyzed because they did not include a congruent and an incongruent
condition, or comparable conditions with low vs. high conflict. In the masked flanker task, there was a very short response-deadline (1 s), which
both censored the data to an unacceptably large degree and created a very high error rate. Thus, no diffusion modeling could be applied
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Diffusion modeling

We used a hierarchical Bayesian variant of the Wiener diffu-
sion model (Vandekerckhove et al., 2011) with an accuracy
coding. This model accounts for the entire data (i.e., RT dis-
tributions of correct and error trials) with three latent param-
eters: (a) the drift rate, a measure of the efficiency of infor-
mation processing in the decision process, (b) the boundary
separation, a measure of response caution that controls the
speed—accuracy trade-off, and (c) the non-decision time. The
model was applied separately to all individual choices and
associated RTs across tasks for each dataset (i.e., Datasets
1 to 6). Furthermore, we applied two different parametriza-
tions—a difference-coding parametrization and a condition-
coding parametrization—to each dataset.

In the difference-coding parametrization, we only consid-
ered the congruent and incongruent trials. For the drift rate,
we estimated two fixed-effect parameters per task: (a) the
mean in the congruent trials and (b) a difference parameter
representing the mean difference between congruent and
incongruent trials. This difference parameter was our main
measure of attentional control. In the condition-coding para-
metrization, we considered all trial types (i.e., incongruent,
congruent, and neutral trials in Datasets 1 and 2, incongru-
ent and congruent trials in Datasets 3 to 5, and incongruent,
congruent, neutral and other trials in Dataset 6). For the drift
rate, we estimated a fixed-effect parameter per trial type.
For example, a mean drift rate was computed separately for
incongruent, congruent, and neutral trials in Datasets 1 and
2, and for incongruent and congruent trials in Datasets 3 to
5. For both parametrizations, we estimated one fixed-effect
parameter per task for the boundary separation and for the
non-decision time, respectively.

In addition to the fixed-effect (or group-level) param-
eters, we estimated by-participant random-effects (i.e., the

Table 2 Model overview

variance of parameters over participants), the correlations
among all random-effects for each fixed-effect param-
eter, and individual-level (displacement) parameters. This
resulted in quite large models. An overview of the num-
bers of observations and estimated parameters is presented
in Table 2. The numbers of observations used for estima-
tion across datasets and parameterizations varied between
approximately 150,000 and 445'000. The total number of
estimated parameters varied between approximately 5,000
and 14,500 and the number of estimated correlation param-
eters (which were of central importance) varied between 21
and 990.

We estimated the models using brms (Biirkner, 2017),
which uses the probabilistic programming language Stan
(Carpenter et al., 2017) for model estimation. This allowed
us to estimate the variance—covariance matrix in two parts—
a correlation matrix and a variance vector. For the corre-
lation matrix, we used a non-informative LKJ prior with
concentration parameter = 1, and for the variances a weakly
informative #-distribution prior (df = 3,scale = 10). All
other priors were also weakly informative (i.e., Cauchy with
scale of 5 for mean drift-rate parameters for both coding
parametrizations, and with scale of 2.5 for drift-rate differ-
ence parameters for difference coding). We estimated all
diffusion-model parameters and correlations on the uncon-
strained real line (i.e., no link functions). In other words, we
assumed multivariate normal distributions for the individ-
ual-level parameters. The brms syntax for estimating each
model can be found in the supplemental materials on OSF.

We initially estimated each model using six (Datasets 1 to
5) or four (Dataset 6) independent chains with 500 warmup
samples per chain and retained a further 500 post-warmup
samples. If chain convergence was not good (i.e., R< 1.05)
for all random-effect parameters, variance parameters, and
correlations relevant for our research question we refit the

Dataset N Total observations O, (mean) O,(min) O,(max) P (diffy C(diff) V(difffy P (cond) C(cond) V(cond)
1 120  157,737/236,571  149/223  55/82 192/288 5,023 630 36 6,481 990 45
2 143 177,903/266,877 150/225 48/72 192/288 5,815 630 36 7,471 990 45
3 178 402414 754 634 762 6,526 21 12 6,708 66 12
4 195 445,293 761 63 1534 7,138 21 12 7,320 66 12
5 210 401,669 638 601 1732 7,678 21 12 7,860 66 12
6 443 161,290/233,309 98/142 61/117 149/172 17,162 40 16 14,530 288 32

N=Number of participants; Total observations=Overall number of trials; O,= Number of observations/trials per task. For Datasets 1, 2, and 6,
values before the “/” indicate number for the difference coding parameterization and values after the *“/” for the condition coding parameteriza-
tion (for Datasets 3 to 5, the values were the same, as they did not include neutral trials). P=Total number of estimated parameters; C=Num-
ber of estimated correlation parameters; V=Number of estimated fixed effects parameters and number of estimated variance parameters. The
number of individual-level displacement parameters (i.e., the random-effects) is given by P — C — 2 V. diff =difference coding parameterization;
cond = condition coding parameterization. For the difference coding parameterization of Datasets 3 to 5, we only estimated correlation param-
eters among each diffusion parameters but not across diffusion parameters (e.g., only among all drift rates, but not between drift rates and bound-

ary separation) to decrease estimation time
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model with more post-warmup samples until convergence
was reached. The model requiring the largest number of
samples to reach convergence was the condition coding
model for Dataset 6 with 4,500 post-warmup samples. Esti-
mating each model took several weeks on a high-perfor-
mance desktop computer (in case a model required multiple
refits, this resulted in fitting times of a few months for indi-
vidual datasets).

Structural equation modeling

For each dataset, we first estimated a series of SEMs using
the posterior means of each value in the variance—covariance
matrix of the diffusion-model parameters (each analysis only
used a subset of the full covariance matrix; e.g., only the
covariances among the difference parameters of the drift
rate). Then, we fitted the same series of SEMs separately to
500 variance—covariance matrices sampled from the poste-
rior distribution (i.e., these 500 samples were a subset of all
post-warmup draws). The latter analysis takes into account
the uncertainty in the estimate of the covariance matrix,
which depends in part on the measurement error in the data.

Model fit was evaluated via multiple fit indices (Hu &
Bentler, 1998, 1999): The Xz goodness-of-fit statistic,
Bentler’s comparative fit index (CFI), the standardized root
mean square residual (SRMR), and the root mean square
error of approximation (RMSEA). For the X2 statistic, a
small, non-significant value indicates good fit. For the CFI,
values larger than 0.95 indicate good fit, and values between
0.90 and 0.95 indicate acceptable fit. SRMR values smaller
than 0.08 indicate good fit. RMSEA values smaller than 0.06
indicate good fit, and values between 0.06 and 0.08 indicate
acceptable fit. However, as the RMSEA tends to over-reject
true population models at smaller sample size (i.e., smaller
than 250; Hu & Bentler, 1998), this fit index was not taken
into account when the sample size was smaller than 250
participants. In this case, it was only provided for the sake
of completeness.

In addition, the following criteria had to be met for a
model to be considered an adequate representation of a latent
variable: (1) the Kaiser-Meyer—Olkin (KMO) index—a
measure of whether the correlation matrix is factorable—
should be larger than 0.60 (Tabachnick & Fidell, 2019); (2)
most of the error variances should be lower than 0.90; (3)
most of the factor loadings should be larger than 0.30; (4)
no factor should be dominated by a large loading from one
task; (5) the amount of shared variance across tasks—that
is, “factor reliability” as assessed by the coefficient o for the
single-factor models (Raykov, 2001), and the hierarchical
omega @y, for the bifactor models (McDonald, 1999)—had to
be reasonably high (i.e., about 0.70 in single-factor models
and 0.20 in bifactor models; Gignac & Kretzschmar, 2017).

Results

For each dataset, we first assessed the model fit of the diffu-
sion model by comparing the actual data with the posterior
predictive distribution (i.e., a distribution of simulated data
sets, each of the same size as the actual data, generated from
the estimated model parameters). Second, we examined the
correlation pattern of all parameters, and investigated the
relations between them at the latent-variable level through
SEM.

Dataset 1: Young adults from Rey-Mermet et al.
(2018)

Diffusion modeling

Figure 1 shows the fits of the diffusion model and includes
numerical summaries of fit. We used a measure of absolute
agreement between observed data and posterior prediction,
the concordance correlation coefficient (CCC; Barchard,
2012). For both parametrizations and all tasks, for both
posterior predictive mean and across the posterior predic-
tive distribution, mean RTs are recovered almost perfectly
(CCC > .97) and accuracy was recovered reasonably well
(ccc = .61).

Regarding the congruency effects, recovery was worse
for the difference coding, which included parameters cap-
turing the congruency effects, than for the condition cod-
ing, which did not include such parameters. Furthermore,
recovery differed markedly between the posterior predictive
mean and across the full posterior predictive distribution.
When only considering the former, recovery was good (with
few exceptions) for the condition coding. However, recov-
ery across the individual samples of the posterior predictive
distribution was in many instances poor, suggesting that the
posterior predictive mean paints a rather optimistic picture.
The largest misfit was observed for the accuracy congru-
ency effects, where the predicted effects showed a mark-
edly reduced range compared with the observed ones. This
suggests that even with a large number of observations, the
information provided by the data was sometimes not enough
to overwhelm the only weakly informative priors. This par-
ticularly applies to the difference coding. Together, because
the recovery of the RT congruency effects was still accept-
able and only recovery of the accuracy congruency effects
was quite weak, individual differences were sufficiently
recovered for the present purposes.

Correlations and structural equation modeling

Correlations are presented in Table 3 for the drift rate with
the difference coding, in Table 4 for the drift rate with the
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«Fig. 1 Dataset 1: Young adults from Rey-Mermet et al. (2018).
Model fit of diffusion models comparing observed (x-axis) with pre-
dicted statistics (y-axis). First four rows show the fit of the difference-
coding parametrization and the last four rows show the fit of the con-
dition-coding parametrization. Each column shows the statistics for
one of the eight tasks used in the SEM. The first, second, fifth, and
sixth row show overall mean RT (for correct responses) and accuracy
across conditions. The third and seventh row, “Effect (RT),” and the
fourth and eighth row, “Effect (Acc),” show the congruency effects
for RT and accuracy, respectively. Data points are participants and are
plotted semitransparently so that overlapping points appear darker.
The predicted statistics show the mean of 500 samples from the pos-
terior predictive distribution (i.e., synthetic data of the same size as
the observed data generated from the fitted model). The value in the
top-left corner of each panel is the concordance correlation coeffi-
cient (CCC), which is 1 in case of perfect absolute agreement, for the
data points shown. The three values in the lower-left corner represent
the 2.5% quantile, the median, and the 97.5% quantile of the CCCs
when calculated individually for each sample of the posterior predic-
tive distribution

condition coding, in Table 5 for the boundary separation,
and in Table 6 for the non-decision time. SEM results are
reported next for each of these parameters separately.

Drift rate with difference coding In this analysis, we used the
posterior mean correlations of drift-rate differences between
congruent and incongruent conditions in each task as the
measures of attentional control. Nearly all correlations were
low (<£0.20), and none were credibly different from zero (see
Table 3). Overall, the correlation matrix had a KMO index

(0.57) slightly under the lower limit of 0.60, indicating only
marginal factorability of the correlation matrix.

In the next step, we aimed to find a coherent factor of
attentional control. To this end, we fitted a model in which
the drift-rate differences from all tasks loaded on a single
factor. This model, referred to as Model 1, is depicted in
Fig. 2A. This model provided a good fit to the data, X2(20,
N=120)=11.72, p=0.925, CFI=1, RMSEA [90% CI]=0
[0, 0.03], SRMR =0.05. However, only three measures
had loadings larger than 0.30, with the loading of the letter
flanker task dominating the loadings. Moreover, error vari-
ances were high for most measures (see Fig. 2A), and factor
reliability was low (0 =0.35). Together, this indicates that
the factor mainly represents the variance of one measure.
Thus, although the model provided a good fit to the data, it
had low explanatory power.

