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Abstract

In optimal-stopping problems, people encounter options se-
quentially with the goal of finding the best one; once it is
rejected, it is no longer available. Previous research indi-
cates that people often do not make optimal choices in these
tasks. We examined whether additional information about the
task’s environment enhances choices, aligning people’s be-
haviour closer to the optimal policy. Our study implemented
two additional-information conditions: (1) a transparent pre-
sentation of the underlying distribution and (2) a provision of
the optimal policy. Our results indicated that while choice pat-
terns varied weakly with additional information when provid-
ing the optimal policy, it did not significantly enhance partici-
pants’ performance. This finding suggests that the challenge in
following the optimal strategy is not only due to its computa-
tional complexity; even with access to the optimal policy, par-
ticipants often chose suboptimal options. These results align
with other studies showing people’s reluctance to rely on algo-
rithmic or AI-generated advice.
Keywords: optimal stopping; sequential decision-making; op-
timality, algorithmic advice

Introduction
Many decision in the real world are sequential in nature. For
instance, when looking for an apartment, a job, or a part-
ner, people typically consider their options one at a time. In
this process, they must decide to accept or reject each op-
tion without the knowledge of whether future opportunities
might be better. Decision-making problems of this nature –
having to balance the value of the current option with the un-
known value of future options and the inability to return to a
previously rejected option – are known as optimal stopping
problems (Gilbert & Mosteller, 1966; Hill, 2009).

Past research indicated that people struggle with sequential
decisions, tending to settle on choices too soon when com-
pared to the optimal solution (Bhatia et al., 2021; Goldstein
et al., 2020; Lee et al., 2004; von Helversen & Mata, 2012;
von Helversen et al., 2011). This study explores whether pro-
viding additional information to the decision maker, such as a
complete overview of potential values or an indicator on the
best time to make decisions, could assist people in making
better decisions. The wider aim of this research is to assess
people’s willingnes to integrate environmental cues or algo-
rithmic advice when they need to make choices in a step-by-
step manner.

Several studies have focused on two approaches of the op-
timal stopping problem: the rank-order (or no-information)
and the full-information version. In the rank-order version

(Bearden et al., 2006; Seale & Rapoport, 1997) only the rela-
tive rank of an option compared to previous ones is provided.
In contrast, the full-information approach (Lee, 2006; Lee et
al., 2004) involves presenting the actual value of each option.

This paper focuses on the full-information version of
the optimal stopping task. To illustrate, consider someone
searching for the most affordable flight, where prices change
daily. This person reviews the current price each day and
must decide whether to buy or wait, knowing they can’t return
to a previously rejected offer and must purchase before their
trip starts. Assuming the distribution of tickets is known, the
best strategy in this scenario is to calculate the expected value
of future options. From this, a decision threshold is estab-
lished for each day. This threshold either steadily increases
when seeking the lowest price or decreases when looking for
the highest value. The decision rule is simple: if the cur-
rent option’s value falls below (for minimum) or exceeds (for
maximum) this threshold, it is the right choice to make.

Previous research indicates that participants often stop
their search too early (Guan & Lee, 2018; Lee, 2006; Lee
& Courey, 2021), employing more relaxed decision thresh-
olds than those suggested by the optimal policy. Further-
more, Baumann et al. (2020, 2023) found a significant shift in
this pattern over the course of the decision sequence. While
participants initially use decision thresholds that are too re-
laxed, surpassing a certain point in the sequence leads them
to adopt stricter decision thresholds compared to the optimal
ones, leading to an acceptance rate that is lower than the opti-
mal level (as illustrated in Figure 1A, Baumann et al., 2020).

Given the computational complexity of the optimal policy
for full-information problems, the failure of people to follow
this policy is perhaps unsurprising. Importantly, not only is
the calculation of the optimal threshold rather challenging, it
also requires perfect knowledge of the probability distribution
from which options are drawn. However, it remains unclear
whether these are the specific aspects of these sequential de-
cisions that people find challenging.

