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Abstract We introduce MPTinR, a software package devel-
oped for the analysis of multinomial processing tree (MPT)
models. MPT models represent a prominent class of cognitive
measurement models for categorical data with applications in
a wide variety of fields. MPTinR is the first software for the
analysis of MPT models in the statistical programming lan-
guage R, providing a modeling framework that is more flex-
ible than standalone software packages. MPTinR also
introduces important features such as (1) the ability to calcu-
late the Fisher information approximation measure of model
complexity for MPT models, (2) the ability to fit models for
categorical data outside the MPT model class, such as signal
detection models, (3) a function for model selection across a
set of nested and nonnested candidate models (using several
model selection indices), and (4) multicore fitting. MPTinR is
available from the Comprehensive R Archive Network at
http://cran.r-project.org/web/packages/MPTinR/.
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Multinomial processing tree (MPT) models represent a
prominent class of cognitive measurement models for cate-
gorical data (Hu & Batchelder, 1994; Purdy & Batchelder,
2009; Riefer & Batchelder, 1988). They describe the ob-
served response frequencies from a finite set of response
categories (i.e., responses following a multinomial distribu-
tion) with a finite number of latent states. Each latent state is
reached by particular combinations of cognitive processes—

Electronic supplementary material The online version of this article
(doi:10.3758/s13428 012 0259 0) contains supplementary material,
which is available to authorized users.

H. Singmann (P<) - D. Kellen

Institut fiir Psychologie, Albert Ludwigs Universitét Freiburg,
Freiburg, Germany

e mail: henrik.singmann@psychologie.uni freiburg.de

@ Springer

processes that are assumed to take place in an all-or-nothing
fashion (e.g., a previously seen item is remembered as
having been seen or not). The probability of a latent state
being reached depends on the probabilities that the different
cognitive processes associated to it will successfully take
place. The latent states usually follow each other in a serial
order that can be displayed in a tree-like structure (see
Fig. 1; this model is described in more detail below).

MPT models exist in a wide range of fields, such as
memory, reasoning, perception, categorization, and atti-
tude measurement (for reviews, see Batchelder & Riefer,
1999; Erdfelder, Auer, Hilbig, ABfalg, Moshagen, &
Nadarevic, 2009), where they provide a superior data
analysis strategy, as compared with the usually
employed ad hoc models (e.g., ANOVA). MPT models
allow the decomposition of observed responses into
latent cognitive processes with a psychological interpre-
tation, whereas ad hoc models permit only the testing of
hypotheses concerning the observed data, the model
parameters do not have a psychological interpretation,
and the models do not provide any insight into the under-
lying cognitive processes. In this article, we present a
package for the analysis of MPT models for the statistical
programming language R (R Development Core Team,
2012b), called MPTinR, that offers several advantages
over comparable software (see Moshagen, 2010, for a
comparison of software for the analysis of MPTs).

The remainder of this article is organized as follows. In
the next section, we will introduce a particular MPT model
as an example. In the section thereafter, we will provide a
general overview of model representation, parameter esti-
mation, and statistical inference in the MPT model class.
This overview is by no means exhaustive, but it gives
several references that provide in-depth analysis. In the
section thereafter, we introduce MPTinR and its function-
alities and provide an example session introducing the most
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Fig. 1 A MPT model (2HTM) for recognition memory. On the left side
are the two different item types old and new items, respectively
each represented by one tree. On the right side are the observed
responses “Old” and “New.” In between are the assumed latent states
with the probabilities leading to these states. Each tree is traversed from
left to right. D, = detect an old item as old, D,, = detect a new item as
new, g = guess an item as old

important functions for model fitting, model selection, and
simulation. Furthermore, an overview of all functions in
MPTinR is given, followed by a brief comparison of
MPTinR with other software for analyzing MPT models.
Finally, the Appendix contains a description of the algo-
rithms used by MPTinR.

An example MPT: The two-high threshold model
of recognition memory

Consider the model depicted in Fig. 1, which describes
the responses produced in a simple recognition memory
experiment consisting of two phases: a learning phase in
which participants study a list of items (e.g., words)
and, subsequently, a test phase in which a second list
is presented and participants have to indicate which
items were previously studied (old items) and which
were not (new items) by responding “Old” or “New,”
respectively.

This particular MPT model for the recognition task—
the two-high threshold model (2HTM; Snodgrass &
Corwin, 1988)—has been chosen because of its simplic-
ity. It consists of two trees, with the item type associ-
ated with each tree (old and new items) specified at the
tree’s root. Response categories are specified at the
leaves of the trees. Cognitive processes are specified
in a sequential manner by the tree nodes, and their
outcomes (successful occurrence or not) are represented

by the branches that emerge from these nodes. The
probability of each cognitive process successfully occur-
ring is defined by a parameter.

Let us first consider the old-item tree. When pre-
sented with an old item at test, a state of successful
remembering is reached with probability D, (= detect
old), and the “Old” response is then invariably given. If
the item is not remembered [with probability (1 — D,)],
the item is guessed to be “Old” with probability g (=
guessing), or to be “New” with probability (I — g).
Regarding the new-item tree, items can be detected as
nonstudied with probability D, (= detect new), leading
to the items’ rejection (“New” response). If the new item
is not detected [with probability (1 — D,))], it is guessed to
be “Old” or “New” with probabilities g and (1 — g),
respectively. The predicted response probabilities for each
observable response category can be represented by a set
of equations:

P("01d"|old item) = D, + (1 = D,) x g (1)
P("New"|old item) = (1 — D,) x (1 — g) (2)
P("0ld"|new item) = (1 — D,) x g (3)
P("New"|new item) = D, + (1 — D,) x (1 — g) (4)

These equations are constructed by concatenating all
branches leading to the same observable response cate-
gory (e.g., “Old”) within one tree. For example, the first
line concatenates all branches leading to an “Old” re-
sponse in the old-item tree. As was stated above, for
old items, the response “Old” is given either when an
item is successfully remembered as being old (D,) or, if
it is nor remembered as being old, by guessing
[+ (1 —D,) x g]. Note that the responses associated to
the equations above provide only two degrees of free-
dom, while the model equations assume three free
parameters (D,, D,, and g), which means that the model
is, in the present form, nonidentifiable (see Bamber &
van Santen, 1985). This issue will be discussed in
greater detail below.

The model presented above describes observed
responses in terms of a set of unobservable latent cog-
nitive processes—namely, a mixture of (1) memory re-
trieval (D,), (2) distractor detection (D,), and (3)
guessing (g). Whereas the memory parameters are spe-
cific for the item types (i.e., D, is only part of the old
item tree, and D,, is only part of the new item tree), the
same guessing parameter is present in both trees. This
means that it is assumed that guessing (or response
bias) is identical whether or not an item is old or
new, reflecting that the status of each item (old or
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new) is completely unknown to the participants when
guessing. Note that this psychological interpretation of
the parameters requires validation studies. In these stud-
ies, it needs to be shown that certain experimental
manipulations expected to selectively affect certain psy-
chological processes are reflected in the resulting model
parameters, with changes being reliably found only in
the parameters representing those same processes (see
Snodgrass & Corwin, 1988, for validation studies of
2HTM parameters).

The contribution of each of the assumed cognitive pro-
cesses can be assessed by finding the parameter values
(numerically or analytically) that produce the minimal dis-
crepancies between predicted and observed responses. The
discrepancies between predicted and observed responses
can be quantified by a divergence statistic (Read &
Cressie, 1988). As we discuss in more detail below, discrep-
ancies between models and data can be used to evaluate the
overall adequacy of the model and to test focused hypothe-
ses on parameters (e.g., parameters have the same values
across conditions).