Drift rate with condition coding This analysis started from
the posterior mean correlations of mean drift rates of con-
gruent and incongruent conditions, and used a bifactor
model to extract the variance of attentional control from
them. As expected, correlations of drift rates between the
incongruent and congruent trials of the same task were high
(=0.52) and credible. Furthermore, although all correla-
tions between the different tasks were lower (between 0.04
and 0.41), many were still credible (see Table 4). Overall,
the correlation matrix had a good KMO index (0.73).

Table 3 Dataset 1-Young adults from Rey-Mermet et al. (2018): Posterior mean correlation coefficients and 95% credibility intervals for the
drift-rate difference estimate of the diffusion model with difference coding (incongruent vs. congruent trials)

Measure Color Number Arrow Letter Simon Local Positive
Stroop Stroop flanker flanker comp
Color -
Stroop
Number -.02 -
Stroop [—.30, .26]
Arrow —.14 .03 -
flanker [—.42, .17] [—.23,.30]
Letter -.09 .10 .26 -
flanker [—.37, .21] [—.18, .37] [-.01, .51]
Simon -.13 .04 .08 21 —
[—.40, .17] [-.18, .27] [-.15, .31] [—.04, .45]
Local 11 .03 .06 .09 .19 -
[—.21, .39] [-.25,.32] [—.22, .34] [—.21,.36] [—.08, .44]
Positive -.02 .03 .00 .16 11 .07 -
comp [—.31, .27] [—.22, .28] [—.25, .25] [—.11, .41] [—.11,.33] [—.21, .35]
Negative —.04 .16 .06 12 .02 .04 .09
comp [—.32, .23] [—.10, .41] [—.20, .33] [—.16, .37] [-.21, .25] [—.23,.30] [-.15,.35]

Comp. Compatibility. Values in [] are the lower and upper limit of the 95% Bayesian credibility interval (CI). For values printed in bold, the 95%

CI excludes 0
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In the bifactor model, the drift rates of both congruent
and incongruent conditions of all tasks were forced to load
on a general factor, which reflects variance in all abilities
involved in task performance regardless of the condition’s
attentional-control demand. The drift rates from the con-
dition assumed to demand more attentional control (i.e.,
the incongruent condition in all tasks, except for the neg-
ative-compatibility task for which the congruent condition
demands more control) were forced to additionally load on
an attentional-control factor. In this way, the attentional-
control factor reflects the common variance across tasks
that is not accounted for by the general factor. In addition,
error variances from the measures of the same task were
allowed to correlate. Moreover, to avoid negative variance,
factor loadings were constrained to be positive. This model,
thereafter, referred to as Model 2, is depicted in Fig. 2B.

Model 2 provided a good fit to the data, X2(88,
N=120)=286.86, p=0.514, CFI=1, RMSEA [90% CI]=0
[0, 0.05], SRMR =0.06. However, although all measures had
loadings larger than 0.34 for the general factor, all load-
ings for the attentional-control factor were lower than 0.25.
Moreover, the factor reliability for this specific factor was
very low (0, =0.08). Thus, the attentional-control factor did
not represent much common variance across the measures.

Boundary separation Most correlations were between 0.20
and 0.43, and credibly differed from zero (see Table 5).
Overall, the correlation matrix had a good KMO index
(0.76).

In the next step, we fitted a model in which all tasks
loaded on a single factor (i.e., Model 3). This model is
depicted in Fig. 2C. This model provided an acceptable fit
to the data, X2(20, N=120)=30.44, p=0.063, CFI=0.91,
RMSEA [90% CI]=0.07 [0, 0.11], SRMR =0.07. All load-
ings were larger than 0.40, except for one exception (i.e.,
the loading of the negative-compatibility task with a value
of 0.28). Error variances were low (see Fig. 2C). Factor reli-
ability was also high (m=0.70). Thus, these results indicate
a coherent factor, reflecting individual differences in speed-
accuracy trade-off or caution that generalize across tasks.

Non-decision time Most correlations were low (<0.20) and
did not credibly differ from zero (see Table 6). However, the
correlation matrix had a good KMO index (0.64).

As before, we fitted a model in which all tasks loaded on
a single factor (i.e., Model 4). However, this model provided
a bad fit, X2(20, N=120)=31.95, p=0.044, CFI1=0.82,
RMSEA [90% CI]=0.07 [0.01, 0.11], SRMR =0.07.

Dataset 2: Older adults from Rey-Mermet et al.
(2018)

Diffusion modeling

Figure 3 shows the fit of the diffusion model for Dataset

2. As for Dataset 1, overall recovery of mean RTs was
good (CCC > .98). For accuracy, visual inspection shows

Table 5 Dataset 1-Young adults from Rey-Mermet et al. (2018): Posterior mean correlation coefficients and 95% credibility intervals for the

boundary separation of the diffusion model with condition coding

Measure Color Number Arrow Letter Simon Local Positive
Stroop Stroop flanker flanker comp
Color -
Stroop
Number 25 -
Stroop [.10, .40]
Arrow 31 22 —
flanker [.17, .45] [.08, .38]
Letter 21 32 31 -
flanker [.06, .36] [.16, .47] [.16, .45]
Simon .30 13 23 40 —
[.14, .43] [—.03, .29] [.08, .37] [.26, .54]
Local 43 .20 .36 32 29 —
[.27,.56] [.05, .36] [.21, .49] [.15, .46] [.13, .44]
Positive .06 29 12 35 22 .16 -
comp [-.09, .22] [.13, .44] [—.04, .28] [.19, .50] [.06, .37] [.00, .32]
Negative .09 .19 13 A5 11 15 27
comp [—.06, .24] [.03, .35] [—.02, .28] [.00, .30] [—.04, .27] [-.01, .30] [.11, .43]

Comp. Compatibility. Values in [] are the lower and upper limit of the 95% Bayesian credibility interval (CI). For values printed in bold, the 95%

CI excludes 0
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Table 6 Dataset 1-Young adults from Rey-Mermet et al. (2018): Posterior mean correlation coefficients and 95% credibility intervals for the

non-decision time of the diffusion model with condition coding

Measure Color Number Arrow Letter Simon Local Positive
Stroop Stroop flanker flanker comp
Color -
Stroop
Number .19 -
Stroop [.02, .33]
Arrow 19 .08 -
flanker [.03, .34] [—.08, .22]
Letter .06 40 .20 —
flanker [-.09, .22] [.26, .53] [.03, .34]
Simon 22 .16 17 34 -
[.06, .37] [-.00, .32] [.01,.32] [.19, .47]
Local 17 .10 .14 21 23 -
[.00, .32] [—.05, .26] [—.02, .28] [.05, .35] [.08, .37]
Positive .02 .10 .19 .16 15 —.01 —
comp [—.14, .18] [—.05, .25] [.05, .34] [-.01, .30] [.00, .30] [—.17,.14]
Negative .06 .09 22 15 .10 -.00 35
comp [—.09, .21] [—.06, .25] [.07,.36] [-.00, .30] [—.07, .26] [—.17,.15] [.21, .48]

Comp. Compatibility. Values in [] are the lower and upper limit of the 95% Bayesian credibility interval (CI). For values printed in bold, the 95%

CI excludes O

overall good recovery, although CCCs are low for cases
with ceiling effects and reduced variability. For the con-
gruency effect, we saw a very similar pattern as for Data-
set 1. Recovery was better for the condition coding than
the difference coding, and the posterior predictive mean
recovered markedly better than individual samples from
the posterior predictive distribution. One notable dif-
ference was that recovery for the RT congruency effect
appeared a bit better than for Dataset 1, but recovery of
the accuracy effect was worse (i.e., the restricted range
in the predicted accuracy effect was even more notice-
able). However, overall individual differences were still
sufficiently captured.

Correlations and structural equation modeling

Correlations are presented in Table 7 for the drift rate with
the difference coding, in Table 8 for the drift rate with the
condition coding, in Table 9 for the boundary separation,
and in Table 10 for the non-decision time. SEM results are
reported next for each of these parameters separately.

Drift rate with difference coding All correlations between
drift-rate differences were low (<0.23) and not credible (see
Table 7), with one exception (i.e., the correlation between
arrow-flanker and positive-compatibility measures). Over-
all, the correlation matrix had a KMO index (0.56) slightly
under the limit of 0.60.

@ Springer

Similar to Dataset 1, we fitted a model in which all drift-
rate differences were forced to load on a single factor (i.e.,
Model 1). This model provided a bad fit to the data, X2(20,
N=140)=24.34, p=0.228, CFI=0.85, RMSEA [90%
CI]=0.04 [0, 0.09], SRMR =0.06.

Drift rate with condition coding Correlations between the drift
rates of incongruent and congruent conditions of the same task
were high (>0.71) and credible. Furthermore, although all cor-
relations between the different tasks were lower (between 0.04
and 0.48), many were still credible (see Table 8). Overall, the
correlation matrix had a good KMO index (0.61).

In the next step, we fitted the same bifactor model
(Model 2) as for Dataset 1. This model is depicted in
Fig. 4A. This model provided a good fit to the data, X2(88,
N=140)=116.21, p=0.024, CFI=0.98, RMSEA [90%
CI]=0.05[0.02, 0.07], SRMR =0.06. Most measures had a
loading higher than 0.30 for the general factor. However, all
loadings for the attentional-control factor were equal to or
lower than 0.30 (see Fig. 4A). Moreover, the reliability for
this factor was very low (w, =0.05). Thus, this model estima-
tion did not result in a coherent factor of attentional control.

Boundary separation Most correlations were low (<0.20)
and not credible (see Table 9). However, the correlation
matrix had a good KMO index (0.68).
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Fig.2 Dataset 1: Young adults from Rey-Mermet et al. (2018). A
Drift rate with difference coding: One-factor model in which all drift-
rate differences between incongruent and congruent trials loaded on
a single latent variable (Model 1). B Drift rate with condition cod-
ing: Bifactor model in which drift rates from the incongruent and
congruent trials of all tasks was forced to load on a general factor,
and drift rates from the conditions reflecting high attentional control
(i.e., the congruent trials of the negative-compatibility task and the
incongruent trials of the remaining tasks) were forced to load on an
attentional-control factor (Model 2). In this model, factor loadings
were constrained to be positive, and error variances from the meas-
ures of the same task were allowed to correlate. C Boundary separa-
tion: One-factor model in which the boundary-separation parameters
loaded on a single latent variable (Model 3). For Models 1 and 3, the

Similar to Dataset 1, we fitted a single-factor model (i.e.,
Model 3). However, this model provided a bad fit, X2(20,
N=140)=33.44, p=0.030, CFI=0.84, RMSEA [90%
CI]=0.07[0.02, 0.11], SRMR =0.08.

numbers next to the straight, single-headed arrows are the standard-
ized factor loadings (interpretable as standardized regression coeffi-
cients). For Model 2 (bifactor model), for the sake of clarity, these
factor loadings are aligned to each measure (i.e., next to the measures
for the general factor and next to the factors for the attentional-control
factor). For all models, the outward numbers adjacent to each meas-
ure are the error variances, attributable to idiosyncratic task require-
ments and measurement error. The numbers adjacent to the curved,
double-headed arrows next to each measure in Model 2 (bifactor
model) are the correlations between the error variances. For all val-
ues, boldface type indicates p <.05. Neg. comp.=Negative compat-
ibility; Pos. comp.=positive compatibility; Num. Stroop=Number
Stroop; inc. =incongruent; con. =congruent

Non-decision time Most correlations were low (<0.20) and
not credible (see Table 10). Overall, the correlation matrix
had a good KMO index (0.70).
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Fig.3 Dataset 2: Older adults from Rey-Mermet et al. (2018). Model fit of diffusion models comparing observed (x-axis) with predicted statis-

tics (y-axis). See Fig. 1 note for details
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Table 7 Dataset 2-Older adults from Rey-Mermet et al. (2018): Posterior mean correlation coefficients and 95% credibility intervals for the
drift-rate difference estimate of the diffusion model with difference coding (incongruent vs. congruent trials)

Measure Color Number Arrow Letter Simon Local Positive
Stroop Stroop flanker flanker comp
Color -
Stroop
Number 11 -
Stroop [—.12,.33]
Arrow —-.06 -.07 -
flanker [—.25, .14] [—.29, .17]
Letter —.06 .09 22 —
flanker [—.28,.15] [-.18, .33] [—.01, .44]
Simon -.09 .07 13 21 -
[—.28,.09] [—.18, .32] [—.08, .33] [—.03, .42]
Local .13 .05 .07 .08 .05 -
[—.11,.35] [—.22,.32] [—.18, .31] [—.18, .33] [—.20, .29]
Positive .14 —.01 27 23 .04 —.06 -
comp [-.10, .36] [—.26, .24] [.03, .50] [—.01, .46] [—.20, .29] [-.31,.19]
Negative —.14 -.03 -.12 —.08 -.09 .02 -.25
comp [-.38,.12] [-.31, .25] [—.38, .15] [—.35, .20] [—.33, .18] [-.26, .30] [—.48, .03]

Comp. Compatibility. Values in [] are the lower and upper limit of the 95% Bayesian credibility interval (CI). For values printed in bold, the 95%

CI excludes O

As before, we fitted a single-factor model (i.e., Model
4). This model is depicted in Fig. 4B. This model pro-
vided an acceptable fit to the data, X2(20, N=140)=28.69,
p=0.094, CFI=0.91, RMSEA [90% CI]=0.06 [0, 0.10],
SRMR =0.06. All loadings ranged from 0.24 to 0.67, and
error variances were moderate (see Fig. 4B). Factor reli-
ability was only of modest size (w=0.56). Thus, the results
suggest a moderately coherent factor.