Our research aims to determine whether giving participants
specific information about the statistical properties of the task
can help them to more closely follow the optimal policy and
ultimately make better decisions. To this end, we introduced
two extra-information conditions. Firstly, we investigated
whether showing the value distribution at each decision point
leads to improved choices. If people’s decisions align more



closely with the optimal solution when they have this infor-
mation, it would suggest that a lack of knowledge into the
search environment is an important reason for their deviation
from the optimal strategy. Secondly, our study investigates
whether clearly indicating the optimal threshold at each step
enables participants to use this information for more effec-
tive choices. If providing people with the optimal thresholds
would lead people to behave more optimally, it would suggest
that the computational complexity of the optimal policy is a
reason why people diverge from optimality. To foreshadow
our results, while we observed some minor variations in the
patterns of choices, there were no significant differences in
overall performance between the conditions. This indicates
that providing additional information about the search envi-
ronment, such as a description of the underlying distribution
or even the optimal threshold, may affect people’s choices to
some extent, but it does not necessarily aid them in making
better decisions.

Optimal Stopping Task and Optimal Policy
In an optimal stopping task, the goal is to identify the most
attractive value within a sequence of options. We focus on the
full-information version, in which the distribution of ticket
prices is assumed to be known to the decision-maker, and the
task of purchasing a plane ticket, as previously mentioned,
serves as an illustrative example of this type of problem. We
now provide a more formal explanation of this task and its
optimal policy.

We consider a decision-maker who encounters a sequence
of 1 to N options with rewards denoted by x1, ...,xN drawn
from a known distribution X , with probability density func-
tion f (x) and cumulative distribution function F(x). Their
goal is to find the minimum value in the sequence. If the
decision-maker accepts option i, then the sequence terminates
and they receives reward xi; otherwise, they continue to the
next option. When the last option N is reached, it must be ac-
cepted. The optimal policy is to choose option i when it goes
below a position-dependent threshold ti. As shown by Gilbert
and Mosteller (1966), the optimal policy depends only on the
distribution of rewards and the number of remaining choices.

The goal of the optimal policy for full-information prob-
lems is to maximise the expected payoff. To do so, a position
specific optimal threshold is calculated starting from the last
position of the sequence. If the last position is reached, the
corresponding option xN has to be accepted – which corre-
sponds to a random draw from distribution X . Hence, the
expected payoff on the last position is the expected value of
the distribution EN [X ] =

∫
∞

−∞
x f (x)dx (i.e., the distribution’s

mean). At the second-to-last option, xN−1, the expected pay-
off can be better than the expected value of the distribution.
More specifically, because the expected payoff at the last po-
sition N is EN [X ], one should only accept option xN−1 if it is
lower than EN [X ] – the threshold for the second-to-last posi-
tion is tN−1 = EN [X ]. Based on this threshold, we can now
also calculate the expected payoff for the second-to-last posi-
tion; it is (a) the probability of obtaining an option better than

the threshold times (b) the conditional expected value of such
an option plus (c) the probability of obtaining a value worse
than the threshold times (d) the expected payoff of the last
position (i.e., the current threshold),

EN−1[X ] = F(tN−1)︸ ︷︷ ︸
(a)

×
∫ tN−1

−∞

x f (x)dx︸ ︷︷ ︸
(b)

+(1−F(tN−1))︸ ︷︷ ︸
(c)

× tN−1︸︷︷︸
(d)

.

Following the same logic as above, the expected payoff of
the second-to-last position is then the optimal threshold for
the third-to-last position, tN−2 = EN−1[X ]. Using this thresh-
old we can calculate the expected payoff for the third-to-last
position, tN−3 = EN−2[X ], using the equation above and re-
placing tN−1 with tN−2. To calculate the optimal thresholds
for all positions we need to repeat this process until reaching
the threshold for the first position. Put succinctly, calculat-
ing the optimal threshold of the optimal policy requires back-
wards induction and repeatedly integrating and evaluating the
probability distribution.

The Current Study
The aim of this study is to investigate if giving participants
more information about the underlying distribution and the
optimal threshold can improve their decision-making, bring-
ing it closer to the optimal solution. To this end, we con-
duct a comparison between three conditions. The first is the
Baseline condition, representing the classical optimal stop-
ping task as previously implemented. In the Distribution con-
dition, we introduced a visual representation to show the dis-
tribution from which the options (tickets) are drawn. Along-
side this, we displayed the current option’s placement within
that distribution. In the Optimal condition, we went a step
further by showing participants the optimal thresholds, and
indicating whether the current option is more favorable or less
favorable than these thresholds.