Representation, estimation, and inference in MPT
models: A brief overview

Model specification and parameter estimation

Following the usual formalization (Hu & Batchelder, 1994) of
MPT models, let @ = {6;,...,0s}, with0 <6, < 1,5=1,

., S denote the vector of S model parameters representing the
different cognitive processes. For tree k, the probability
of a branch i leading to response category j given ©
corresponds to

where ay;;, and by, ;, represent the number of times
each parameter #; and its complement (1 — #6;) are
respectively represented at each branch i leading to
category j of tree k, and c¢;;; represents the product
of constants on the tree links, if the latter are present.
The probability of category j, k given © corresponds to
pis(©) =7 piis(©) (ie., the sum of all branches
ending in one response category per tree), with
Sk pik(®) =1 (ie., the sum of all probabilities per
tree is 1).

Let n be a vector of observed category frequencies,
with n;, denoting the frequency of response category j
in tree k, with Ny =3 " nj and N = & Ni. The
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likelihood function of n given model parameter vector
O is

Loy =] [( Tl

k=1 J=1

(6)

The parameter values that best describe the observed
responses correspond to the ones that maximize the likelihood
function in Equation 6. These maximum-likelihood parameter
estimates (denoted by @) can sometimes be obtained analyt-
ically (e.g., Stahl, & Klauer, 2008), but in the vast majority of
cases, they can be found only by means of iterative methods
such as the EM algorithm (see Hu & Batchelder, 1994).
Regarding the variability of the maximum-likelihood param-
eter estimates, confidence intervals can be obtained by means
of the Fisher information matrix (the matrix of second-order
partial derivatives of the likelihood function with respect to ©;
Riefer & Batchelder, 1988) or via bootstrap simulation (Efron
& Tibshirani, 1994).

The search for the parameters that best describe the
data (maximize the likelihood function) requires that the
model is identifiable. Model identifiability concerns the
property that a set of predicted response probabilities
can be obtained only by a single set of parameter
values. Let © and ©' be model parameter vectors, with
p(©) and p(©') as their respective predicted response
probabilities. A model is globally identifiable if © # ©’
implies p(©) # p(©') across the entire parameter space
and is locally identifiable if it holds in the region of
parameter space where O lies (Schmittmann, Dolan,
Raijmakers, & Batchelder, 2010). An important as-
pect is that the degrees of freedom provided by a
data set provide the upper bound for the number of
potentially identifiable free parameters in an model—that is,
S < Zle (Jk — 1). Local identifiability is sufficient for most
purposes, and it can be shown to hold by checking that
the Fisher information matrix for © has rank equal to the
number of free parameters (the rank of the Fisher information
matrix is part of the standard output produced by MPTinR).
For a detailed discussion on model identifiability in the MPT
model class, see Schmittman et al.

Null-hypothesis testing

The discrepancies between predicted and observed re-
sponse frequencies when taking the maximum-likelihood
parameter estimates ((:)) are usually summarized by the
G? statistic:

K J

P=2 Y mklin(ms) — in(Nepj)]- (7)
k=1 j=1
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The smaller G, the smaller the discrepancies.' An
important aspect of the G* statistic is that it follows a chi-
square distribution with degrees of freedom equal to the
number of independent response categories minus the num-

ber of free parameters <{ZkKZ1 (Jk — 1)} - S). This means

that the quality of the account provided by the model can be
assessed through null-hypothesis testing. Parameter equality
restrictions (e.g., 6; = 6, or ; = 0.5) can also be tested by
means of null-hypothesis testing. The difference in G* be-
tween the unrestricted and restricted models also follows a
chi-square distribution with degrees of freedom equal to the
difference in free parameters between the two models
(Riefer & Batchelder, 1988). It should be noted that param-
eter inequality restrictions (e.g., 0; < 6,; see Knapp &
Batchelder, 2004) can also be tested, but the difference in
G? no longer follows a chi-square distribution but a partic-
ular mixture of chi-square distributions that, in many cases,
needs to be determined via simulation (Silvapulle & Sen,
2005; for an example, see Kellen & Klauer, 2011).

Model selection

It is important to note that G* is a measure that only sum-
marizes the models’ goodness of fit and that can only be
used to test between nested models (when the restricted
model is a special case of the unrestricted model).
Furthermore, it ignores possible flexibility differences be-
tween the models—that is, differences in their inherent

! Parameter estimation in MPTinR can be made only by using the
maximum likelihood method (Equation 6), which can be obtained by
minimizing the discrepancies between observed and expected response
frequencies as measured by the G statistic (Equation 7; Bishop,
Fienberg, & Holland, 1975). As pointed out by a reviewer, instead of
minimizing the G? statistic, other discrepancy statistics can be used
in particular, one of the many possible statistics coming from the
power divergence family (Read & Cressie, 1988), of which the G is
a special case. Studies (e.g., Garcia Pérez, 1994; Riefer & Batchelder,
1991) have shown that some of these statistics can be advantageous
when dealing with sparse data and attempting to minimize a model’s
sensitivity to outliers. Still, the use of alternatives to the G statistic
coming from the power divergence family has several shortcomings.
First, it is not clear which particular statistic would be more advanta
geous for a specific type of MPT model and data, a situation that would
require an extensive evaluation of different alternative statistics.
Second, the use of an alternative to the G> statistic represents a
dismissal of the maximum likelihood method, which, in turn, compro
mises the use of popular model selection measures such as the Akaike
information criterion, the Bayesian information Criterion, or the Fisher
information approximation (which will be discussed in detail later), all
of which assume the use of the maximum likelihood method. Given
these disadvantages and the almost ubiquitous use of maximum
likelihood estimation in MPT modeling (for reviews, see Batchelder
& Riefer, 1999; Erdfelder et al., 2009), the current version of MPTinR
only implements the maximum likelihood method for parameter esti
mation and the G statistic for quantification of model misfit.

ability to fit data in general. The more flexible a model is,
the better it will fit any data pattern, regardless of the
appropriateness of the model. The best model is not neces-
sarily the one that better fits the data, since it is also impor-
tant that a model’s range of predictions closely follows the
observations made and that it can produce accurate predic-
tions regarding future observations (Roberts & Pashler,
2000). Model selection analyses attempt to find the model
that strikes the best balance between goodness of fit and
model flexibility (for discussions on different model selec-
tion approaches, see Myung, Forster, & Browne, 2000;
Wagenmakers & Waldorp, 2006), which makes G* an un-
suitable measure for the comparison of nonnested models.
In order to compare both nested and nonnested models in a
single framework, as well as to account for potential differ-
ences in model flexibility, measures such as the Akaike
information criterion (AIC; Akaike, 1974) and the
Bayesian information criterion (BIC; Schwarz, 1978) are
used:”

AIC = G* +2§ (8)
BIC = G* + In(N)S (9)

AIC and BIC correct models’ fit results by introducing a
punishment factor (the second term in the formulas) that
penalizes them for their flexibility (S is the number of
parameters). The lower the AIC/BIC, the better the account.
For the case of AIC and BIC, the number of free parameters
is used as a proxy for model flexibility, a solution that is
convenient to use but that ignores differences in the model’s
functional form and is rendered useless when used to com-
pare models that have the same number of parameters
(Klauer & Kellen, 2011). For example, consider the struc-
turally identical models A and B with two parameters 6, and
0,, with the sole difference between both models that, for
model B, the restriction ; < 6, holds. According to AIC
and BIC, the models are equally flexible despite the fact that
the inequality restriction halves model B’s parameter space
and, therefore, its flexibility.