Dataset 3: Experiment 1 from Whitehead et al.
(2019)

Diffusion modeling

Figure 5 (Columns 1 to 3) shows the fit of the diffusion model.
As before, recovery of the response times and accuracy was
very good (CCC > .98 and CCC > .82, respectively). In
addition, the recovery of the congruency effects both for
response times (CCC > .70) and accuracy (CCC > .70)
was very good. Finally, the overall very positive recovery
of individual differences holds for both posterior predictive
means and also generally across the individual samples of
the posterior predictive distributions. Thus, fit is noticeably
better in Dataset 3 than in Datasets 1 and 2.

Correlations and structural equation modeling

Correlations are presented in the upper part of Table 11 for
the drift rate with the difference coding, in the upper part

of Table 12 for the drift rate with the condition coding, in
the upper part of Table 13 for the boundary separation, and
in the upper part of Table 14 for the non-decision time.
SEM results are reported next for each of these parameters
separately.

Drift rate with difference coding All correlations between
drift-rate differences were low (<0.14) and not credible (see
Table 11, upper part). Overall, the correlation matrix had a
low KMO index (0.48).

The next step was to find a coherent factor of attentional
control using the three attentional-control measures. To this
end, we fitted a saturated model in which the drift-rate dif-
ferences from all three tasks loaded on a single factor (i.e.,
Model 5). However, in line with the low KMO index, this
model did not converge for Dataset 3.

Drift rate with condition coding Correlations between the
drift rates of incongruent and congruent conditions of the
same task were high (>0.86) and credible. Furthermore,
although all correlations between the different tasks were
lower, they were still moderate (between 0.29 and 0.42) and
credible (see Table 12, upper part). Overall, the correlation
matrix had a good KMO index (0.61).

In the next step, we aimed to establish a coherent
factor of attentional control using a bifactor-modeling
approach. Accordingly, in Model 6, the drift rates of both
congruent and incongruent conditions of all three tasks
were forced to load on a general factor, and the drift

@ Springer
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Table 9 Dataset 2-Older adults from Rey-Mermet et al. (2018): Posterior mean correlation coefficients and 95% credibility intervals for the

boundary separation of the diffusion model with condition coding

Measure Color Number Arrow Letter Simon Local Positive
Stroop Stroop flanker flanker comp
Color -
Stroop
Number .36 -
Stroop [.21, .49]
Arrow .09 —.06 -
flanker [—.06, .23] [—.21,.09]
Letter 21 .08 .26 -
flanker [.06, .34] [-.07, .22] [.11, .40]
Simon .01 -.03 25 37 -
[-.13,.15] [—.18, .12] [.10, .39] [.23, .49]
Local 12 .09 .18 .36 29 —
[-.03, .26] [—.07, .24] [.01, .34] [.20, .50] [.13, .44]
Positive .06 .02 .14 21 22 19 -
comp [-.09, .21] [—.14, .18] [—.02, .28] [.06, .35] [.08, .36] [.02, .36]
Negative .20 12 11 .16 .02 .06 .20
comp [.05, .34] [—.04, .27] [—.03, .26] [.02, .31] [—.13,.17] [-.09, .22] [.05, .35]

Comp. Compatibility. Values in [] are the lower and upper limit of the 95% Bayesian credibility interval (CI). For values printed in bold, the 95%

CI excludes O

Table 10 Dataset 2-Older adults from Rey-Mermet et al. (2018): Posterior mean correlation coefficients and 95% credibility intervals for the

non-decision time of the diffusion model with condition coding

Measure Color Number Arrow Letter Simon Local Positive
Stroop Stroop flanker flanker comp
Color -
Stroop
Number .26 -
Stroop [.11, .40]
Arrow .13 11 -
flanker [—.03, .28] [—.04, .26]
Letter 21 25 33 —
flanker [.05, .36] [.09, .39] [.19, .46]
Simon .14 22 34 41 -
[—.01, .29] [.07,.37] [.20, .47] [.26, .53]
Local .10 .07 .26 31 18 —
[—.05, .26] [—.09, .22] [.10, .40] [.16, .45] [.03,.32]
Positive .02 .06 17 .14 19 .10 -
comp [-.13,.17] [-.10, .21] [.02,.32] [—.02, .28] [.04, .33] [-.05, .25]
Negative .16 —.01 11 13 .14 .05 35
comp [-.00, .31] [-.18, .15] [—.04, .25] [-.02, .27] [-.01, .28] [-.10, .20] [.21, .48]

Comp. Compatibility. Values in [] are the lower and upper limit of the 95% Bayesian credibility interval (CI). For values printed in bold, the 95%

CI excludes 0

rates of incongruent trials were also forced to load on an
attentional-control factor. In addition, in line with the
previous computations of the bifactor models in the pre-
sent study, error variances from the measures of the same
task were allowed to correlate, and factor loadings were

constrained to be positive. However, the SEM estimation
showed that the standard errors could not be computed,
and some estimated observed variances were negative,
suggesting that Model 6 was not identified.

@ Springer
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Fig.4 Dataset 2: Older adults from Rey-Mermet et al. (2018). A
Drift rate with condition coding: Bifactor model in which drift rates
from the incongruent and congruent trials of all tasks was forced to
load on a general factor, and drift rates from the conditions reflect-
ing high attentional control (i.e., the congruent trials of the negative-
compatibility task and the incongruent trials of the remaining tasks)

Boundary separation All correlations were moderate
(between 0.37 and 0.46) and credible (see Table 13, upper
part). Furthermore, the correlation matrix had a good KMO
index (0.66).

In the next step, we fitted a model in which all tasks
loaded on a single factor (i.e., Model 7). This model is
depicted in Fig. 6A. This model converged, and as it is satu-
rated, it provided a perfect fit to the data. All loadings were
relatively high (i.e., larger than 0.58), and error variances
were relatively low (see Fig. 6A). Factor reliability was quite
high (0 =0.69). Thus, these results support the view of a
coherent factor reflecting individual differences in speed—
accuracy trade-off or caution that generalize across tasks.

Non-decision time All correlations were moderate
(between 0.33 and 0.43) and credible (see Table 14, upper
part). Overall, the correlation matrix had a good KMO
index (0.65).

@ Springer

were forced to load on an attentional-control factor (Model 2). In this
model, factor loadings were constrained to be positive, and error vari-
ances from the measures of the same task were allowed to correlate.
B Non-decision time: One-factor model in which the non-decision-
time parameters loaded on a single latent variable (Model 4). See
Fig. 2 note for details

As before, we fitted a model in which all tasks loaded
on a single factor (i.e., Model 8). This model is depicted
in Fig. 6B. As this model is saturated, it provided a per-
fect fit to the data. All loadings were relatively high (i.e.,
larger than 0.53), and error variances were relatively low
(see Fig. 6B). Factor reliability was quite high (w =0.66).
Thus, the results suggest a coherent factor for the non-
decision time.

Dataset 4: Experiment 2 from Whitehead et al.
(2019)

Diffusion modeling

Figure 5 (Columns 4 to 6) shows the fit of the diffu-
sion model. Recovery was very good for response times
(CCC > .96) and accuracy (CCC > .75). For congruency
effects, recovery was also good. The only exception was



Psychonomic Bulletin & Review

Diff. C. Dataset 3 Dataset 3 Dataset 3 Dataset 4 Dataset 4 Dataset 4 Dataset 5 Dataset 5 Dataset 5
Col. Stroop | | Sp. Stroop Flanker Col. Stroop | | Sp. Stroop Flanker Col. Stroop | | Sp. Stroop Flanker
5 15199 98 99 99 96 98 98 97 99 S
% 1.0 ’rg?
£ 0.54 §
o - 97 '9.8 98] | o7 .9] 98] | /o8 .98 98] | /.96 .97 98] |/ 04 .95 96 |/.96 .97 97 | /.96 .QG 97 /.95 .95 96 | /o7 .98 98]
05 10 1505 10 1505 10 15 05 10 15 05 10 15 05 1.0 15 05 10 15 05 1.0 15 05 1.0 15
g 0195 82 87 97 75 81 98 69 80 >
+ 0.8 Q
3 8
E 0.6 1 g
o 049 92 93 94|/ 78 .'81. 83| | /84 86 87| | /92 94 95| /71 73 76| /77 79 82| |/ 96 97 97| |/63 67 70| /75 78 81
04060810 040.60.81.0 0.40.60.81.0 0.406081.0 04060.81.0 040.60.81.0 0.40.60.81.0 0.406081.0 0.40.60.81.0
B .83 71 .78 .78 .68 .63 .69 .64 .39 m
5 0.21 g
— > 9._
5 =
® 00 2 ; 3
o 57 .64| 7 57 63| | /46 '56. 63| |45 55| 63| | /42 .5Q 58| | /14 .31| 45| | /38 .4E§ 57| | /42 .49 55| | /.05 .23: 37|~
0.0 0.2 0. 0 02 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2
:E'J:l 00477 .70 .87 .63 .58 41 .66 .58 .24 g
2 021 ) =
3 . >
o - .58 65 73] /63 68 72| /12 80 86 | /39 49 58] | a7 54 59| | /14 28 42| | /a1 51 60| |50 55 59| | /04 17 29 =
—04—0200 —04—0200 —04—0200 —04—0200 —04—0200 —04—0200 —04—0200 —04—0200 —04—0200
Condition Coding
g 15199 98 99 99 96 98 98 97 99 S
% 1.0 ’g
® s g
o - 14 98 98| L7 97 98| | /98 .98 98| |/.96 97 98| | /04 9|5 96| | /.96 97 97] /9 96 o7 | /95 95 96| | /.97 .98 98|
05 10 15 05 10 15 05 1.0 15 05 10 15 05 1.0 15 05 10 15 05 10 15 05 10 15 05 1.0 15
g 0195 82 87 97 75 81 98 70 80 >
+ 0.8 Q
3 8
g 0.61 g
o 041 92 93 94| /78 81 83] |84 86 87] | /92 94 95] | /11 73 78] L/ 77 79 82] /.96 97 97] /63 67 70| /75 78 81 =
0406081 0 0406081 0 0406081 0 0406081 0 0406081 0 0406081 0 0406081 O 0406081 0 0406081 0
B .83 .70 .78 .78 .66 .66 .68 .60 41 m
5 0.21 4 g
2 3 , =1
S (] : =
® 00 ; 3
o 57 .64| 7 57 63| | /46 '56. 63| | /45 55| 63| |42 .5Q 58| | /14 .31| 45| | /38 .4E§ 57| | /42 .49 55| | /05 .23: 37—
0.0 0.2 0 0 0 2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2
- 1.77 71 .88 .64 .59 43 .67 .59 .28 m
@ 0.0 =
2 0.2 ' 2
3 . z
o - .58 65 73] /63 68 72| /72 80 86 | /39 49 58] | /a7 54 59| | /14 28 42| /41 51 60| /50 55 59| |04 17 29 <
—040200 —040200 —040200 —040200 —040200 —040200 —040200 —040200 —040200
Observed