Our study uses the Ticket Shopping Task introduced by
Baumann et al. (2020). In the Ticket Shopping Task, par-
ticipants’ task is to find the cheapest plane ticket within a
sequence of a fixed number of tickets, presented one after
the other. For each ticket, participants must decide whether
to accept that ticket and end their search, or to reject it and
continue looking for a better option. As in every optimal
stopping problem, participants cannot return to previously
rejected tickets, they have to accept the last ticket in a se-
quence, and – once a ticket is accepted – the current sequence
ends and the next sequence starts. The task is performed in a
fully incentive compatible manner using a proportional pay-
off function; the cheaper the ticket participants get in every
sequence, the higher their final payout.

Individual tickets in the Ticket Shopping Task are drawn
from a fixed distribution that stays the same for each ticket
in every sequence. In order to avoid learning only during
the task, an inherent feature of the full-information optimal
stopping task, participants are exposed to samples from this
distribution beforehand during a training phase.



Figure 1: Screenshots of the Test Phase of the Three Experimental Conditions

A) B) C)

Note. A) Baseline condition. The information available to participants is the current ticket price and the position in the current
sequence. B) Distribution condition. In addition to the information in the Baseline condition, participants are shown the
distribution of ticket prices as a histogram and the position of the current ticket price in the distribution (in red). C) Optimal
condition. In addition to the ticket price distribution and the current ticket price, participants are also shown the position
dependent optimal threshold in black. If the current price is better than the threshold, it was shown in green (as here), otherwise
it was shown in red. Not shown: The current trial number was displayed in the top left throughout in all conditions: “Sequence
x of 200”.

Methods
Participants
A total of 117 participants were recruited through Prolific.
All participants were included in the final analysis, because
none failed the inclusion criterion of Baumann et al. (2020),
not accepting the first option in a sequence in more than 95%
of trials. Participants were randomly assigned to the three
conditions, 48 participants to the Baseline condition, 34 to
the Distribution condition, and 35 to the Optimal condition.

Participants’ compensation was determined completely by
their performance. The total payout (in $0.01) was calcu-
lated based on their mean accepted ticket price at the end
of the experiment, payout = 10 × (240 – the mean accepted
ticket price). This formula ensured that with a mean accepted
ticket price equal to the distribution mean of $180, their pay-
out would be $6.00, which was our advertised minimum pay-
ment for the experiment. The mean payout was $8.23, rang-
ing from $6.51 to $8.67. Participants spent on average 37.5
minutes on this task. Our study received full ethical approval
from the UCL Experimental Psychology ethics committee.

Design and Procedure
The experiment was comprised of two separate phases, a
training and a test phase. The training phase served to fa-
miliarise participants with the distribution of ticket prices. In
the test phase, participants performed the optimal stopping
task. All participants started with the training phase and sub-
sequently proceeded to the test phase.

The distribution of ticket prices used throughout the whole
experiment was a normal distribution with a mean of $180
and standard deviation of $20, truncated at a minimum of
$120 and a maximum of $240 (i.e., mean ±3 SD).1 Each
ticket presented to participants was independently selected

1For the current design, optimal thresholds were practically in-
distinguishable for truncated and unconstrained normal distribution.

from the same distribution, meaning the distribution of ticket
prices remained consistent throughout all positions in a se-
quence and between the learning and test phases. This infor-
mation was clearly communicated to the participants.

Training Phase. The training phase was divided into two
stages. In the first stage, participants’ encountered samples
form the specified distribution and their task was to estimate
their average price. More specifically, they were shown five
series of airplane ticket prices and each series contained ten
tickets. Participants had to click a ‘Next’ button to move from
one ticket to the next. After viewing one set, they had to esti-
mate the average price of the tickets and were then provided
with the correct answer along with the difference between
their answer and the actual average price.

In the second stage, participants were asked to estimate the
distribution of a sample of 100 ticket prices, drawn from the
same distribution they encountered in the first stage of the
training phase. The task required them to determine how
many ticket prices fell into each of seven predefined price
ranges. These ranges spanned from $120 to $240 in seven
equally sized intervals. To make their estimates, participants
could either adjust the height of bars on a histogram or en-
ter numbers directly into designated input fields, each corre-
sponding to a specific price range. After distributing all tick-
ets and submitting their answer, participants received feed-
back in the form of the correct distribution, which was super-
imposed over their estimate (Goldstein & Rothschild, 2014).