A measure that provides a more precise quantification of
model flexibility is the Fisher information approximation

2In the AIC and BIC formulas, the first term corresponds to the
model’s goodness of fit, and the second additive term to the model’s
penalty factor. As was noted by one of the reviewers, we use the G as
the first term, contrary to other implementations that use the models’
log likelihood (LL,,) instead. G* corresponds to 2 x (LLs LLy),
with LLg being the log likelihood of a saturated model that perfectly
describes the data. In this sense, the definitions of AIC and BIC given
in the main body of the text can be viewed as differences in AIC and
BIC between these two models, making the notation AAIC and ABIC
more appropriate. We nevertheless use the notation AIC and BIC,
given that we use the notation AAIC and ABIC when referring to
differences between different candidate models other than the saturated
model that perfectly describes the data.
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(FIA), a measure that stems from the minimum description
length framework (for an introduction, see Griinwald,
2007):

FIA :%GZ +§ln%+ln/ \/det1(©) dO, (10)
where /(O) is the Fisher information matrix for sample size
1 (for details, see Su, Myung, & Pitt, 2005). The third
additive term of Equation 10 is the penalty factor that
accounts for the functional form of the model, providing a
more accurate depiction of a model’s flexibility. Unlike AIC
and BIC, FIA can account for flexibility differences in
models that have the same number of parameters. Despite
its advantages, FIA is a measure whose computation is far
from trivial, given the integration of the determinant of the
Fisher information matrix across a multidimensional param-
eter space. Due to the recent efforts of Wu, Myung, and
Batchelder (2010a, 2010b), the computation of FIA for the
MPT model class has become more accessible.

Context-free language for MPTs

Also of interest is the context-free language for the MPT
model class developed by Purdy and Batchelder (2009),
called Lgypr. In Lpypr, each MPT model is represented
by a string, called a word, consisting only of symbols
representing parameters (¢) or categories (C). The word in
Lpypr representing each tree is created by recursively
performing the following operations:

1. wisit the root
2. traverse the upper subtree
3. traverse the lower subtree.

During these operations, the word is built in the follow-
ing manner. Whenever a parameter (and not its converse) is
encountered, add the parameter to the string. Whenever a
response category (i.e., leaf) is reached, add the category to
the string. The word is complete when the last response
category is reached. The structure for the trees in Fig. 1 in
Lgypr 1s thus

oCoCC. (11)

By assigning indices, one obtains a word in Lgypr for
each tree in Fig. 1:

0p,Coid0sCota Cnew (12)
GD,, CNew eg COld CNew

In order to create a single MPT model of the two trees in
Fig. 1, one needs to assume a joining parameter 0;,,, whose
branches connect the two trees into a single one. In this case,
the values of 6,,;, and (1 — 6;,;,) would be fixed a priori,
since they represent the proportion of times that old and new
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items occur during test. The resulting full model for the
recognition memory experiment in Lgypr 1S

0i0in0p, Co1a04 Co1a CNewOp, Chewbg Cota Cew- (13)

The context-free language of Purdy and Batchelder
(2009) is extremely useful, since it allows the statement
and proof of propositions regarding the MPT model class.
One application of this language is in the computation of
FIA (Wu et al., 2010a, 2010b).

General overview of MPTinR

MPTinR offers five main advantages over comparable soft-
ware (cf. Moshagen, 2010). First, MPTinR is fully integrat-
ed into the R language, an open-source implementation of
the S statistical programming language (Becker, Chambers,
& Wilks, 1988), which is becoming the lingua franca of
statistics (Muenchen, 2012; Vance, 2009). Besides being
free (since it is part of the GNU project; see http://
www.gnu.org) and platform independent, R’s major strength
is the combination of being extremely powerful (it is a
programming language) with the availability of a wide
variety of statistical and graphical techniques. Couching
MPTinR within this environment lets it benefit from these
strengths. For example, data usually need to be preprocessed
before fitting an MPT model. In addition to fitting an MPT
model, one may want to visualize the parameter estimates,
run hypothesis tests on particular parameter restrictions, or
perform simulations validating certain aspects of the model,
such as the parameter estimates or the identifiability of the
model. When MPTinR is used, all of those processes can be
done within one single environment without the need to ever
move data between programs.

Second, MPTinR was developed with the purpose of
being easy to use, improving some of the more cumbersome
features of previous programs, such as the ones concerning
model representation. MPT models are represented in most
programs, such as GPT (Hu & Phillips, 1999), HMMTree
(Stahl & Klauer, 2007), or multiTree (Moshagen, 2010), by
means of .EQN model files. Model specification in .EQN
files needs to follow a certain structure that could lead to
errors and diverge from the model equations (e.g.,
Equations 1-4) that are normally used to represent these
models in scientific studies. These requirements can become
especially cumbersome when MPT models comprised of
trees with numerous branches are handled (e.g., Oberauer,
2006). Furthermore, most programs require parameter
restrictions to be specified “by hand” every time the pro-
gram is used (for an exception, see Moshagen, 2010), or
different model files implementing the parameter restric-
tions have to be created. MPTinR overcomes these
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inconvenient features: Models are specified in a way
that is virtually equivalent to the equations used to
represent models (i.e., Equations 1-4), and model
restrictions are intuitively specified. Furthermore, model
and restrictions can be specified in external files or
directly within an R script. In addition, MPTinR auto-
matically detects whether single or multiple data sets are
fitted and adjusts the output accordingly. For multiple
data sets, the summed results (e.g., summed G values),
as well as the results for the aggregate data (i.e.,
summed response frequencies across data sets), are pro-
vided in the output.

Third, MPTinR provides different model selection meas-
ures—namely, AIC, BIC, and FIA. As was previously re-
ferred to, the computation of FIA is not trivial, and only very
recently has it become available for the MPT model class
(Wu et al., 2010a, 2010b).

Fourth, MPTinR is able to translate an MPT model into a
string representation according to the context-free language
developed by Purdy and Batchelder (2009). Given that the
manual translation of MPTs can be rather difficult and tedious,
the possibility of an automatic translation will likely encour-
age the use of this context-free language, which has shown
great potential in the assessment of model flexibility (see
Purdy, 2011).

Fifth, although being specifically designed for MPTs,
MPTinR can also be used to fit a wide range of other
cognitive models for categorical data—for example, models
based on signal detection theory (SDT; Green & Swets,
1966; Macmillan & Creelman, 2005). This essentially
makes MPTinR a framework for fitting many types of
cognitive models for categorical data and for facilitating
their comparison. Since the last point is outside the scope
of this article, we refer interested readers to the documenta-
tion for the functions fit. nodel and fit. nptinr,
which contain detailed examples of how to fit different
SDT models (the supplemental material also contains an
example on how to fit a signal detection model).

Getting started

MPTinR is a package for the R programming language and,
therefore, needs to be used within the R environment by using
the functions described below. For users familiar with com-
mercial statistic packages such as SPSS, the handling of R
may be uncommon, since it does not come with a graphical
user interface (but see Valero-Mora & Ledesma, 2012, for an
overview, and Rodiger, Friedrichsmeier, Kapat, & Michalke,
2012, for a powerful graphical user interface for R). Instead,
all commands have to be entered at the prompt (we will use a
nonospace font and the prompt symbol > when presenting
R code). MPTinR comes with a manual describing all func-
tions in detail (available also via http://cran.r-project.org/web/

packages/MPTinR/MPTinR.pdf) and has a Web site with
more information on important features such as model files
and restrictions (see http://www.psychologie.uni-freiburg.de/
Members/singmann/R/mptinr/modelfile). To obtain the doc-
umentation for any function of MPTinR, simply enter
the function name at the prompt, preceded by a ? (e.g.,
?fit.npt to obtain the detailed documentation con-
taining examples for the main function fit. npt). The
documentation for each function contains a detailed
description of its use and the arguments that need to
be passed to it. Here, we present only the most relevant
arguments of each function.