Fig.5 Datasets 3, 4, and 5—Experiments 1, 2, and 3, respectively, from Whitehead et al. (2019): Model fit of diffusion models comparing

observed (x-axis) with predicted statistics (y-axis). See Fig. 1 note for details
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Table 11 Datasets 3, 4, and 5-Experiments 1, 2, and 3, respectively,
from Whitehead et al. (2019): Posterior mean correlation coefficients
and 95% credibility intervals for the drift-rate difference estimate of
the diffusion model with difference coding (incongruent vs. congru-
ent trials)

Dataset Measure Color Spatial
Stroop Stroop
3 Color —
Stroop
Spatial 14 -
Stroop [—.04, .31]
Flanker .08 -.02
[—.10, .26] [—.20, .15]
4 Color -
Stroop
Spatial .20 -
Stroop [.01, .39]
Flanker .14 31
[—.10,.38] [.08, .52]
5 Color -
Stroop
Spatial 17 -
Stroop [.01, .32]
Flanker .26 30
[.07, .46] [.10, .47]

Values in [] are the lower and upper limit of the 95% Bayesian cred-
ibility interval (CI). For values printed in bold, the 95% CI excludes 0

the accuracy congruency effect for the flanker task with
CCC =~ .40 (all other CCC > .58). Overall, this indicates a
good fit for the posterior predictive means. The same result
was observed for the individual samples from the posterior
predictive distribution. The only exception was that the RT
and accuracy congruency effects of the flanker task showed
lower CCCs. Therefore, these results were similar to Dataset
3 and showed that individual differences were well recovered.

Correlations and structural equation modeling

Correlations are presented in the middle part of Table 11
for the drift rate with the difference coding, in the mid-
dle part of Table 12 for the drift rate with the condition
coding, in the middle part of Table 13 for the boundary
separation, and in the middle part of Table 14 for the
non-decision time. SEM results are reported next for each
of these parameters separately.

Drift rate with difference coding All correlations
between drift-rate differences were of modest size
(<£0.31), but only one correlation was not credible (see
Table 11, middle part). Overall, the correlation matrix
had a KMO index (0.57) slightly under the lower limit
of 0.60, indicating only marginal factorability of the cor-
relation matrix.

@ Springer

Similar to Dataset 3, we fitted a model in which the drift-rate
differences from all three tasks loaded on a single factor (i.e.,
Model 5). This model is depicted in Fig. 7. As this model is satu-
rated, it provided a perfect fit to the data. All loadings were larger
than 0.30, with the loading of the spatial Stroop task being higher
than the other loadings. Error variances were moderate, and fac-
tor reliability was only of modest size (w=0.51). Together, these
results suggest a low to moderately coherent factor at best.

Drift rate with condition coding Correlations between
the drift rates of incongruent and congruent conditions
of the same task were high (>0.88) and credible. Fur-
thermore, although all correlations between the different
tasks were lower, they were still moderate (between 0.37
and 0.47) and credible (see Table 12, middle part). Over-
all, the correlation matrix had a good KMO index (0.62).

In the next step, we fitted the same bifactor model
(Model 6) as for Dataset 3. This model is depicted in
Fig. 7B. This model provided a good fit to the data,
X2(3, N=195)=0.78, p=0.854, CFI=1, RMSEA [90%
CI]=0 [0, 0.07], SRMR =0. All loadings for the general
factor were relatively high (i.e., larger than 0.55). How-
ever, all loadings for the attentional-control factor were
low (£0.24, see Fig. 7B). Moreover, the reliability for
this specific factor was very low (w, =0.04). Thus, this
model estimation did not result in a coherent factor of
attentional control.

Boundary separation All correlations were quite high
(between 0.49 and 0.53) and credible (see Table 13, middle
part). Furthermore, the correlation matrix had a good KMO
index (0.69).

Similar to Dataset 3, we fitted the model in which all tasks
loaded on a single factor (i.e., Model 7). This model is depicted
in Fig. 7C. As this model is saturated, it provided a perfect fit
to the data. All loadings were high (i.e., larger than 0.68), and
error variances were low (see Fig. 7C). Factor reliability was
high (#=0.75). Thus, these results are again in line with a
coherent factor representing individual differences in speed—
accuracy trade-off or caution that generalize across tasks.

Non-decision time The correlations were low to moderate
(between 0.23 and 0.37) and credible (see Table 14, middle
part). Overall, the correlation matrix had an acceptable KMO
index (0.60).

As before, we fitted a model in which all tasks loaded on
one factor (i.e., Model 8). This model is depicted in Fig. 7D.
As this model is saturated, it provided a perfect fit to the data.
All loadings were larger than 0.40. However, error variances
were moderate (see Fig. 7D), and factor reliability was only of
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Table 12 Datasets 3, 4, and 5-Experiments 1, 2, and 3, respectively, from Whitehead et al. (2019): Posterior mean correlation coefficients and
95% credibility intervals for the drift-rates estimates with condition coding

Dataset Task Trial Color Stroop Spatial Stroop Flanker
type
Inc Con Inc Con Inc
3 Color Inc -
Stroop Con 86 _
[.81,.90]
Spatial Inc 42 40 -
Stroop [.30, .54] [.27,.51]
Con 37 .38 .88 -
[.24, .49] [.25, .49] [.84, .92]
Flanker Inc 33 .29 32 38 —
[.20, .45] [.14, .41] [.20, .45] [.26, .50]
Con 33 31 34 38 94
[.21, .46] [.16, .43] [.21, .47] [.26, .51] [.91, .96]
4 Color Inc -
Stroop Con 88 _
[.84, 91]
Spatial Inc 45 .39 -
Stroop [.34, .56] [.26, .50]
Con 40 37 93 -
[.27,.50] [.25, .49] [.91, .95]
Flanker Inc 41 37 47 46 -
[.29, .52] [.24, .49] [.36, .57] [.35,.56]
Con 40 .38 46 47 97
[.28, .52] [.25, .50] [.35,.57] [.36, .58] [.96, .98]
5 Color Inc -
Stroop Con 92 -
[.89, .94]
Spatial Inc .36 25 -
Stroop [.24, .48] [12,.37]
Con 30 25 .83 —
[.18, .42] [.12,.36] [.78, .88]
Flanker Inc 32 25 44 46 —
[.19, .44] [12,.37] [.33, .55] [.34, .56]
Con 34 29 40 44 99
[.21, .45] [.16, .41] [.28, .51] [.32, .54] [.98, .99]

Inc. Incongruent, Con. Congruent. Values in [] are the lower and upper limit of the 95% Bayesian credibility interval (CI). For values printed in

bold, the 95% CI excludes 0

modest size (0 =0.56). Thus, the results suggest a moderately
coherent factor.

Dataset 5: Experiment 3 from Whitehead et al.
(2019)

Diffusion modeling

Figure 5 (Columns 7 to 9) shows the fit of the diffu-
sion model. Recovery was very good for response times
(CCC > .97) and not much worse for accuracy (CCC > .69).
For congruency effects, recovery was good for the color
and spatial Stroop tasks (CCC > .58), but less good for the

flanker task (CCC > .24). Thus, for the posterior predictive
means, recovery was good in all measures with the excep-
tion of the flanker congruency effects. The same pattern was
observed for individual samples from the posterior predic-
tive distribution. Therefore, these results were similar to
Datasets 3 and 4 and showed that individual differences were
overall well recovered.

Correlations and structural equation modeling
Correlations are presented in the lower part of Table 11
for the drift rate with the difference coding, in the lower

part of Table 12 for the drift rate with the condition coding,
in the lower part of Table 13 for the boundary separation,

@ Springer
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Table 13 Datasets 3, 4, and 5-Experiments 1, 2, and 3, respectively,
from Whitehead et al. (2019): Posterior mean correlation coefficients
and 95% credibility intervals for the boundary separation of the diffu-
sion model with condition coding

Dataset Measure Color Spatial
Stroop Stroop
3 Color -
Stroop
Spatial 37 -
Stroop [-24, .50]
Flanker 46 41
[.34,.57] [.29, .53]
4 Color -
Stroop
Spatial 53 -
Stroop [.42, .63]
Flanker .50 49
[.38, .60] [.37, .60]
5 Color -
Stroop
Spatial 51 -
Stroop [.40, .61]
Flanker .56 .60
[.46, .65] [.50, .69]

Values in [] are the lower and upper limit of the 95% Bayesian cred-
ibility interval (CI). For values printed in bold, the 95% CI excludes 0

Table 14 Datasets 3, 4, and 5-Experiments 1, 2, and 3, respectively,
from Whitehead et al. (2019): Posterior mean correlation coefficients
and 95% credibility intervals for the non-decision time of the diffu-
sion model with condition coding

Dataset Measure Color Spatial
Stroop Stroop
3 Color -
Stroop
Spatial 33 -
Stroop [.20, .46]
Flanker 43 37
[.31, .55] [.24, .49]
4 Color —
Stroop
Spatial .26 -
Stroop [.11,.38]
Flanker 37 23
[.24, .49] [.10, .35]
5 Color —
Stroop
Spatial .29 -
Stroop [.16, .41]
Flanker 49 .38
[.37,.59] [.26, .49]

Values in [] are the lower and upper limit of the 95% Bayesian cred-
ibility interval (CI). For values printed in bold, the 95% CI excludes 0
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Fig.6 Dataset 3: Experiment 1 from Whitehead et al. (2019). A
Boundary separation: One-factor model in which the boundary-sep-
aration parameters loaded on a single latent variable (Model 7). B
Non-decision time: One-factor model in which the non-decision-time
parameters loaded on a single latent variable (Model 8). See Fig. 2
note for details

and in the lower part of Table 14 for the non-decision time.
SEM results are reported next for each of these parameters
separately.

Drift rate with difference coding All correlations between
drift-rate differences were of modest size (<0.30) but cred-
ible (see Table 11, lower part). Overall, the correlation
matrix had a KMO index (0.59) slightly under the lower
limit of 0.60, indicating only marginal factorability of the
correlation matrix.

Similar to Datasets 3 and 4, we fitted the model in which
the drift-rate differences from all three tasks loaded on a sin-
gle factor (i.e., Model 5). This model is depicted in Fig. 8A.
As this model is saturated, it provided a perfect fit to the
data. All loadings were larger than 0.30, with the loading
of the flanker task dominating the remaining loadings (see
Fig. 8A). Error variances were moderate, and factor reli-
ability was low (0 =0.41). Together, this indicates that the
factor mainly represents the variance of the flanker measure,
suggesting that the model had low explanatory power.

Drift rate with condition coding Correlations between the
drift rates of incongruent and congruent conditions of the
same task were high (>0.83) and credible. Furthermore, the
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Fig. 7 Dataset 4: Experiment 2 from Whitehead et al. (2019). A Drift
rate with difference coding: One-factor model in which all drift-
rate differences between incongruent and congruent trials loaded on
a single latent variable (Model 5). B Drift rate with condition cod-
ing: Bifactor model in which drift rates from the incongruent and
congruent trials of all tasks was forced to load on a general factor,
and drift rates from the incongruent trials were forced to load on an
attentional-control factor (Model 6). In this model, factor loadings
were constrained to be positive, and error variances from the meas-
ures of the same task were allowed to correlate. C Boundary separa-
tion: One-factor model in which the boundary-separation parameters
loaded on a single latent variable (Model 7). D Non-decision time:
One-factor model in which the non-decision-time parameters loaded
on a single latent variable (Model 8). See Fig. 2 note for details

correlations between the different tasks were lower, ranging
from low to moderate (between 0.25 and 0.46), but all were
still credible (see Table 12, lower part). Overall, the KMO
index for the correlation matrix (0.57) is slightly under the
lower limit of 0.60, indicating only marginal factorability of
the correlation matrix.