Test Phase. In the test phase, participants completed a total
of 200 trials. In each trial, they were presented with a se-
quence of ten tickets with a price independently drawn from
the ticket price distribution. Participants’ goal was to select
the cheapest ticket in each trial. At each position in the se-
quence, participants could either accept the current ticket or
proceed to the next ticket (see examples in Figure 1). Once



a ticket was rejected, participants could not return to it. If
the final 10th position in a sequence was reached, partici-
pants had to accept the ticket. After accepting a ticket in a
sequence, participants received feedback regarding whether
the chosen ticket was the cheapest one in the sequence. Ad-
ditionally, after every 50 trials, participants were updated on
their progress (the fraction of sequences they had completed)
and earnings. The current trial number and the total trial num-
ber were shown throughout the whole experiment.

Whereas the training phase was identical for all experi-
mental condition, the test phase differed across conditions as
shown in Figure 1. Participants also received condition spe-
cific instructions prior to the test phase.

In the Baseline condition, instruction reminded partici-
pants that tickets were drawn randomly from the distribution
of ticket prices and that this entailed that ticket prices within
a sequence were unrelated. During the test trials, participants
only knew the current ticket price and the position in the se-
quence (Figure 1A).

In the Distribution condition, participants were addition-
ally informed that “to make the task easier” they would see
the distribution of ticket prices as a histogram as well as the
current ticket price. As in the Baseline condition, they were
reminded: “Whereas the current ticket price changes for ev-
ery ticket, the distribution always stays the same”. The his-
togram as well as the current ticket price in the distribution
were shown throughout (Figure 1B).

In the Optimal condition, participants were informed that
they would receive “the strategy of an optimal agent (which
you can imagine as a smart AI that knows how to play the
task)”. They were also told that the optimal strategy uses an
optimal threshold that changes with every position and how to
use the threshold (accept if better, otherwise reject). The opti-
mal threshold, the current ticket price, and the corresponding
decision were shown on a histogram of the ticket price distri-
bution (Figure 1C). Participants were furthermore informed
that: “Using the optimal threshold does not guarantee that
the cheapest ticket is found in each sequence.” And: “It is
not necessary for you to follow the guidance of the optimal
threshold. Feel free to use your own judgement.”

Results
Global Summary Statistics
To compare performance across condition, we first consid-
ered two summary statistics describing overall performance,
the mean accepted ticket price and the mean search length.
Results of these two statistics are shown in Figures 2A & 2B.
The black points show participants’ overall averages and look
quite similar across conditions. Furthermore, by comparing
black and red data points we can compare participants’ ac-
tual performance with the performance they could have had
had they followed the optimal policy. This suggests that, as
in previous studies, participants stop too early (Figure 2B)
resulting in a higher (i.e., worse) mean accepted ticket price
than when following the optimal strategy (Figure 2A). How-

ever, the difference between observed behaviour and optimal
policy for search length appeared to be minimal for the Opti-
mal condition.

To further corroborate this picture, we performed two
ANOVAs, one for each of the two summary statistic, each
with a single independent variable, condition, with three lev-
els. In line with the visual impression, in neither of these
ANOVAs the effect of condition reached significance (ticket
price: F(2,114)= 0.99, p= .374; search length: F(2,114)=
1.51, p = .226). The same result was also observed after re-
moving one participant from the Control condition with rel-
atively poor performance (i.e., mean accepted ticket price ≈
175; p = .248 and p = .204, respectively).

In a next analysis steps, we checked whether diverging
from the optimal policy actually led to a significant decrease
in performance. For this, we ran a second set of ANOVAs,
one for each summary statistic, that also included the perfor-
mance of an agent that perfectly follows the optimal policy.
Each of these ANOVAs now had two independent variables,
condition (with three levels, between-subjects), agent (human
vs. optimal, within-subjects), as well the condition × agent
interaction. These ANOVAs revealed a highly significant ef-
fect of agent (ticket price: F(1,114) = 131.81, p < .001;
search length: F(1,114) = 27.35, p < .001). Had partici-
pants followed the optimal policy their mean accepted ticket
price would be 155 compared to the actual 158, which would
have resulted in an on average $0.29 higher payout. Like-
wise, participants would have searched for an additional 0.47
positions under the optimal policy. Importantly, there were
no significant condition × agent interactions (ticket price:
F(2,114) = 0.33, p = .719; search length: F(1,114) = 1.84,
p = .164), suggesting that this pattern held across all con-
ditions. Furthermore, there were again no main effects of
condition (ps > .2). As before, the results pattern remained
the same after removing the one participant with poor perfor-
mance from the Baseline condition.