MPTinR is available via the Comprehensive R
Archive Network (CRAN; http://cran.r-project.org/) and
can therefore be installed from within any R session
with the following command (given an active Internet
connection):

> install.packages("MPTinR")

Note that you might need an up-to-date version of R
to install MPTinR. After successful installation (which
needs to be done only once), MPTinR needs to be
loaded into the current R session with the following
command (this needs to be done each time you start a
new R session):

> library ("MPTinR")

Format of models, restrictions, and data

The basis of all analyses of MPT models in MPTinR is
the representation of the model via a model file.
Whereas MPTinR can read the well-known .EQN model
files (e.g., Hu & Phillips, 1999), it offers an alternative,
the easy format. To specify a model in the easy
format, the model file needs to contain the right-hand
sides of the equations defining an MPT model (e.g.,
Equations 1-4), with the equations for each tree sepa-
rated by at least a single empty line. In other words, for
each tree, all branches ending in the same response
category need to be written in a single line concatenated
by +. Note that only trees with binary branching can be
specified in MPTinR (for an exception, see Hu &
Phillips, 1999). The model file for the 2HTM model
from Fig. 1 in the easy format could be:

#Tree for old items: First "yes", then "no"
Do + (1 - Do) * g
(1-Do)*(1-g)

#Tree for new items: First "yes", then '"no"

(1-Dn) * g
Dn + (1-Dn) * (1 - g)
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As can be seen, MPTinR allows for comments in the
model file. Everything to the right of the number sign # will
be ignored, and lines containing only a comment count as
empty.® Also, additional white space within the equations is
ignored. Note that the parameter names used in the model files
need to be valid R variable names (for details, type
?make. names and ?r eser ved at the command prompt).

The format of restriction files is similar to the format of model
files. Each restriction needs to be specified on one line.
Furthermore, the following rules apply: Inequality restrictions
need to be placed before equality restrictions and can be spec-
ified only by using the smaller than operator < (note that in-
equality restrictions containing < actually represent the weak
inequality <). If a variable appears not as the rightmost element
in a restriction, it can only appear as the rightmost element in any
other restriction (in other words, in a set of restrictions, a variable
can appear multiple times, but only once not as the rightmost
element). In addition to simple equality and inequality restric-
tions, MPTinR can also deal with restrictions involving more
than two parameters. For example, Y1 = Y2 = 0.5 will set
both parameters Y1 and Y2 to 0.5. Similarly, W1 < W2 < W3
will be correctly interpreted as W1 < W2 and W2 < W3. A
valid restrictions file (for a fictitious MPT model) could be:

Wl < W2 < W3
X4 = X3
Y1 = Y3 =0.5

Z = 0 #Restrictions may also contain comments

Note that it is also possible to specify model and restric-
tion within an R script (as compared with in an external file),
using, for example, the t ext Connecti on function in-
cluded in the base R package. Restrictions can also be
specified within a script as a | i st of strings. See the
supplemental material and the documentations for functions
fit.npt andfit.nodel for examples.

MPTinR contains the function check. npt
that may help in writing model and restriction
files. It has the format check. npt (nodel . fi |l enane,
restrictions.filenane = NULL) and will return a
list with the following information: a logical value indicat-
ing whether or not the probabilities on each tree sum to one,
the number of trees and the number of response categories
the model has, the number of independent response cate-
gories the model provides, and the name and number of the

? Note that the way MPTinR deals with comments has changed. As is
common in R (and other programming languages), everything to the
right of the comment symbol # is ignored. In previous versions or
MPTinR (prior to version 0.9.2), a line containing a # at any position
was ignored completely.
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parameters in the tree. The only mandatory argument is
nodel . fi | ename, which needs to be a character string
specifying the location and name of the model file.* An
optional argument isr estri cti ons. fi | enane, which
specifies the location and name of the restrictions file.

For example, calling check. npt on the 2HTM model
saved in a file 2ht m nodel in the current working direc-
tory of R will return an output indicating that the probabil-
ities in each tree sum to one (if not, the function will
pinpoint the misspecified trees), that the number of trees in
the model is two, the number of response categories is four,
the number of independent response categories is two, and
the three parameters are D,, D,, and g:

> check.mpt ("2htm.model")
$probabilities.eq.1

[1] TRUE

$n.trees

[1] 2
$n.model.categories

[1] 4
$n.independent.categories
[1] 2

$n.params

[1] 3

$parameters

[1:] lanll IIDOII llgll

The data on which an MPT model will be fitted needs to be
passed as a numeric data object, as avect or, matri x, or
dat a. f r ame. The mapping of data to response category is
done via position. The ordinal position (rank) of each equation in
the model file needs to correspond to the response category that
is represented at that position/rank in the data vect or or to the
column with that number if the data object is a mat ri x or
dat a. frane. Ifamatrixor dat a. f r ame contains more
than one row, each row is considered as one data set, and the
MPT model is fitted separately for each data set and the data
summed across rows is considered as another data set (called
aggr egat ed data set), which is also fitted. The data can be
entered directly into R or loaded using one of the data import
functions (e.g., r ead. t abl e; see also R Development Core
Team, 2010a). The aggr egat ed data of the data set described
below could be entered as vector d. br oeder . agg as

> d.broeder.agg <- c(145, 95, 170, 1990,
+ 402, 198, 211, 1589, 868, 332,
+ 275, 925, 1490, 310, 194, 406, 1861, 299, 94, 146)

“ R looks for files in the current working directory. To find out what is
the current working directory, type get wd() at the R prompt. You
can change the working directory using either the R menu or the
setwd function. Additionally, models and restrictions can also
be specified within an R script (i.e., not in a file) using a
t ext Connection (see the examples in ?fit.npt and
?fit.nodel).
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An example session

Before estimating model parameters, it is important to
see whether a model is identifiable. As was previously
pointed out, the 2HTM as presented in Fig. 1 has three
parameters, while the “Old”/”New” responses for both
old and new items provide only two independent cate-
gories (i.e., independent data points to be fitted) as
given in the output of check. npt. This means that
the 2HTM with three parameters is not identifiable in
the current form. There are two ways of achieving
identifiability for this model: (1) by imposing the re-
striction D, = D, (Snodgrass & Corwin, 1988) and/or
(2) by including additional sets of observed categorical
responses and subsequently extending the model in or-
der to account for them.

The extension proposed by the second option can be
implemented by fitting the model to responses obtained
across different bias conditions, where individuals as-
sumed distinct tendencies to respond “Old” or “New.”
These different response biases or tendencies can be
induced by changing the proportion of old items in
the test phase (e.g., 10 % vs. 90 %), for example.
According to the theoretical principles underlying the
2HTM, the guessing parameter g would be selectively
affected by a response bias manipulation, with D, and
D, remaining unchanged. For example, Broder and
Schiitz (2009) used the second solution sketched above
by implementing five separate test phases, each with
different proportions of old items (10 %, 25 %, 50 %,
75 %, and 90 %). Consider the resulting model-file

2ht m nodel (only the first four trees are depicted):
#Tree for old items (10%): First "yes", then '"no"
Do + (1 - Do) * gl
(1-Do)*(1-g1)
#Tree for new items (90%): First "yes", then "no"
(1-Dn) * g1
Dn + (1-Dn) * (1 - gl)
#Tree for old items (25%): First "yes", then "no"

Do + (1 - Do) * g2
(1-Do)*(1-g2)
#Tree for new items
(1-Dn) * g2

Dn + (1-Dn) * (1 - g2)

(75%): First "yes", then "no"

and the corresponding output from check. npt show-
ing that there are more degrees of freedom than free
parameters:

> check.mpt ("2htm.model™)
$probabilities.eq.1

(1] TRUE

$n.trees

(1] 10
$n.model.categories

[1]1 20
$n.independent.categories
(1] 10

$n.params

(11 7

$parameters

[1] "Dn" "Do" "gl" "g2" "g3" lg4h lghH"

Now consider a 40 x 20 matrix named d. br oeder
containing the individual data of the 40 participants from
Broder and Schiitz’s (2009) Experiment 3. Each participant
was tested across five different base-rate conditions (10 %,
25 %, 50 %, 75 %, and 90 % old items). In this data matrix,
each row corresponds to one participant, and the columns
correspond to the different response categories in the same
order as in the model file.