In the next step, we fitted the same bifactor model
(Model 6) as for Datasets 3 and 4. This model is depicted
in Fig. 8B. This model provided a good fit to the data, X2(3,
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Non- -
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- Stroop
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Fig.8 Dataset 5: Experiment 3 from Whitehead et al. (2019). A Drift
rate with difference coding: One-factor model in which all drift-
rate differences between incongruent and congruent trials loaded on
a single latent variable (Model 5). B Drift rate with condition cod-
ing: Bifactor model in which drift rates from the incongruent and
congruent trials of all tasks was forced to load on a general factor,
and drift rates from the incongruent trials were forced to load on an
attentional-control factor (Model 6). In this model, factor loadings
were constrained to be positive, and error variances from the meas-
ures of the same task were allowed to correlate. C Boundary separa-
tion: One-factor model in which the boundary-separation parameters
loaded on a single latent variable (Model 7). D Non-decision time:
One-factor model in which the non-decision-time parameters loaded
on a single latent variable (Model 8). See Fig. 2 note for details

N=210)=25.70, p<0.001, CFI=0.99, RMSEA [90%
CI]=0.19 [0.13, 0.26], SRMR =0.02. All loadings for the
general factor were larger than 0.40. However, all loadings
for the attentional-control factor were low (<0.31), with the
loading of the spatial Stroop task being higher than the other
loadings (see Fig. 8B). Moreover, the reliability for this
specific factor was very low (w;, =0.07). Thus, this model
estimation did not result in a coherent factor of attentional
control.
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Boundary separation All correlations were quite high
(between 0.51 and 0.60) and credible (see Table 13, lower
part). Furthermore, the correlation matrix had a good KMO
index (0.70).

Similar to Datasets 3 and 4, we fitted the model in
which all tasks loaded on one factor (i.e., Model 7). This
model is depicted in Fig. 8C. As it saturated, it provided a
perfect fit to the data. All loadings were high (i.e., larger
than 0.69), and error variances were low (see Fig. 8C).
Factor reliability was high (0 =0.80). Thus, these results
show a coherent factor reflecting individual differences
in speed—accuracy trade-off or caution that generalize
across tasks.

Non-decision time The correlations were moderate
(between 0.29 and 0.49) and credible (see Table 14, lower
part). Overall, the correlation matrix had a good KMO index
(0.62).

As before, we fitted a model in which all tasks loaded
on a single factor (Model 8). This model is depicted in
Fig. 8D. As this model is saturated, it provided a perfect fit
to the data. All tasks were larger than 0.47, and error vari-
ances were moderate (see Fig. 8D). Factor reliability was
slightly under the lower limit of 0.70 (0 =0.69). Together,
the results suggest a coherent factor.

Dataset 6: Kane et al. (2016)
Diffusion modeling

Figure 9 shows the fit of the diffusion model. For
the spatial Stroop and arrow flanker tasks recov-
ery was as before very good for both response times
and accuracy (CCC > .96and CCC > .84, respectively )
as well as the associated congruency effects
(CCC > .65 and CCC > .75, respectively). For the num-
ber Stroop task, the recovery was similar for mean response
time and accuracy, but recovery of congruency effects was
somewhat worse (CCC = .5). For the letter flanker task, we
again saw good recovery for response times (CCC = 1) and
associated congruency effects (CCC > .77), but recovery of
accuracy and associated congruency effects was low due to a
reduced range (i.e., a ceiling effect). The pattern for the indi-
vidual samples from the posterior distribution was also very
similar, with the only cases showing poor recovery being the
ones mentioned before. Overall, fit is similar to the fit of the
previous datasets—somewhat worse than for Datasets 3 to 5,
but better than for Datasets 1 and 2—and recovers individual
differences reasonably well, if such differences were present
(i.e., not for accuracy of the letter flanker task).
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Fig.9 Dataset 6: Kane et al. (2016). Model fit of diffusion models
comparing observed (x-axis) with predicted statistics (y-axis). See
Fig. 1 note for details

Correlations and structural equation modeling

Correlations are presented in Table 15 for the drift rate with
the difference coding, in Table 16 for the drift rate with the
condition coding, in Table 17 for the boundary separation,



Psychonomic Bulletin & Review

Table 15 Dataset 6 from Kane et al. (2016): Posterior mean correla-
tion coefficients and 95% credibility intervals for the drift-rate differ-
ence estimate of the diffusion model with difference coding (incon-
gruent vs. congruent trials)

Measure Number Spatial Arrow
Stroop Stroop flanker

Number -

Stroop

Spatial 15 -

Stroop [—.02,.30]

Arrow 25 .04 -

flanker [.10, .39] [—.10, .17]

Letter 25 .00 32

flanker [.04, .46] [-.20, .20] [.13, .50]

Values in [] are the lower and upper limit of the 95% Bayesian cred-
ibility interval (CI). For values printed in bold, the 95% CI excludes 0

and in Table 18 for the non-decision time. SEM results are
reported next for each of these parameters separately.

Drift rate with difference coding All correlations between
drift-rate differences were of modest size (<0.32) and only
half were credible (see Table 15). Overall, the correlation
matrix had a KMO index of 0.60.

The next step was to find a coherent factor of attentional
control using the four attentional-control measures. To this end,
we fitted a model in which the drift-rate differences from all
four tasks loaded on a single factor (i.e., Model 9). However,
this model provided a fit that would just be acceptable by con-
ventional criteria for the SEM fit indices, X2(2, N=443)=8.01,

p=0.018, CFI=0.94, RMSEA [90% CI]=0.08 [0.03, 0.15],
SRMR =0.04. This model is depicted in Fig. 10A. The loadings
ranged from 0.10 to 0.56, and error variances were moderate
(see Fig. 10A). The factor reliability was low (0=0.44). Thus,
the results suggest a moderately coherent factor.

Because previous research has suggested a well-fitting
model with a factor on which the number Stroop, arrow flanker
and letter flanker tasks loaded (Rey-Mermet et al., 2018), we
fitted an additional model using these three tasks only (i.e.,
Model 10). This model is depicted in Fig. 10B. As this model
is saturated, it provided a perfect fit to the data. All loadings
were larger than 0.44, but error variances were moderate (see
Fig. 10b). The factor reliability was of modest size (0=0.52).
Thus, the results suggest a moderately coherent factor.

Drift rate with condition coding Correlations between the
drift rates of incongruent and congruent conditions of the
same task were in the upper range (>0.50) and credible. In
contrast, all correlations between the different tasks were
in the lower range (between 0.07 and 0.52) but still mostly
credible with only two exceptions (see Table 16). Overall,
the correlation matrix had a good KMO index (0.62).

In the next step, we aimed to establish a coherent factor
of attentional control using the bifactor-modeling approach.
Following the procedure used for the previous datasets, we
fitted Model 11 as follows. The drift rates of both congru-
ent and incongruent conditions of all four tasks loaded on
a general factor. The drift rates of incongruent trials had

Table 16 Dataset 6 from Kane et al. (2016): Posterior mean correlation coefficients and 95% credibility intervals for the drift-rates estimates

with condition coding

Task Trial Number Stroop Spatial Stroop Arrow flanker Letter flanker
type Inc Con Inc Con Inc Con Inc
Number Inc -
Stroop Con 77 -
[.71, .83]
Spatial Inc a5 25 -
Stroop [.04, .26] [.16, .35]
Con .09 24 74 -
[—.02, .20] [.14, .33] [.68, .79]
Arrow Inc 45 37 14 .07 -
flanker [.35,.55] [.27, .46] [.02, .24] [—.03, .18]
Con 32 39 27 23 52 -
[.22, .43] [.30, .48] [.17,.37] [.12,.33] [.43, .60]
Letter Inc 23 31 24 17 20 .30 —
flanker [.12,.34] [.21, .41] [.12,.35] [.07,.27] [.09, .30] [.20, .40]
Con .20 32 .26 .20 A3 34 90
[.10,.31] [.23, .41] [.15,.36] [.10,.29] [.03, .24] [.34, .43] [.86, .93]

Inc. Incongruent, Con. Congruent. Values in [] are the lower and upper limit of the 95% Bayesian credibility interval (CI). For values printed in

bold, the 95% CI excludes 0
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Table 17 Dataset 6 from Kane et al. (2016): Posterior mean correla-
tion coefficients and 95% credibility intervals for the boundary sepa-
ration of the diffusion model with condition coding

Measure Number Spatial Arrow
Stroop Stroop flanker

Number -

Stroop

Spatial 42 -

Stroop [.31,.51]

Arrow .63 37 -

flanker [.55,.70] [.25, 47]

Letter 32 32 43

flanker [.21, .43] [.20, .43] [.32,.53]

Values in [] are the lower and upper limit of the 95% Bayesian cred-
ibility interval (CI). For values printed in bold, the 95% CI excludes 0

Table 18 Dataset 6 from Kane et al. (2016): Posterior mean corre-
lation coefficients and 95% credibility intervals for the non-decision
time of the diffusion model with condition coding

Measure Number Spatial Arrow
Stroop Stroop flanker

Number -

Stroop

Spatial 23 -

Stroop [.12,.32]

Arrow 41 29 -

flanker [.32,.50] [.19, .39]

Letter 19 26 14

flanker [.08, .29] [.15, .36] [.02, .25]

Values in [] are the lower and upper limit of the 95% Bayesian cred-
ibility interval (CI). For values printed in bold, the 95% CI excludes 0

additional loadings on an attentional-control factor. Error
variances from the measures of the same task were allowed
to correlate, and factor loadings were constrained to be
positive. This model is depicted in Fig. 10C. This model
provided a good fit to the data, X2(12, N=443)=37.60,
p<0.001, CFI=0.99, RMSEA [90% CI]=0.07 [0.05,
0.10], SRMR =0.04. All measures for the general factor
were larger than 0.36. However, for the attentional-control
factor, most loadings were lower than 0.30, with the loading
of the arrow flanker task dominating the other loadings (see
Fig. 10C). In line with these observations, the reliability
for this specific factor was low (®, =0.13). Therefore, this
model estimation did not result in a coherent factor of atten-
tional control.

Similar to the drift rate with difference coding, we fitted
a bifactor model in which only the number Stroop, arrow
flanker, and letter flankers were included (Model 12). This
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model provided a bad fit to the data, X2(3, N=443)=19.32,
p<0.001, CFI=0.99, RMSEA [90% CI]=0.11[0.07, 0.16],
SRMR =0.04.

Boundary separation All correlations were moderate
(between 0.32 and 0.63) and credible (see Table 17). Fur-
thermore, the correlation matrix had a good KMO index
(0.70).

In the next step, we fitted a model in which all four
tasks loaded on a single factor (i.e., Model 13). This model
provided a bad fit to the data, X2(2, N=443)=15.45,
p<0.001, CFI=0.97, RMSEA [90% CI]=0.12 [0.07,
0.18], SRMR =0.03. As before, we fitted a further model
in which only the number Stroop, arrow flanker, and letter
flanker tasks loaded on a single factor (i.e., Model 14). This
model is depicted in Fig. 10D. As this model is saturated,
it provided a perfect fit. All loadings were larger than 0.47,
and error variances were relatively low (see Fig. 10D). Fac-
tor reliability was quite high (0w =0.67). Thus, these results
support the view of a coherent factor reflecting individual
differences in speed—accuracy trade-off or caution that gen-
eralize across tasks.

Non-decision time All correlations were low to moderate
(between 0.14 and 0.41) and all credible (see Table 18).
Overall, the correlation matrix had a good KMO index (0.63).

As before, we first fitted a model in which all four tasks
loaded on a single factor (i.e., Model 15). This model provided a
bad fit to the data, XZ(Z, N=443)=14.555, p=0.001, CFI=0.92,
RMSEA [90% CI]=0.12[0.07, 0.18], SRMR =0.05. Then, we
fitted the model in which only the number Stroop, arrow flanker,
and letter flanker tasks loaded on a single factor (i.e., Model 16).
This model is depicted in Fig. 10E. As this model is saturated,
it provided a perfect fit to the data. The loadings ranged from
0.25 t0 0.75 (see Fig. 10E). This resulted in a factor reliability of
modest size (0=0.54), suggesting a moderately coherent factor
for the non-decision time.