Taken together, the analysis of the summary statistics
showed no discernible differences across conditions. Provid-
ing participants with extra information about the distribution
or even showing them the optimal strategy did not improve
their overall search behaviour or increased their payout. Fur-
thermore, participants in all conditions diverged significantly
from the optimal policy and this was to their financial detri-
ment. Finally, there was no statistical evidence corroborat-
ing the impression that the difference between observed and
optimal behaviour in the Optimal condition was attenuated
compared to the other two conditions.

Behaviour Across Positions
To further explore whether the extra-information conditions
really did not improve performance, we also looked at partic-
ipants’ probability to accept at each position of the sequence.
These results are shown in Figure 2C separately for each con-
dition. In each condition we can see a pattern already ob-
served by Baumann et al. (2020). Participants’ increase in
acceptance probabilities across positions is linear, which con-



Figure 2: Participants’ Performance Across Conditions and Comparison with Optimal Policy
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Note. A) Mean accepted ticket price across conditions. Each grey point shows the mean accepted ticket price of one participant,
the black point shows the overall mean with associated 95% confidence interval. The red ×s shows the mean performance if
participants had followed the optimal policy. B) Mean search length across conditions. As in panel A, grey points are by-
participant averages, black points are the overall average, and red ×s are the optimal policy. C) Mean probability to accept a
ticket at each position per condition. Black lines show participant averages (with 95% CI) and red lines show the performance
had participants followed the optimal policy (with 95% CI). The grey line shows the asymptotic (i.e., analytical) optimal policy.

trasts with the clearly non-linear increase prescribed by the
optimal policy. This linear pattern in the observed behaviour
results in participants both searching too little and too much.
At early positions (i.e., before position 6), participants are
generally risk averse, they search too little and stop too early.
However, once participants arrive at the end of the sequence
their behaviour switches and they become risk seeking, they
now search too much and stop too late. Whereas this pattern
is present in all conditions it appears to be attenuated in the
Optimal condition, especially for early positions.

To further corroborate this pattern we analysed participants
by-position acceptance probabilities with an ANOVA with
two factors, condition (with three levels, between-subjects),
position (9 levels, within-subjects), as well as the condi-
tion × position interaction. As before, we did not see a
significant main effect of condition, F(2,114) = 1.44, p =
.240. We also saw an unsurprising main effect of posi-
tion F(5.07,578.44) = 60.64, p < .001.2 Furthermore, we

2Degrees of freedoms of effects involving within-subjects factors
with more than two levels are Greenhouse-Geisser corrected.

found a just significant condition × position interaction,
F(10.15,578.44) = 1.90, p = .040, indicating that the accep-
tance behaviour differed across positions.

To get at the source of this interaction we compared the lin-
ear trends of positions across conditions using model-based
follow-up tests of the interaction. These comparisons showed
that the linear trend in the Optimal condition was steeper
than in the Baseline condition, t(114) = 2.14, p = .035.
However, there were no significant difference in the linear
trend between the Optimal and the Distribution condition,
t(114) = 1.71, p = .090, and the Distribution and the Base-
line condition, t(114)= 0.28, p= .778. These follow-up tests
were performed without controlling for multiple testing.

A different way to look at this interaction is to look at the
pairwise comparisons across conditions for each position sep-
arately. When doing so (again without controlling for multi-
ple testing), we find that for position 3 the Distribution condi-
tion has a significantly larger acceptance probability than both
the Baseline condition, t(114) = 2.31, p = .023, as well as
the Optimal condition, t(114) = 2.94, p = .004. For position



4, the Optimal condition has a significantly lower acceptance
probability than both the Baseline condition, t(114) = 3.16,
p= .002, as well as the Distribution condition, t(114) = 2.73,
p = .007. None of the remaining pairwise comparisons
reached significance, ps > .08. This suggests that around po-
sitions 3 and 4, the Optimal conditions is more similar to the
optimal policy than the other two conditions (Figure 2C).