MPTinR provides two main functions for model fitting and
selection, fit. npt and sel ect. npt; fit.npt is the
major function for fitting MPT models to data, returning results
such as the obtained log-likelihood and G value, the informa-
tion criteria AIC, BIC, and FIA (if requested), parameter esti-
mates and respective confidence intervals, and predicted
response frequencies. Optionally, one can specify model
restrictions or request the estimation of the FIA. It has the format
fit.npt(data, nodel.filenane,
restrictions.filenane = NULL,
n.optim= 5, fia = NULL)

Two arguments in the fi t . npt function are of note. First,
fit.npt by default returns the best of five fitting runs for
each data set, a number that can be changed with the n. opti n
argument. Second, FIA is calculated using Monte Carlo meth-
ods (see Wu et al., 2010a, 2010b), with the number of samples
to be used being specified by the f i a argument. Following the
recommendations of Wu et al., the number of samples should
not be below 200,000 for real applications.

A function that should aid in model selection (e.g.,
Zucchini, 2000) is sel ect . npt, which takes multiple
results from fit. npt as the argument and produces a

> We thank Arndt Broder for providing this data set, which also comes
with MPTinR. It can be loaded via dat a(d. br oeder) and is then
available as d. br oeder . The other files necessary to fit these data (i.e.,
the model and restriction files) also come with MPTinR (see ?f i t . npt ).
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table comparing the models on the basis of the infor-
mation criteria AIC, BIC, and FIA. It has the format
sel ect.mpt (npt.results, output =
c("standard", "full")), where npt.results
is a | i st of results returned by fit. npt.

In order to exemplify the use of the fit. nmpt and
sel ect . npt functions, two MPT models are fitted to
the data from Broder and Schiitz’s (2009) Experiment 3,
the 2HTM model described above, and a restricted version
of the 2HTM in which the gl < g2 < g3 < g4 < g5

constraint was imposed (saved in file 2ht m i neq)6¢

> br.2htm <- fit.mpt{d.broeder,
"2htm.model”, fia = 200000)

> br.2htm.ineq <- fit.mpt(d.broeder,
"2htm.model", "2htm.ineq", fia = 200000)

The fit.npt function returns a |i st with the
elements goodness. of .fit, infornmation.criteria,
nodel . i nfo, paraneters, data and fitting.runs
(for a detailed description, see ?f i t . npt ). Let us first look
at the 2HTM results for aggregated data (which replicate the
results in Broder & Schiitz, 2009, Table 4):

> br.2htm[["goodness.of .fit"]] [["aggregated"]]
Log.Likelihood G.Squared df p.value
1 -5376 2.84 3 0.418
> br.2htm[["parameters"]] [["aggregated']]
estimates lower.conf upper.conf

Dn 0.445 0.372 0.518
Do 0.556 0.510 0.602
gl 0.141 0.113 0.169
g2 0.215 0.174 0.257
g3 0.400 0.339 0.461
g4 0.605 0.545 0.664
g5 0.690 0.642 0.737

Next, we may want to compare the parameter estimates
for the aggregated data between the original and inequality
restricted models:

® To fit only the aggr egat ed data entered before asd. br oeder . agg,
simply replace d.broeder with d.broeder.agg as in
br.2htm 2 <- fit.npt(d. broeder.agg,"2ht m nodel ")
Additionally, the supplemental material contains extensions of
this and the other examples given in the text.
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> br.2htm[["parameters"]] [["aggregated"]] [, "“estimates"]

[1] 0.445 0.5566 0.141 0.215 0.400 0.605 0.690

> br.2htm.ineq[["parameters"]][["aggregated"]] [, "estimates"]
[1] 0.445 0.5566 0.141 0.215 0.400 0.605 0.690

As these results show, the order restriction on the guessing
parameters held for the aggregated data sets (since the parameter
values are identical between the two models), and the parameters
values are within reasonable ranges. Note that the order of the
parameters is alphabetical (i.e., D, D,, g1, 22, 23, g4, &5). Before
comparing the models to decide which to select on the basis of
the performance on this data set, we might want to check whether
all models provided a reasonable account of the data by inspect-
ing the goodness-of-fit statistics. To this end, we inspect not only
the aggregated data, but also the summed individual fits:

> br.2htm[["goodness.of .£it"]][2:3]
$sum

Log.Likelihood G.Squared df p.value
1 -4924 102 120 0.877
$aggregated

Log.Likelihood G.Squared df p.value
1 -5376 2.84 3 0.418
> br.2htm.ineq[["goodness.of .£fit"]]1[2:3]
$sum

Log.Likelihood G.Squared df p.value
1 -4943 139 120 0.112
$aggregated

Log.Likelihood G.Squared df p.value
1 -5376 2.84 3 0.418

The results show that the 2HTM is not grossly misfitting
the data, since none of the likelihood ratio tests is rejected
(i.e., ps > .05). Furthermore, as is implied from the previous
results, there are no differences for the aggregated data
between the 2HTM with or without the order restriction
applied to the guessing parameters. This, however, is not
the case for the summed individual data. The log-likelihood
and G” values for the 2HTM with the order restriction is
slightly worse than these values for the original 2HTM,
indicating that, at least for some data sets, the order restric-
tion does not hold.

From these findings, the question arises of whether or not
the restrictions on the guessing parameters are justified
when both model fit and model flexibility are taken into
account. To this end, we call sel ect. npt to compare
the two models using information criteria (note that we call
sel ect. npt with out put = "full" to obtain the
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model selection table for both individual and aggregated
data; the default out put = "standard" only returns
a table comparing the individual results):

> select.mpt (list(2htm = br.2htm,
+ 2htm.ineq = br.2htm.ineq), output = "full")
model n.parameters delta.FIA.sum FIA.best FIA.sum

1 2htm 7 169 ) 629
2 2htm.ineq 7 0 40 360
delta.FIA.aggregated FIA.aggregated delta.AIC.sum wAIC.sum AIC.best AIC.sum
1 4.69 26.3 0.0 1 40 662
2 0.00 21.6 36.8 0 14 699
delta.AIC.aggregated wAIC.aggregated AIC.aggregated delta.BIC.sum wBIC.sum
1 0 0.5 16.8 0.0 1
2 0 0.5 16.8 36.8 0
BIC.best BIC.sum delta.BIC.aggregated wBIC.aggregated BIC.aggregated
1 40 1699 0 0.5 68.6
2 14 1736 0 0.5 68.6

The returned table compares one model per row (here,
split across multiple rows) using the information criteria
FIA, AIC, and BIC. For each criterion, delta values (i.c.,
in reference to the smallest value) and absolute values
are presented. The columns labeled . best indicate how
often each model provided the best account when the
individual data sets were compared. As can be seen, for
FIA, the model with the order restriction always provided
the best account for the individual data sets (40 out of
40 individuals). In contrast, for AIC and BIC, the unre-
stricted 2HTM provided the best account only for 26
individuals (i.e., 40-14). For 14 individuals, AIC and
BIC were identical for both models. Since the number
of parameters is identical for both models and the pen-
alty factor of AIC and BIC only includes the number of
parameters as a proxy of model complexity, the differ-
ence in AIC and BIC between those two models merely
reflects their differences in model fit. Furthermore, the
table presents AIC and BIC weights (WAl C and wBI C;
Wagenmakers & Farrell, 2004).