SEM analyses on 500 covariance matrices sampled
from the posterior distribution

All SEM models so far were performed on the posterior mean
covariance matrices. Next, we fitted the models for all param-
eters (i.e., the drift rates in both difference and condition coding
parametrizations, as well as the boundary separation, and the
non-decision time) in all datasets (1 to 6) to 500 covariance
matrices sampled from the posterior distribution. This gener-
ated a distribution of 500 SEM fits that reflects the uncertainty



Psychonomic Bulletin & Review

Fig. 10 Dataset 6: Kane et al. (2016). A Drift rate with difference »

coding and all four tasks: One-factor model in which all drift-rate dif-
ferences between incongruent and congruent trials loaded on a sin-
gle latent variable (Model 9). B Drift rate with difference coding and
only three tasks: One-factor model in which all drift-rate differences
between incongruent and congruent trials loaded on a single latent
variable (Model 10). C Drift rate with condition coding and all four
tasks: Bifactor model in which drift rates from the incongruent and
congruent trials of all tasks was forced to load on a general factor,
and drift rates from the incongruent trials were forced to load on an
attentional-control factor (Model 11). In this model, factor loadings
were constrained to be positive, and error variances from the meas-
ures of the same task were allowed to correlate. D Boundary sepa-
ration with only three tasks: One-factor model in which the bound-
ary-separation parameters loaded on a single latent variable (Model
14). E Non-decision time with only three tasks: One-factor model in
which the non-decision-time parameters loaded on a single latent var-
iable (Model 16). See Fig. 2 note for details

of the correlation estimates, and a corresponding distribution
of 500 values for each statistic reflecting model fit and model
adequacy, approximating their posterior distribution.

An overview of the goodness-of-fit statistics of these
model assessments is presented in Fig. 11 for Datasets 1 and
2, in Fig. 12 for Datasets 3, 4 and 5, and in Fig. 13 for Dataset
6. As shown in Fig. 11, only a few models for Datasets 1 and
2 provided an acceptable fit to the data, whereas the major-
ity of the models provided a bad fit. For Datasets 3 to 5, the
single-factor models were saturated, thus provided perfect fit
to the data (see Fig. 12). Nevertheless, for the single-factor
models with the drift rate, there is a substantial number of
cases in which the models were either only identified with
warnings or did not converge at all. For the non-saturated
models (i.e., the bifactor models with the drift rates), only
about half of the models showed good fit statistics. For Data-
set 6, when the models included the four tasks, most models
provided a bad fit, were identified with warnings or did not
converge at all (see Fig. 13A). In contrast, when the models
included only three tasks (i.e., the number Stroop, the arrow
flanker, and the letter flanker task), most models provided
good fit to the data (see the bifactor model with the drift rates
for an exception; Fig. 13B).

For the models with acceptable to good fit statistics, we then
assessed the factor reliability. These estimates are presented in
Fig. 14 for Datasets 1 and 2, in Fig. 15 for Datasets 3, 4, and
5, and in Fig. 16 for Dataset 6. Overall, the reliability of the
attentional-control factor for the drift-rate parameters was gener-
ally low (<0.60 for single-factor models and <0.10 for bifactor
models), thus indicating that no coherent factor of attentional
control was established. For Dataset 4 (see Fig. 15B) and, to
a lesser extent, for Dataset 5 (see Fig. 15C) and Dataset 6 with
the models including three tasks (see Fig. 16B), the range of the
reliability extended beyond 0.70. However, this wide distribu-
tion reflects a high degree of uncertainty for this parameter, thus
challenging the view of a coherent factor of attentional control in
this case as well. For boundary separation, the factor reliability
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was higher, ranging from 0.60 to 0.85 for nearly all datasets
(see Dataset 2 for an exception in which the factor reliability
ranged from 0.40 to 0.60). Thus, except for Dataset 2, these
results on the boundary separation indicate a coherent factor
reflecting individual differences in speed—accuracy trade-off. For
non-decision time, the factor reliability was more moderate and
with a wider range, varying from 0.40 to 0.80 across the differ-
ent datasets. This suggests at best a moderately coherent factor
for non-decision time.
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Fig. 11 Datasets 1 and 2 from Rey-Mermet et al. (2018): Overview
of the goodness-of-fit statistics for the models computed with each of
the 500 covariance matrices sampled from the full posterior distribu-
tion. A model fit was considered as good if the Bentler’s comparative
fit index (CFI) was larger than .95 and the standardized root mean
square residual (SRMR) was smaller than .08. A model fit was con-
sidered acceptable if the CFI ranged from .90 to .95 and the SRMR
was smaller than .08. Otherwise, the model fit was considered as bad.

Robustness of the results

To test the robustness of our results, we reran the analyses
by applying the following modifications. First, because the
hierarchical Bayesian Wiener diffusion modeling with the
difference coding did not recover the data for all measures
well in Datasets 1 and 2 (see Figs. 1 and 3), we estimated
the models to several subsets of data in which the tasks
with a poor diffusion-model fit were excluded. The excluded
tasks are listed in Table 19 for each dataset separately.
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For the sake of completeness, we separately reported the cases in
which the model computation resulted in some warnings (e.g., some
estimated variances were negative) and the cases in which the model
computation did not converge. The results for the model computa-
tions with the covariance matrix from the mean posterior distribution
are presented in red. A Dataset 1: Young adults from Rey-Mermet
et al. (2018). (B) Dataset 2: Older adults from Rey-Mermet et al.
(2018). (Color figure online)

Second, because Datasets 1 and 2 included neutral trials
as baseline as well, we also fitted bifactor models in which
neutral conditions, rather than congruent conditions, were
included as baseline conditions that loaded only on the
general factor. Third, in Dataset 6, the single- and bifactor
models were modified by modeling two attentional-control
factors. That is, the number and spatial Stroop tasks loaded
on a Stroop attentional-control factor. The arrow and letter
flanker tasks loaded on a flanker attentional-control factor.
Finally, in all datasets (1 to 6), all bifactor models were
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Fig. 12 Datasets 3, 4, and 5 from Whitehead et al. (2019): Over-
view of the goodness-of-fit statistics for the models computed with
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each of the 500 covariance matrices sampled from the full posterior (2019). (Color figure online)
distribution. See Fig. 11 note for details. A Dataset 3: Experiment 1

from Whitehead et al. (2019). B Dataset 4: Experiment 2 from White-
head et al. (2019). C Dataset 5: Experiment 3 from Whitehead et al.
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Fig. 13 Dataset 6 from Kane et al. (2016): Overview of the goodness-
of-fit statistics for the models computed with each of the 500 covari-
ance matrices sampled from the full posterior distribution. In this
dataset, the sample size consisted of 443 participants and thus was
larger than 250. For this reason, the root mean square error of approx-
imation (RMSEA) was taken into account when evaluating the model
fit. Accordingly, a model fit was considered as good if the Bentler’s
comparative fit index (CFI) was larger than .95, the standardized root
mean square residual (SRMR) was smaller than .08, and the RMSEA

estimated with different constraints: (a) factor loadings were
constrained to be positive, (b) error variances were con-
strained to be positive, and (c) neither factor loadings nor
error variances were constrained to be positive.

The goodness-of-fit statistics of these model assess-
ments and the parameter estimates can be found at
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values were smaller than .06. A model fit was considered as accept-
able if the CFI was larger than .90, the SRMR was smaller than .08,
and the RMSEA values were between .06 and .08. Otherwise, the
model fit was considered as bad. See Fig. 11 note for the other details.
A Dataset 6: Kane et al. (2016) with the models including four tasks.
B Dataset 6: Kane et al. (2016) with the models including only three
tasks (i.e., the number Stroop, arrow flanker, and letter flanker tasks).
(Color figure online)

https://osf.io/tyv9g/. None of these estimations resulted
in a well-fitting model with a coherent factor of atten-
tional control (i.e., with a high factor reliability, low
error variances, and significant but non-dominant load-
ings for the attentional-control factor).


https://osf.io/tyv9g/
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Fig. 14 Datasets 1 and 2 from Rey-Mermet et al. (2018): Omega
coefficients of factor reliability for single-factor models and hierar-
chical omegas for the attentional-control factor in bifactor models for
which the fit statistics was acceptable to good. Fit statistics were com-
puted with each of the 500 covariance matrices sampled from the full
posterior distribution. Omegas for the model fits with the covariance

Discussion

The purpose of the present study was to establish a coher-
ent factor of attentional control when individual differences
in speed—accuracy trade-offs and measurement error were
accounted for. To this end, we reanalyzed the data from Rey-
Mermet et al. (2018), from Whitehead et al. (2019) and from
Kane et al. (2016) by computing SEM using the correlations
parameters of a hierarchical Bayesian Wiener diffusion model
(i.e., drift rates, or congruency effects on drift rates, boundary
separation, and non-decision time). This combines a well-
tested cognitive model of response selection—including
speed—accuracy trade-offs—as measurement model with the
current gold standard for statistical modelling of trial-by-trial
noise (Rouder et al., 2023).

matrix from the mean posterior distribution are presented in red. A
Dataset 1: Young adults from Rey-Mermet et al. (2018). B Dataset 2:
Older adults from Rey-Mermet et al. (2018). Please note that there is
no distribution for the single-factor model in Dataset 2 because only
one model provided an acceptable fit to the data (see Fig. 11b, o =.41
for this model). (Color figure online)

A summary of the results is presented in Table 20. Over-
all, the results showed that for all datasets, the congruency
effects on drift rates hardly correlated across tasks. More-
over, irrespective of how we isolate attentional-control
variance (i.e., using drift-rate differences in a single-factor
model, or through a bifactor model of drift rates), SEM
identified a model including a factor that generalizes across
tasks in two cases only (i.e., in the drift-rate differences in
Dataset 4 and in Dataset 6). In these cases, the reliability
of the factor was of modest size, suggesting a moderately
coherent factor of attentional control. However, the analy-
ses on 500 covariance matrices sampled from the posterior
distribution emphasized the uncertainty in the estimate of
the factor reliability. Moreover, no coherent factor of atten-
tional control was observed when the bifactor-modeling
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Fig. 15 Datasets 3, 4, and 5 from Whitehead et al. (2019): Omega
coefficients of factor reliability for single-factor models and hierar-
chical omegas for the attentional-control factor in bifactor models for
which the fit statistics was acceptable to good. See Fig. 14 note for

@ Springer

.30 40 .50 .60 .70 .80 .90

1.00

details. A Dataset 3: Experiment 1 from Whitehead et al. (2019). B
Dataset 4: Experiment 2 from Whitehead et al. (2019). C Dataset 5:
Experiment 3 from Whitehead et al. (2019). (Color figure online)
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Fig. 16 Dataset 6 from Kane et al. (2016): Omega coefficients of fac-
tor reliability for single-factor models and hierarchical omegas for the
attentional-control factor in bifactor models for which the fit statis-
tics was acceptable to good. See Fig. 14 note for details. A Dataset 6:

approach was used on Datasets 4 and 6. Together, this chal-
lenges the view of a coherent factor even in Datasets 4
and 6.

Boundary separation and non-decision time

Besides the drift rates, the results showed a coherent fac-
tor for the boundary separation in nearly all datasets (see
Table 20). Only in Dataset 2, which includes the perfor-
mance of older adults, and in Dataset 6, which includes the
four tasks, no factor was identified. As boundary separation
is typically interpreted as a measure of response caution
(Wagenmakers, 2009), such as when preferring accuracy
over speed, or speed over accuracy, establishing a coherent
factor with that parameter suggests that participants applied

.30 40 .50 .60 .70 .80 .90 1.00

Kane et al. (2016) with the models including four tasks. B Dataset 6:
Kane et al. (2016) with the models including only three tasks (i.e., the
number Stroop, arrow flanker, and letter flanker tasks). (Color figure
online)

the same response style across several tasks (see also Hedge
et al., 2022; Weigard et al., 2021). This seems in line with
the assumption of a consistent meta-control state (Hommel
& Wiers, 2017), which enables participants to implement a
response style and to vary it if required. Apparently, setting
this response style is implemented less consistently by older
adults and may not affect all tasks similarly.