Taken together these results suggest that there is no dis-
cernible difference in the probability to accept across po-
sitions between the Baseline condition and the Distribution
condition. However, there is some evidence for a difference
between the Optimal condition and the Baseline condition.
Comparing the behaviour of participants in the Optimal con-
dition to the optimal policy we can see that participants ap-
pear to be almost in line with the optimal policy for earlier
positions (i.e., appear less risk averse than the the other two
conditions). However, for later positions they show the same
risk seeking behaviour also exhibited by the other two condi-
tions.

Discussion
The aim of this study was to test whether providing partici-
pants with additional information in full-information optimal
stopping tasks with proportional payoff function and known
time horizon affects their search behaviour. We provided ad-
ditional information in two levels. In the Distribution con-
dition participants were shown the distribution from which
options were sampled throughout as well as value of the cur-
rent option in this distribution. In the Optimal condition, we
additionally provided participants with the optimal threshold
and the decision based on the optimal policy.

The results showed that the behaviour in the Distribution
condition, where the distribution was shown in each search
step, was essentially indistinguishable from the Baseline con-
dition, both in terms of overall summary statistics as well as in
terms of the behaviour across positions. This suggests that in
optimal stopping problems in which participants have learned
the distribution of options beforehand, additionally providing
participants with a graphical representation of the distribution
and the position of the current options in this distribution does
not change their behaviour. In other words, the reason peo-
ple diverge from the optimal policy in such optimal stopping
problem is not because they do not know the distribution of
options well enough.

There was some evidence to suggest that participants in
the Optimal Condition behaved more in line with the optimal
policy than participants in the other two conditions. When
looking at the probability to accept an option across posi-
tions, the Optimal condition was more similar to the optimal
policy for early positions – people in the Optimal condition
were less risk averse than people in the other two conditions.
However, for later positions there was no difference between
conditions and we saw the same risk seeking behaviour in all
conditions. This suggests that directly providing participants
with the optimal policy helps people a bit in improving their

performance, but they are still not fully adopting the optimal
policy and behave worse than they could.

Given these (admittedly small) differences in search be-
haviour it is surprising that we did not see any global differ-
ences in overall performance. The payoff and mean search
length did not differ significantly between participants in the
Optimal condition compared to participants in the other two
conditions. We believe the most likely explanation for this
pattern is the finding that while participants improve their
search behaviour for early positions, they still exhibit risk
seeking for later positions. By searching more in early po-
sition they increased their chance of finding better tickets in
later positions, but by failing to adapt their search strategies in
later position they failed to benefit from this change in search
behaviour. Instead, just like in the other conditions they too
often reached the final position. A focused test of this possi-
ble explanation might be a fruitful avenue for future research.

Another possibility is that with a more focused design and
more statistical power one might still find a (small) difference
in payoff between the Optimal and other conditions. How-
ever, even if this were the case this would not vindicate the
performance of the Optimal condition. Our results show a
significant difference between the payoff in the Optimal con-
dition and an agent that perfectly follows the optimal policy.
Thus, any possible effect of directly providing participants
with the optimal policy is small compared to the effect of
participants voluntarily diverging from the optimal policy.

Even though we found significant differences between par-
ticipants’ behaviour and an optimal agent when providing the
optimal policy, these differences were overall small. Com-
pared to the optimal policy participants lost on average $0.29.
In contrast, an agent who responds randomly in our task, re-
sulting in a mean accepted price of 180, would lose $2.50
compared to the optimal solution. This contrasts with other
decision-making tasks where not following the optimal pol-
icy results in dramatic earning losses (Camerer, 2011; Goeree
& Holt, 2001; Tversky & Kahneman, 1992). This suggests
that the heuristics used by people to solve optimal-stopping
tasks appear to be clearly resource rational (Lieder & Grif-
fiths, 2020), at least in the Baseline and Distribution condi-
tion.

Our main result, showing that people often ignore the pro-
vided optimal policy, are in line with findings showing that
people tend not to accept algorithmic or AI advice (e.g.,
Dawes et al., 1989; Dietvorst et al., 2015). Interestingly,
the strongest evidence for people’s unwillingness to accept
algorithmic advice comes from the medical domain (Lon-
goni et al., 2019), in less critical domains (e.g., music rec-
ommendations) people in contrast have a tendency for ap-
preciating algorithmic advice (Logg et al., 2019). An in-
teresting avenue for future research is whether people’s un-
willingness to accept advice in optimal-stopping problems is
domain-specific or whether this generally applies to sequen-
tial decision-making tasks.
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