Overall, the results indicate the utility of FIA as a
measure for model selection. As was expected, when the
order restriction holds (as is the case for the aggregated
data), FIA prefers the less complex model (i.e., the one
in which the possible parameter space is reduced due to
inequality restrictions). This preference for the less com-
plex models is even evident for the cases where the
order restriction might not completely hold, since FIA
prefers the order-restricted model for all individuals even
though the order-restricted model provides a worse fit for
26 individuals. For the data sets obtained by Broder and
Schiitz (2009) the more complex (i.e., unrestricted)
2HTM model, albeit providing the better fit, seems un-
justifiably flexible when FIA is used as the model selec-
tion criterion.

Note that the calculation of FIA is computationally
demanding, especially when inequality restrictions are
applied (see the Appendix on how the model is

reparametrized for inequality restrictions). Obtaining
the FIA for the unrestricted model took around 80 s on
a 3.4-GHz PC with 8 CPU cores running 32-bit Windows
7™ (all timing results reported in this article were done
using this computer). In contrast, obtaining the FIA for the
order-restricted model took 7 min 40 s. Note that these
values include the fitting time, which is negligible, as
compared with the time for computing the FIA. Fitting
all 40 individuals to the unrestricted 2HTM model takes
3 s, and to the order-restricted 2HTM model 12 s.

Bootstrapping

Besides model fitting and model selection, the next
major functionality of MPTinR concerns bootstrap sim
ulation (Efron & Tibshirani, 1994). In the previous
example using the individual data sets obtained by
Broder and Schiitz (2009), the response frequencies
were low, due to the small number of trials. In such
cases, asymptotic statistics such as the sampling distri-
bution of the G statistic or the asymptotic confidence
intervals for the parameter estimates can be severely
compromised (e.g., Davis-Stober, 2009). Another situa-
tion that compromises the assumptions underlying those
asymptotic statistics is when parameter estimates are
close to the boundaries of the parameter space (i.e.,
near to 0 or 1; Silvapulle & Sen, 2005). In such cases,
the use of bootstrap simulations may overcome these
problems.

According to the bootstrap principle (Efron &
Tibshirani, 1994), if one assumes that an observed data

sample F, randomly drawn from a probability distribution
F, provides a good characterization of the latter, then one
can evaluate F' by generating many random samples

(with replacement) from F and treating them as “repli-

cations” of F. These bootstrap samples can then be used
to draw inferences regarding the model used to fit the
data, such as obtaining standard errors for the model’s

parameter estimates (@). When the data samples are
generated on the basis of the observed data and no
assumption is made regarding the adequacy of the model
to be fitted, the bootstrap is referred to as nonparametric.
Alternatively, bootstrap samples can be based on the
model’s parameter estimates that were obtained with the
original data. In this case, the model is assumed to
correspond to the true data-generating process, and the
bootstrap is designated as parametric. The parametric
bootstraps can be used to evaluate the sampling distribu-
tion of several statistics such as the G* and the p-values
under distinct hypotheses or models (Efron & Tibshirani,
1994; see also van de Schoot, Hoijtink, & Dekovic,
2010). The use of the parametric and nonparametric
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bootstraps provides a way not only to overcome the limita-
tions of asymptotic statistics, but also to evaluate parameter
estimates and statistics under distinct assumptions.

MPTinR contains two higher level functions,
gen. dat a and sanpl e. dat a, that can be used for boot-
strap simulations. The function gen. dat a produces boot-
strap samples based on a given model and a set of parameter
values. The function sanpl e. dat a produces bootstrap
samples based on a given data set. These functions can be
used separately or jointly in order to obtain parametric and
nonparametric bootstrap samples. These are general purpose
functions that can be used for a wide variety of goals, such
as (1) obtaining confidence intervals for the estimated
parameters, (2) sampling distributions of the G” statistic
and p-values under several types of null-hypotheses (van
de Schoot et al., 2010), and (3) model-mimicry analysis
(Wagenmakers, Ratcliff, Gomez, & Iverson, 2004). Also,
bootstrap simulations assuming individual differences, as
implemented by Hu and Phillips (1999) and Moshagen
(2010), can be obtained using these functions. Both func-
tions are calling R’s r mul t i nomfunction to obtain multi-
nomially distributed random data.

Given the variety of bootstrap methods and their goals
(Efron & Tibshirani, 1994), we provide only a simple ex-
ample in which 10,000 parametric bootstrap samples are
used to estimate the 95 % confidence intervals for the
parameter estimates obtained with the aggregated data from
Broder and Schiitz (2009):

> br.2htm.2 <- fit.mpt(d.broeder.agg, "2htm.model")
> t(br.2htm.2[["parameters”]])

Dn Do G1 G2 G3 G4 G5
estimates 0.4450 0.5561 0.1411 0.2153 0.3998 0.6046 0.6896
lower.conf 0.3716 0.5102 0.1130 0.1736 0.3388 0.5447 0.6425
upper.conf 0.5184 0.6021 0.1692 0.2570 0.4609 0.6645 0.7366
> bs.data <- gen.data(br.2htm.2[["parameters"]]1[,1],

+ 10000, "2ktm.model", data = d.broeder.agg)
> br.2htm.bs <- fit.mpt(bs.data, "2htm.model”, fit.aggregated = FALSE)
> apply (br.2htm.bs[["parameters”]] [["individual®])] [,1,],
+ 1, quantile, probs = c(0.025, 0.975))
Dn Do Gl G2 G3 G4 GS

2.5% 0.3637 0.5081 0.1150 0.1769 0.3385 0.5421 0.6392
97.5% 0.5142 0.6006 0.1714 0.2598 0.4636 0.6605 0.7342

In this example, we first fit the original data to the
(unrestricted) 2HTM to obtain parameter estimates. These
estimates are displayed (along with the asymptotic confi-
dence intervals based on the Hessian matrix) and then used
as an argument to the gen. dat a function, requesting
10,000 bootstrap samples. In the next step, the bootstrap
samples are fitted using fit.npt, setting the
fit.aggregated argument to FALSE to prevent
MPTinR from trying to fit the (meaningless) aggregated
data set. Finally, the 95 % confidence intervals are calculat-
ed by obtaining the 2.5 % and 97.5 % quantile from the
resulting distribution of estimates for each parameter
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(conveniently done using R’s appl y function). As can be
seen, the Hessian-based confidence intervals and bootstrap-
ped confidence intervals strongly agree, indicating that the
variance—covariance matrix obtained via the Hessian matrix
is a good approximation of the true variance—covariance
matrix (see Hu & Phillips, 1999).

Fitting the 10,000 samples took 9 min. Using the multicore
functionality of MPTinR (which is more thoroughly described
below and in the documentation of f i t . npt ) and all avail-
able eight CPUs, the fitting time was reduced to below 2 min.
Note that all the other commands in this example were executed
almost instantaneously. For obtaining nonparametric confi-
dence intervals, the call to gen. dat a should be repla-
ced with a call to sanple.data—for exam-
ple,bs. data <- sanpl e. dat a(d. br oeder. agg,
10000, "2htm nodel ") (see also the supplemental
material).