The present study also yielded at least a moderately coher-
ent factor for the non-decision time in most datasets (see
Dataset 1 and Dataset 6 including four tasks for exceptions).
Although this finding is in line with the results reported by
Weigard et al. (2021), it was still surprising to observe a fac-
tor in this case because the non-decision time is defined as
a parameter reflecting task-specific processes (Wagenmak-
ers, 2009). One way to interpret this result may be to relate
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Table 19 List of excluded tasks to test the robustness of the results from single-factor models in Datasets 1 and 2

Excluded tasks in Dataset 1

Excluded tasks in Dataset 2

Color Stroop

Global-local

Color Stroop and global-local

Color Stroop and letter flanker

Color Stroop, global-local, and letter flanker

Color Stroop, letter flanker, and negative compatibility

Color Stroop, global-local, letter flanker, and negative compatibility
Color Stroop, global-local, letter flanker, and number Stroop
Color Stroop, global-local, letter flanker, negative compatibility, and

number Stroop

Color Stroop, global-local, letter flanker, negative compatibility, and
positive compatibility

Negative compatibility

Negative compatibility and letter flanker

Negative compatibility and positive compatibility

Negative compatibility, letter flanker, and positive compatibility
Negative compatibility, letter flanker, and number Stroop

Negative compatibility, letter flanker, positive compatibility, and number
Stroop

Negative compatibility, letter flanker, positive compatibility, number
Stroop, and Simon

Negative compatibility, letter flanker, positive compatibility, number
Stroop, and arrow flanker

Table 20 Summary of the results

Dataset Drift rate Drift rate Boundary Non-decision
with difference coding with condition coding separation time
1 No coherent factor No coherent factor A coherent factor No factor
of attentional control of attentional control
2 No factor No coherent factor No factor A moderately
of attentional control of attentional control coherent factor
3 No factor No factor A coherent factor A coherent factor
of attentional control of attentional control
4 A moderately coherent factor No coherent factor A coherent factor A moderately
of attentional control but uncertain® of attentional control coherent factor
5 No coherent factor No coherent factor A coherent factor A coherent factor

6—four tasks

6—three tasks

of attentional control

A moderately coherent factor
of attentional control but uncertain®

A moderately coherent factor
of attentional control but uncertain®

of attentional control

No coherent factor
of attentional control

No factor of attentional control

No factor

A coherent factor

No factor

A moderately
coherent factor

For Dataset 6, the models were computed in two ways. First, all four tasks were used. Second, following previous research (Rey-Mermet et al.,
2018), only three tasks—that is, the number Stroop, arrow flanker, and letter flanker tasks—were used. For the sake of clarity, results suggesting
a coherent factor or a moderately coherent factor are presented in bold

#The results on the posterior mean covariance matrix suggest a moderately coherent factor of attentional control. However, the results on the 500
covariance matrices sampled from the posterior distribution emphasized the uncertainty of the estimate for the factor reliability, thus challenging

the view of a coherent factor

it to the finding that non-decision time has been reported to
capture to the ability to predict the timing of forthcoming
events (Van Den Brink et al., 2021). Critically, this ability
to predict timing has been suggested to be related to atten-
tional-control abilities (Broadway & Engle, 2011a, 2011b).
Although this interpretation seems attractive, there exists,
however, a more parsimonious way to interpret the coher-
ent factor for non-decision time. Our hierarchical Bayesian
approach does not consider contaminant responses (Ratcliff
& Tuerlinckx, 2002). Thus, the individual differences in

@ Springer

non-decision time may reflect individual differences in the
fastest RTs. In this case, a factor in the non-decision time
means that individual differences in the fastest RTs have a
similar ordering across tasks. This similar ordering seems
to be more or less pronounced, depending on the tasks used
and the samples tested.

One may wonder why in addition to modeling separate
drift rates for congruent and incongruent trials, we did not
take a similar approach for the boundary separation and
non-decision time. The main argument against this is again
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the statistical bias-variance trade-off (Yarkoni & Westfall,
2017). We want our diffusion model to be as complex as
necessary to account for the main pattern in the data, but
not any more complex. In line with this idea, psychomet-
ric applications of the diffusion model (e.g., van der Maas
et al., 2011; Vandekerckhove, 2014) usually apply the sim-
plest possible model variants, similar to our approach here.
Nevertheless, we also attempted to estimate models in which
either all three parameters, or only the drift rate and the
boundary separation, were allowed to differ across congru-
ent and incongruent trials. However, these models failed to
converge and produced “divergent transitions” in the MCMC
sampling process, indicating a pathological likelihood sur-
face or, more colloquially, a mis-specified model (e.g.,
Betancourt, 2017). Thus, at least given the available data,
and with the goal in mind to estimate the variance—covari-
ance matrix with a non-informative prior for the correla-
tion matrix (which we believe is one of the unique strengths
of our approach), the model in which only the drift rate is
allowed to vary between congruent and incongruent trials is
not only the theoretically most appropriate model, but also
the only computationally feasible diffusion model.

Attentional control does not exist as a psychometric
construct: Is this conclusion warranted?

Overall, the results of the present study indicate that even if
we limit the impact of individual differences in speed—accu-
racy trade-offs and the impact of measurement error on the
attentional-control measures, no coherent factor of atten-
tional control emerges. Moreover, bypassing difference
scores by applying a bifactor-modeling approach did not
solve the issue (see also Rey-Mermet et al., 2018, 2019,
2020; cf. Draheim et al., 2019, 2021). These findings sug-
gest that the difficulty of establishing attentional control as a
psychometric construct is not primarily a measurement prob-
lem. Therefore, these findings challenge attentional control
as a psychometric construct. The issues we are facing when
establishing attentional control as a psychometric construct
are no longer methodological but theoretical. In particular,
we need to rethink either how we assess attentional control
or how we think about attentional control as a psychometric
construct.

One may argue, nevertheless, that these conclusions are
not warranted. We next argue why, in our view, they are
warranted.

Sufficient power?

A first concern may be whether, in the datasets we used,
we had enough statistical power to establish attentional
control at the latent-variable level or to accept the null
hypothesis (i.e., to determine that attentional control at

the latent-variable level has no empirical basis). Statis-
tical power—the probability of obtaining a significant
effect, given that there is a true effect—is only defined in
the framework of null-hypothesis significance testing and
therefore cannot be applied to our Bayesian analysis. In
the present context, an approximately equivalent concept in
Bayesian statistics is the precision of the posterior distribu-
tions. Like power, it depends on the amount of information
in the data, that is, on the sample size and the number of
trials per participant and condition: Less informative data
translate into less precise parameter estimates, reflecting
less certainty about their values. Unlike power, the preci-
sion of posteriors reflects the informativeness of the data
not only for showing a true effect but also for providing evi-
dence for the absence of a non-existing effect. Also, unlike
power, precision does not depend on the a priori choice of
an effect size.

The question is now: Were our correlation estimates
precise enough? Inspection of Tables 3, 4, 5, 6,7, 8, 9, 10,
11,12, 13, 14, 15, 16, 17 and 18 shows that the correlation
coefficients, which form the basis for the SEMs, are esti-
mated quite precisely in most cases. More specifically, in
most cases in which the correlations do not differ credibly
from zero, the Bayesian 95% credible intervals, reflect-
ing the width of the posteriors, are quite narrow around
zero and generally exclude medium or large correlations
as improbable. The data provide sufficient evidence that
nearly all of the correlations of the drift-rate difference
parameters across tasks are small at best (see Tables 3, 7,
11, and 15). Moreover, most of their posteriors had sub-
stantial mass on both sides of zero, implying that the cor-
relations are equally likely to be positive (the predicted
direction) or negative (which is incompatible with the idea
of a general attentional control factor). More specifically,
among all 71 drift-rate difference correlation parameters,
only three had credible intervals with an upper bound
above 0.50 (i.e., 0.50 twice and 0.52 once), whereas three
correlations had a lower bound smaller than — 0.40 (with
the smallest lower bound being — 0.48). This suggests that
our correlation coefficients are precise enough to warrant
our conclusions.

A complementary perspective on the precision of the
correlations is to consider the strength of evidence for posi-
tive correlations among drift-rate parameters for both the
difference and condition coding parametrizations. We con-
sider two different metrics—both shown in Table 21—the
probability that the average correlation is larger than a given
threshold and the probability that all correlations are larger
than a given threshold. The “average correlations” columns
tell us something about the average precision of the correla-
tion estimates. If a dataset was completely uninformative,
we would expect a probability of 0.50 for average correla-
tions > 0, and a probability of between 0.20 (for three tasks)
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and 0.05 (for eight tasks) for average correlations > 0.5.
The degree of deviation from this pattern provides informa-
tion regarding both location and precision of the average
pairwise correlations. The “all correlations” columns tell
us something about the evidence for the positive manifold
across tasks, the assumption that all pair-wise correlations
among drift rates or drift-rate differences are positive. If
a dataset was completely uninformative, we expect the
probability for all correlations > 0 to be only 0.16 for three
tasks and only 0.04 for four tasks. These values thus allow
a direct assessment of whether a given dataset can provide
evidence for a coherent factor of attentional control.

For the difference coding parameterizations, we gener-
ally find good evidence for average correlations > 0, with the
only exceptions being Datasets 1 and 2. At the same time, we
also find evidence that the average correlations are generally
small in magnitude with no data set having more than 0.1
probability for correlations > 0.4. This suggests that the data
overall is informative for the drift-rate difference correla-
tions, but these correlations are likely positive and small. In
line with this interpretation, for three of the datasets (Data-
sets, 4, 5, and 6 including three tasks), we additionally found
strong evidence that all correlations are > 0. Even in these
cases, however, the vast majority of posterior probability is
concentrated on small correlations between 0 and 0.2.

For the condition coding parameterizations, the evidence
for the average correlations between drift rates being >0 is
much stronger than for difference coding; it approaches
1. For Datasets 1, 2 and 6, most of the evidence points to
medium sized correlations with the majority of posterior
probability concentrated on values between 0.1 and 0.3 or
0.4. For the other datasets, the majority of the posterior
probability is concentrated on higher average probabilities.
For example, for Dataset 4, most of the posterior probabil-
ity is concentrated on average correlations between 0.3 and
0.5 with even 0.3 probability for correlations > 0.5. If we
consider the evidence for the positive manifold that all cor-
relations are positive, only Datasets 1 and 2 show strong evi-
dence against that assumption. For all other datasets, there
is substantial posterior probability that all correlations are
positive. For Datasets 3, 4, and 5, there is even evidence that
all correlations are > 0.2. Thus, the data considered here is
clearly informative with respect to the precision, location,
and even direction of the pairwise correlations. Neverthe-
less, in the structural equation modeling approach, we failed
to find evidence for a coherent factor of attentional control
when using the bifactor model. Thus, the positive manifold
we observed among drift rates only supports the general fac-
tor but not the specific attentional control factor.

3 These values were obtained via simulation; see R code here: https:/
osf.io/h9qu4

The generally positive assessment of the precision with
which we estimated the correlations contrast with the results
reported by Rouder et al. (2023) who also used Datasets 1
and 2. Their results showed low correlations suffering from
a large degree of imprecision (i.e., wide posterior distribu-
tions). However, even though they also used a hierarchical
Bayesian model, their model assumed that response times
follow a normal distribution, an assumption that the data
clearly violates. Thus, it appears that our approach of using
a response time distribution more appropriate for the data,
the Wiener diffusion model, improves the precision of the
correlation estimates to a noticeable degree.* With such an
approach, it is possible to draw conclusions from existing
studies using attentional-control tasks. The conclusion that
the data suggests is that no psychometric construct of atten-
tional control exists.

What about reliability?

One may also wonder why we did not compute reliability
estimates, although we were interested in the impact of
measurement error. The reason is that we used a Bayesian
modelling approach, which treats measurement error differ-
ently from classical test theory. In classical test theory, there
is a conceptual separation between true score and error. In
Bayesian parameter estimation, there is no such separation.
Measurement error is instead represented in the precision of
the posterior distribution. High precision of the posterior dis-
tribution indicates low measurement error, whereas low pre-
cision indicates high measurement error. Thus, in a Bayesian
modelling approach, it is not appropriate to compute reliabil-
ity as proposed in classical test theory to assess the measure-
ment error. As highlighted above, the results of our approach
showed that the correlations were estimated quite precisely
in most cases. Therefore, we can conclude that our approach
successfully reduced the impact of measurement error.

One may, nevertheless, argue that we could still compute
reliability estimates by splitting the data into two halves and
estimating the Bayesian model independently to each half.
However, this approach is unsuitable. The reason is that this
approach would only use half of the data for each estimation

4 Rouder et al. (2023) also report (their Footnote 2) that in their sim-
ulations, the inverse-Wishart prior for the variance—covariance matrix
showed “better performance” than an approach using an LKJ prior.
They attribute this to the ability of the inverse-Wishart prior to con-
strain the scale of individual differences on the level of the response
times. In our approach, the diffusion model already constrains the
scale of the data by explicitly modelling the right-skewed shape of
response time distribution. Furthermore, individual differences are
not modelled on the level of the response times but on the level of
the diffusion model parameters, for which prior information about
the scale is not readily available. Thus, given the general preference
for the LKIJ prior in the literature (e.g., McElreath, 2020), it seems
unlikely that the same would hold here.
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step, which would decrease the amount of information used
to compute the parameter estimates. Because the parameter
estimates of each individual participant are informed by all
data of all other participants (e.g., Rouder & Haaf, 2019),
this would counteract the reduction of the measurement
error that should be achieved with a hierarchical Bayes-
ian framework. Thus, the measurement error may bias the
reliability estimate to an unknown degree downwards, thus
making such reliability estimates less or uninformative.

Another approach to compute reliability estimates would
be to estimate the reliability of a parameter from the cor-
responding trial-by-trial variability (Rouder et al., 2023,
Footnote 1). This is in principle possible as the full diffusion
model includes a parameter for the trial-by-trial variability
of drift rate. However, estimating this variability parameter
reliably is itself extremely difficult (Boehm et al., 2018).
Thus, it is unclear whether a reliability estimate based on
an unreliable variability parameter would be particularly
insightful. Furthermore, to strike a good balance between
bias and variance when estimating the diffusion model, we
decided not to include trial-by-trial variability parameters
in our model.

The right diffusion model?

A third concern may be whether we used the right diffusion-
modeling approach. Previous research has put forward, for
example, the diffusion model for conflict tasks (e.g., Ambrosi
etal., 2019; Hedge et al., 2019, 2022; Ulrich et al., 2015) or its
revision (Lee & Sewell, 2024). As these models were devel-
oped to explain experimental patterns associated with some
attentional-control tasks, one may argue that these models are
more suitable to estimate parameters. However, so far, this is
by no means certain. The reason is that to explain these subtle
experimental patterns, the diffusion models for conflict tasks
are more complex. More complex models increase the risk
of overfitting noise. When it comes to estimating parameters
on the levels of individuals, simplified models can have better
parameter recovery (see Boehm et al., 2018; van Ravenzwaaij
& Oberauer, 2009). Because noise is idiosyncratic to each task,
this may result in reduced correlations among tasks. Thus, the
weak across-task correlations between parameters of the diffu-
sion model for conflict tasks observed by Hedge et al. (2022)
may be explained by the complexity of that model. The goal of
the present study was to create optimal conditions for observ-
ing substantial correlations among the attentional-control tasks.
For this reason, it was more appropriate to use simpler models,
such as the Wiener diffusion model, which prevents the risk of
overfitting noise in the data. Nevertheless, it is a question for
further research to determine to what extent the diffusion model
for conflict tasks or its revision are adequate to estimate correla-
tions and parameters at the level of individuals.

@ Springer

Too much control for non-attentional-control processes?

A fourth concern may be whether our efforts to control
for processes unrelated to attentional control might have
removed specific attentional-control variance. In particular,
using a design in which incongruent and congruent trials
were intermixed within the same block and occurred with
the same frequency could be considered suboptimal. The
reason is that under these conditions (i.e., a mixed-block
design with equal frequency of both trial types), attentional
control has been suggested to affect performance on congru-
ent trials (e.g., Heitz & Engle, 2007; Kane & Engle, 2003;
Unsworth et al., 2004). This was interpreted as the result of
attentional control being overused. That is, in a design in
which half of the trials are incongruent, it might be parsimo-
nious to use attentional control on all trials, including those
trials that do not require attentional control (i.e., congruent
trials). This argument may be valid for Datasets 3 and 5
in which incongruent and congruent trials were presented
equally often. It may also apply for Dataset 4 in which incon-
gruent trials were presented more often than congruent trials
(see Whitehead et al., 2019), thus favorizing the overuse of
attentional control for congruent trials. However, the argu-
ment of attentional control being overused is less plausible
for Datasets 1, 2 and 6. The reason is that in these datasets,
different types of trials or different ratio of incongruent ver-
sus congruent trials were used (see Table 1). For example,
in Datasets 1 and 2, neutral trials were presented intermixed
with incongruent and congruent trials (see the Simon task
for an exception; see Rey-Mermet et al., 2018). Thus, incon-
gruent trials—that is, trials in which attentional control is
assumed to be required—were rare (i.e., 33%) in comparison
with trials in which attentional control is not assumed to be
required (i.e., congruent and neutral trials). Together, this
indicates that the present results cannot be explained by the
argument of attentional control being overused.

Similarly, one might argue that congruent trials are question-
able as a baseline because they may involve a task conflict (e.g.,
Steinhauser & Hiibner, 2009). For example, in the color Stroop
task, when the word “red” is presented in the print color red,
it may be unclear whether the decision to be performed is the
one about the print color or the one about the word meaning
(although both decisions would result in the same response).
This uncertainty or task conflict may require attentional control,
thus making congruent trials an inappropriate baseline. How-
ever, in the present study, no coherent factor of attentional con-
trol was established when neutral trials—that is, trials in which
there is no task conflict because only response-relevant features
are presented—were used as baseline in the bifactor-modeling
analyses from Datasets 1 and 2. Together, these results challenge
the assumption that congruent trials are not an appropriate base-
line to remove non-attentional-control processes.
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Full account for individual indifferences in speed-accuracy
trade-offs and the difficulty of isolating attentional control
from measurement error?

A further concern may be whether our modeling approach in
which we combined hierarchical Bayesian Wiener diffusion
modeling with SEM did fully account for speed—accuracy
trade-offs and measurement error. We should acknowledge that
no analysis, irrespective of its sophistication, can completely
eliminate all the effects of speed—accuracy trade-offs and
measurement error. Similarly, no analysis can faultlessly recon-
struct what the data would have been without such contaminat-
ing sources of variance. For example, individual differences in
speed—accuracy trade-offs are never fully accounted for by an
analysis, unless the measurement model is perfect. However,
no model is perfect. In this regard, the diffusion model has
been the subject of much debate concerning how effectively it
captures speed—accuracy trade-offs (e.g., Hedge et al., 2018a,
2018b; Rafiei & Rahnev, 2021). The reason is that instructed
speed—accuracy trade-offs have been found to affect multiple
parameters (e.g., boundary separation, drift rate, nondecision
time). Moreover, these parameters can trade off against each
other, potentially leading to unstable parameters across par-
ticipants. One of the advantages of the hierarchical Bayesian
framework is that it substantially limits this problem. Never-
theless, the speed—accuracy trade-offs can fluctuate to varying
degrees across multiple participants.

This highlights that there is always the possibility that a
more sophisticated modelling approach coupled with even
more data is eventually able to reliably uncover a coher-
ent latent variable reflecting general attention-control abil-
ity. However, given the considerable effort that has been
invested in this question and the overall meager success rate
(e.g., von Bastian et al., 2020), we argue that this possibility
seems more theoretical than realistic.

Are the tasks used to measure attentional control
adequate?

A final concern may regard the tasks used to measure atten-
tional control. In line with previous research (e.g., FaBbender
et al., 2023; Gartner & Strobel, 2021; Loffler et al., 2024,
Rey-Mermet et al., 2018, 2019, 2020), the results of the
present study showed that when attentional control is meas-
ured with the tasks used most often for that purpose, like
the Stroop task, attentional control cannot be established
as a psychometric construct. This emphasizes that the typi-
cal tasks are not doing the job that we want them to do for
the measurement of individual differences. As pointed out
by Hedges et al. (2018b), in most situations, the typical
attentional-control tasks do not produce sufficient individual
variation in attentional control relative to measurement error

(see also Rouder et al., 2023). Advanced individual-differ-
ences analyses, such as the analyses reported in the present
study, can reduce the impact of this problem. It is the rea-
son why we observed quite precise correlation coefficients.
However, we should acknowledge that the present approach
cannot completely eliminate this problem if the tasks do not
produce sufficient individual variation in attentional control.

The difficulty of the attentional-control tasks in produc-
ing sufficient individual variation in attentional control has
motivated researchers to seek alternative ways for measuring
attentional control. For example, Rey-Mermet and Rothen
(2025) have tested the replicability and robustness of the
early structural equation models in which attentional con-
trol was extracted at the latent-variable level using working-
memory tasks and short-term memory tasks (Engle et al.,
1999; Kane et al., 2004). These tasks are used to assess the
temporary maintenance of information and the temporary
maintenance and manipulation of information, respec-
tively. Critically, these tasks have been assumed to require
attentional control (Engle et al., 1999; Miyake et al., 2000;
see also Baddeley, 1996). Rey-Mermet and Rothen (2025)
showed, however, that the models used to extract attentional
control were not replicable. These results challenge the idea
of using these models as an alternative to estimate atten-
tional control at the latent-variable level. Furthermore, these
results question the common assumption that attentional
control is involved in working-memory tasks.

Other researchers have developed new tasks to measure
attentional control as a psychometric construct (e.g., Bur-
goyne et al., 2023; Draheim et al., 2021, 2024; Martin et al.,
2021). The validity of these new tasks has been assessed
using zero-order and/or latent correlations between the
new tasks and the typical tasks, as well as tasks used to
assess other constructs, such as working memory, process-
ing speed, fluid intelligence (i.e., the ability to reason with
novel information). However, this approach is problematic
for two reasons (see also Rey-Mermet & Rothen, 2025).
First, using the typical measures of attentional control as a
criterion is questionable because the results of the present
study as well as those of previous research showed that these
measures do not assess the general attentional-control abil-
ity (e.g., FaBBbender et al., 2023; Girtner & Strobel, 2021;
Hedge et al., 2018a, 2018b; Loffler et al., 2024; Rey-Mermet
et al., 2018, 2019, 2020; Rouder et al., 2023). Second, the
correlations observed between the new tasks and working-
memory, fluid-intelligence, or processing-speed tasks may
be driven by other processes than attentional control. The
reason is that it has not been clarified for the new tasks
how attentional control was isolated from other processes.
Together, this emphasizes the necessity of being cautious
when using these new tasks because we do not know what
we are measuring.

@ Springer
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Conclusion

In sum, the results of the present study show that no fac-
tor of attentional control could be established even if we
limit the impact of individual differences in speed—accu-
racy trade-offs and the impact of measurement error on the
attentional-control measures. The present study is, thus, the
first to address an influential critique of difference scores
(Draheim et al., 2021) by showing that using improved data-
analytic methods that circumvent the limitations of differ-
ence scores do not lead to more optimistic conclusions con-
cerning the existence of a general attention-control factor.
This highlights that the difficulty of establishing attentional
control as a psychometric construct is not primarily a meas-
urement problem. Taken together, the available evidence
challenges the existence of attentional control as a psycho-
metric construct. This calls into question the widely held
assumption that people differ in a general ability to control
attention. It also questions research in which a general atten-
tional-control ability is used as a construct explaining group
differences, as for example, in developmental psychology,
aging research, bilingualism, and psychopathology.
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