Additional functionality

This section gives an overview of the additional functions in
MPTinR, besides the main functions described above (see
also Table 1). As was already sketched above, MPTinR can
fit many types of cognitive models. The f i t . nodel func-
tion is a copy of fit. npt (i.e., a model needs to be
defined in a model file), with the additional possibility of
specifying upper and lower bounds for the parameters (as,
for example, is needed to fit SDT models). Its documenta-
tion contains an example of fitting an SDT model to the data
of Broder and Schiitz (2009). The fi t . npti nr function
allows for even more flexibility in representing a model.
Instead of a model file, a model needs to be specified as an
R function returning the log-likelihood of the model (known
as an objective function), which will be minimized. This
allows one to fit models to categorical data that cannot be
specified in model files—for example, models containing
integrals. The documentation of f i t . npt i nr contains an
example of how to fit an SDT model to a recognition
memory experiment in which memory performance is mea-
sured via a ranking task (Kellen, Klauer, & Singmann,
2012). Actually, fit. nptinr is called by fit. npt
and fit. nodel with objective functions created for the
models in the model file. The fi t. npt. ol d function is
the old version of MPTinR’s main function containing a
different fitting algorithm (see its documentation for more
information). Note that select.mpt accepts results from
any of the fitting functions in MPTinR (since all output is
produced by f i t . nmpt i nr). To reduce computational time
for large data sets or models, MPTinR contains the possi-
bility of using multiple processors or a computer cluster by
parallelizing the fitting algorithm, using the snowfall pack-
age (Knaus, Porzelius, Binder, & Schwarzer, 2009).
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Table 1 Overview of functions in MPTinR

Function name
fit.npt
fit.nodel
fit.mptinr
fit.npt.old
check. npt
sel ect. npt

Description

fit MPT models from model files (allows computation of FIA)
fit models from model files (specify parameter bounds)
fit models from objective function (called by fi t . npt)
fit MPT models from model files using old fitting algorithm
check if model iswell constructed, return name and order of parameters
make model selection table from fitted results

gen. data generate data from model and parameter values (i.e., parametric bootstrap)

sanpl e. dat a

generate data from a given dataset (i.e., nonparametric bootstrap)

gen. predi ctions generate response proportions from given model and parameter values

make. npt . cf
get.npt.fia
bmpt . fia
prepare.npt.fia
make. eqn
nake. ndt

returnsword in Lgypr for MPT model from model file
conveniently obtain FIA for an MPT model file
R port of BVPTFI A (Wu et al., 2010a)
make string to obtain FIA in MATLAB using BMPTFI A
make eqn model file from model in easy format
make mdt datafile from datavect or,

matrix, or data.frane

Note. Documentation containing all the arguments for each function can be obtained by typing the function name at the R prompt preceded by a

? eg,?fit. npt

Furthermore, fitting of the aggregated data set can be dis-
abled by setting fi t . aggr egat ed = FALSE.

In addition to the data-generating functions
gen. dat a and sanpl e. dat a described in the previ-
ous section, the function gen. predi cti ons returns
predicted response proportions or predicted data from a
vector of parameter values for a given model. This
function can be used to check whether a model recovers
certain parameter values (i.e., by fitting the predicted
responses) and simulated identifiability (i.e., repeating
this step multiple times with random parameter values;
Rouder & Batchelder, 1998). The function gen. dat a
internally calls gen. predictions. Note that the
data-generating functions that take a model as an argu-
ment also work with any model that can be specified in
a model file, such as signal detection models.

The bnpt . fi a function is our R port of the original
BMPTFI A function from Wu and colleagues (2010a).
Since bnpt . fi a requires a model to be entered as a word
in Lgypr, we provide the convenience function get .mpt.fia,
which takes similar arguments as fit. npt and will call
bnpt . fi a with the correct arguments. Since the original
BMPTFI A in MATLAB is faster than its R port, in some
cases, researchers might prefer to obtain the FIA from
MATLAB. To this end, MPTinR contains the convenience
function pr epar e. npt . fi a. It takes the same arguments
asget. npt. fi abut will return a string that is the call
to the original BMPTFI A function in MATLAB (i.e., the
string just needs to be copied and pasted into
MATLAB). As was noted above, the FIA can be direct-
ly computed in a call to fit. npt (if one wants to use
sel ect. npt, it is necessary to use fit. npt and not
the other just described functions).

Finally, MPTinR contains three helper functions. The
make. nmpt . cf function will take a model file as an
argument and will produce a word in Lgypr, using the
algorithm described above. The nmke. eqn function
will take a model file in easy format and will produce
a file in the EQN format. Similarly, make. ndt will
take data (either a single vector oramatrix or a
dat a. frane) and will produce a single file in the
MDT format containing all the data sets. EQN and
MDT files are used by other programs for fitting MPT
models such as MultiTree (Moshagen, 2010) or
HMMTree (Stahl & Klauer, 2007).

Comparison of MPTinR and related software

In the last section of this article, we wish to compare
MPTinR with the other contemporary software packages
for fitting MPT models—namely, multiTree (Moshagen,
2010) and HMMTree (Stahl & Klauer, 2007)—highlight
which software might be used for which use case, and
provide an outlook of the future of MPTinR. The major
difference between MPTinR and the software packages re-
ferred to above is that MPTinR is couched within the R
programming language, whereas the others are standalone
software. As such, MPTinR is a highly flexible software
package, given that it allows (and encourages) the implemen-
tation of new features by any user. Since the source code of the
other two softwares is not directly available, it is difficult to
foresee how easily additional features can be added by users
other than the original authors. Additionally, MPTinR is the
only software that provides a full analysis of multiple data sets
including summed individual results and analysis of the ag-
gregated data. HMMtree analyzes only the aggregated data,
and multiTree analyzes only the individual data (without
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providing summed fitting indices). However, MPTinR has
several shortcomings in terms of performance and imple-
mented features.

HMMTree is the only software that allows for latent class
MPT models (Klauer, 2006). Furthermore, its optimization
routine is based on an optimized EM-algorithm implemented
in Fortran (K. C. Klauer, personal communication, July 2,
2011), and hence, it is potentially faster than other algorithms
based on virtual machines (i.e., multiTree) or interpreted lan-
guages (i.e., MPTinR). In fact, a comparison of all three
software packages, using a rather complex MPT model con-
sisting of 1 tree with 16 response categories (the dual-process
model of conditional reasoning [Oberauer, 2006] using data
set DF, Table 4, n = 557), reveals that HMMTree is the fastest.
Whereas MPTinR and multiTree are comparable (both finish
in under a second), the results of HMMTree appear instanta-
neous. Note that the timing of HMMTree and multiTree is
slightly difficult, since they provide no timing of the fitting
process and, hence, it has to be done by hand. However,
HMMTree only allows for the fitting of models that are
members of Lgypr (Purdy & Batchelder, 2009).
Furthermore, the software does not provide the wealth of
surrounding functionalities, such as convenient model speci-
fication, parameter restrictions, model selection, and data gen-
eration. In addition, HMMTree can be used only on MS
Windows™.

The multiTree software comes with a wide set of
features that are comparable or even extend the possi-
bilities of MPTinR. Especially, multiTree is the only
software that provides a visual model builder, which
can be especially useful for occasional users of MPT
models. Similarly, all functionalities are available via a
graphical user interface that makes it appealing to non-
programmers. Furthermore, multiTree now also allows
for the computation of FIA (to set the number of Monte
Carlo samples for the computation of FIA, the default is
100,000; one needs to modify the multiTree i ni file
located in the user home directory; M. Moshagen, per-
sonal communication, July 20, 2012). Finally, there are
two unique features of multiTree that MPTinR currently
lacks—namely, the ability to use other divergence sta-
tistics (see Footnote 1) and to perform power analyses.
On the other hand, multiTree contains no model selec-
tion functionality other than comparing two nested mod-
els and can deal only with models that are members of
Lpypr, which limits its use when more complex MPT
and signal-detection models are compared (e.g., Klauer
& Kellen, 2010). Furthermore, although multiTree comes
with a wealth of bootstrap functions, it misses the flex-
ibility of MPTinR. For example, it seems difficult to
implement model mimicry analysis (Wagenmakers et
al., 2004) or double-bootstrap procedures to assess p-
values in inequality-restricted inference tests (van de

@ Springer

Schoot et al., 2010), while such procedures can be
implemented in MPTinR in a relatively straightforward
manner through the use of the gen.data and
sanpl e. dat a functions.

Like most R packages, MPTinR is continuously under
development. New functionalities will be added, and previ-
ous ones improved. The implementation of hierarchical
MPT modeling (Klauer, 2006, 2009; Smith & Batchelder,
2010) is of special importance, since it overcomes well-
known limitations associated to fitting individual and aggre-
gated data and is able to account for item effects as well
(Baayen, Davidson, & Bates, 2008). We intend to include
additional features (as well as improve current ones) in
future versions of MPTinR (see https://r-forge.r-project.
org/projects/mptinr/ for development versions of MPTinR).
Since the source code of MPTinR is already freely available
and MPTinR is hosted on R-Forge, a platform for the
collaborative development of R software (TheuBl &
Zeileis, 2009), this further development is not restricted to
the present authors. In fact, we would happily welcome
interested researchers joining in the development of
MPTinR.

Author note This work was supported by Grant KL 614/33 1 to
Karl Christoph Klauer and Sieghard Beller from the Deutsche
Forschungsgemeinschaft (DFG) as part of the priority program
“New Frameworks of Rationality” (SPP 1516). Furthermore, this work
was supported by grant K1 614/32 1 from the Deutsche Forschungsge
meinschaft to Karl Christoph Klauer. We thank Karl Christoph Klauer
and Fabian Holzenbein for their comments throughout the develop
ment of the described software and Kerstin Dittrich, Xiangen Hu,
Gregory Francis, Andreas Kappes, Karl Christoph Klauer, Morten
Moshagen, and Alexandra Schulz for comments on earlier versions
of this manuscript. Furthermore, we thank the R Development Core
Team for their continuing and invaluable efforts to provide R.

Appendix
MPTinR algorithms

The purpose of this section is to give an overview of the
algorithms used by MPTinR, since they diverge from the
usual employed fitting algorithm for MPT models (the EM
algorithm; Hu & Batchelder, 1994). Readers mainly inter-
ested in using MPTinR for fitting MPT models may skip this
section. The main task of MPTinR is model fitting—that is,
iteratively finding the maximum likelihood parameter esti-

mates ©. Instead of the EM algorithm, MPTinR uses the
general purpose optimization algorithm implemented in R’s
nlminb function. This algorithm is a variation of Newton’s
method that can use the analytical or approximated (i.e.,
quasi-Newton) gradient or Hessian to obtain the optimal
parameters within parameter bounds and is part of the
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PORT library (Kaufman & Gay 2003). Previous versions of
MPTinR used a different optimization algorithm (L-BFGS-
B; Byrd, Lu, Nocedal, & Zhu, 1995), which is still available
in the function fit.mpt.old. However, since L-BFGS-B
cannot use an analytical gradient, we changed the algorithm
to nlminb.

The advantages of using a general purpose optimization
routine instead of a specialized one are twofold. First, the
PORT routines are implemented reasonably quickly in the
FORTRAN programming language (as compared with op-
timization algorithms implemented in pure R code). Second,
MPTinR does not require a model to strictly follow an MPT
form as described in Riefer and Batchelder (1988) or Purdy
and Batchelder (2009). Instead, MPTinR literally uses the
right-hand sides of the model equations (e.g., Equations 1—
4) and evaluates them using the current parameter values at
each iteration of the optimization process. In other words,
the model is not transformed into any matrix notation (see
Riefer & Batchelder, 1988). Consequently, MPTinR can fit
any model that can be described in a model file using (inbuilt
or self-written) R functions.

When calling fit.mpt or fit.model, the following steps
are performed for obtaining ©. The equations in the model file
are parsed line by line into R expressions (i.e., code that can
be executed). These expression are concatenated to obtain
the likelihood function for a given model (Equation 6). To
avoid numerical underflows, the negative log of the likelihood
function gives the objective function (i.e., the function that
will be minimized). From this function, the functions for
calculating the gradient and the Hessian matrix of the model
are derived using symbolical derivation implemented in the D
function. The objective, gradient, and Hessian functions are
then passed as arguments to £it.mptinr, the workhorse of
MPTinR. Also, £it.mptinr can be called directly with an
objective function if it cannot be specified in a model file.

Both the objective and the gradient functions are per de-
fault passed to nlminb for obtaining ©. In cases where
nlminb does not converge successfully, fitting is restarted
using a numerically approximated gradient (with warning).
Furthermore, fit .modelandfit .mptinr allow one to spec-
ify whether or not the gradient function or even the Hessian
function should be passed to nlminb (using the Hessian func-
tion for fitting improved neither the speed nor the quality of
the fitting of MPT models and is, therefore, deactivated per
default). To allow an assessment of the quality of the fitting
algorithm, MPTinR reports the summary statistic of a vector
containing the values of the objective function at the obtained
minima for each fitting run (if n.optim > 1) in output ele-
ment fitting.runs. Our experience is that the dispersion of
the minima is usually 0, unless the data contain many zero
cells or the model is not identified for that data set.

When model restrictions are specified, they will be ap-
plied before the objective function is created, in that the

expressions representing the model will be altered. In case
of equality restrictions (i.e., either setting two parameters
equal [e.g., x = y] or fixing a parameter to a value [e.g., x =
0]), the model equations are altered so that the to-be-
restricted parameter is replaced with the restriction. To apply
inequality restrictions, the model is altered using a variant of
method A described by Knapp and Batchelder (2004). More
specifically, each instance of the to-be-restricted parameter
is replaced by the product of a dummy parameter and the
restriction (e.g., for the restriction x1 < x2, each instance of
x1 would be replaced with x2*hank.y1). Note that all
dummy parameters in MPTinR start with hank ., and there-
fore, using parameter names starting with these characters
should be avoided. Whereas this reparametrization is equiv-
alent to method A of Knapp and Batchelder, it does not
preserve the Lpypr structure of the model. In general, it
holds that for order restrictions, only the rightmost element
remains, and all other parameters will be replaced. Note that
confidence intervals around inequality restricted parameters
are based on variance bounds of the parameter estimates
(i.e., they represent a "worst case scenario"; Baldi &
Batchelder, 2003, Equation 19).

For obtaining the FIA, MPTinR first transforms a
model into a word in Lpypr (if a model consists of
multiple trees, these are concatenated by joining param-
eters), which is then passed to our R port of the algo-
rithm by Wu et al. (2010a). If a model is not a member
of Lgypr, calculation of the FIA will fail. MPTinR tries
to minimize computational time for the FIA by calcu-
lating only the penalty factor of the FIA (i.e., the
integral in Equation 10) as many times as needed (i.e.,
as many times as the ratio of the N between tree differs
not as many times as N differs).

Since our method of reparameterizing inequality restrictions
does not preserve the MPT structure of a given model (i.e., even
if it is a member of L g),pr before the restrictions are applied, it is
not thereafter), MPTinR obtains the FIA for inequality restrict-
ed models by passing the unrestricted model to the Wu et al.
(2010a) algorithm but specifying the restrictions in the
corresponding arguments. Whether or not one wants to enforce
the restrictions when fitting the model is controlled by the
reparam.ineq argument to £it.mpt. The default behavior
is to enforce the inequality restriction by reparametriz-
ing the model (i.e., reparam.ineq = TRUE is the default).
This contrasts with the example given by Wu et al.
(2010a), in which “parameter estimates do not violate”
(p. 282) the inequality restrictions and, therefore, the
inequality restrictions are not enforced when fitting the
model but the restrictions are nevertheless passed to
BMPTFIA. This behavior can be emulated by setting

, in which case the inequality
restrictions are not enforced when fitting the model
but will be taken into account when obtaining the FIA.
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