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Ongoing discussions on the nature of storage in visual working memory have mostly focused on 2
theoretical accounts: On one hand we have a discrete-state account, postulating that information in
working memory is supported with high fidelity for a limited number of discrete items by a given number
of “slots,” with no information being retained beyond these. In contrast with this all-or-nothing view, we
have a continuous account arguing that information can be degraded in a continuous manner, reflecting
the amount of resources dedicated to each item. It turns out that the core tenets of this discrete-state
account constrain the way individuals can express confidence in their judgments, excluding the possi-
bility of biased confidence judgments. Importantly, these biased judgments are expected when assuming
a continuous degradation of information. We report 2 studies showing that biased confidence judgments
can be reliably observed, a behavioral signature that rejects a large number of discrete-state models.
Finally, complementary modeling analyses support the notion of a mixture account, according to which
memory-based confidence judgments (in contrast with guesses) are based on a comparison between
graded, fallible representations, and response criteria.
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Research in working memory is concerned with our ability to
hold and maintain representations of information over a short
amount of time. This ability is closely associated with key human
faculties such as reasoning (Süß, Oberauer, Wittmann, Wilhelm, &
Schulze, 2002) and text comprehension (Daneman & Merikle,
1996), and has predictive value in important domains such as
academic achievement (e.g., Bayliss, Jarrold, Gunn, & Baddeley,
2003). In recent years, considerable efforts have been made in the
study of working memory in the visual domain, with particular
focus on its capacity and storage mode. At this point, it is well
established that visual working memory (VWM) has limited ca-
pacity, in the sense that there is an upper limit in the amount of
information that one can maintain in working memory at a given
time (e.g., Cowan, 2001). There is, however, an ongoing discus-

sion concerning the way information can be stored. This discussion
has focused mostly on two theoretical accounts: On one hand, we
have discrete-state or slot models, which assume that items are
either stored in memory with high precision (each is stored in a
“slot”) or not at all (e.g., Luck & Vogel, 1997; Rouder et al., 2008;
Zhang & Luck, 2008). On the other hand, we have continuous
resource models, postulating that information can be degraded in a
more graceful manner, with the quality of each representation in
VWM being determined by the amount of resources dedicated to
it (e.g., Bays & Husain, 2008; van den Berg, Shin, Chou, George,
& Ma, 2012; Wilken & Ma, 2004).

Like in many other research domains, the comparison of models
of VWM is often predicated on a quantification of their ability to
fit the entire data coming from some experimental design. These
fits are made possible through a number of auxiliary assumptions,
some parametric (e.g., latent distributions are Gaussian), others
more substantive (e.g., processes are selectively influenced by
certain experimental manipulations). Despite its successful track
record, this approach to model comparison raises a number of
concerns (Birnbaum, 2011; Kellen, 2019): For instance, a violation
of any of the auxiliary assumptions made is likely to compromise
the conclusions of a model-comparison exercise. This possibility is
nothing more than the famous Duhem-Quine thesis (Duhem, 1954;
Quine, 1953): Consider a theory T, that along with auxiliary
assumptions A, makes the observable prediction O. The failure to
observe O (i.e., O� is observed instead) does not imply a rejection
of T, given that A might be at fault. For example, in the context of
response-time modeling, Jones and Dzhafarov (2014) showed that
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the ability of diffusion and ballistic accumulator models to suc-
cessfully describe people’s responses is entirely dependent on a
number of auxiliary distributional assumptions. The critical role of
A is also reflected in the (necessary) tinkering that takes place
during model development (for a discussion and examples, see
Shiffrin & Nobel, 1997).

Also challenging is the fact that goodness-of-fit measures, even
when corrected for model flexibility, do not necessarily privilege
the portions of the data that are most informative from a theoretical
standpoint. This issue has been discussed at length by prominent
theoreticians such as Rozeboom (1970), who argued for the im-
portance of determining the empirical support for each of the
different formal propositions that constitute a theory, rather than
looking at omnibus support measures (Rozeboom, 2008).1 To
illustrate the point being made here, let us consider a couple of
notable observations coming from physics and biology: (1) clocks
on satellites orbiting the Earth run differently from clocks on Earth
(e.g., Burns et al., 2017), (2) there are humans with two blood
types (i.e., blood-group chimeras; Dunsford et al., 1953). Both
observations have important theoretical implications. But because
they are very specific or rare, they are likely to be downplayed in
any model-comparison exercise that considers the fit to the entire
data on time measurement or human genetics, along with a premium
on model parsimony. There is a real possibility that cruder models that
cannot accommodate these specific observations might end up strik-
ing a better overall compromise between parsimony and fit. For
instance, imagine a scenario in which one would make the case for
‘first-generation’ globalist models of memory, despite their inability
to account for null list-strength effects (Ratcliff, Clark, & Shiffrin,
1990), on the grounds that they can account for a number of other
effects in the literature at the time (ca. the 1990s) and are simpler than
its competitors.2

Considering these concerns, it is important for researchers to
also consider some of the alternatives available in their toolboxes.
The goal of the present work is to do so by comparing models of
VWM using a critical-test approach (e.g., Birnbaum, 2008, 2011;
Kellen & Klauer, 2014, 2015; Stephens, Dunn, & Hayes, 2018).
The idea behind it is simple: Identify a specific prediction that
contrasts different families of models and restrict all testing efforts
to it. The result is a strong inference that speaks directly to the
theoretical commitments of each model (Platt, 1964). In some
cases, the sets of permissible outcomes associated with different
families of models, let us say O�1

and O�2
, are mutually exclusive

(e.g., Birnbaum, 2008). What this means is that the set of permis-
sible outcomes for one family of models corresponds to the set of
forbidden outcomes of a competing family and vice versa. In other
cases, the permitted outcomes of one family are a subset of the
permitted outcomes of another: For example, O�1

�O�2
. These

differences have important implications in the way researchers
engage in critical testing: In the first case, the only concern is to
ensure that our experimental design will not yield observations at
the boundary of the different mutually exclusive predictions (e.g.,
Birnbaum, 2008). In the second case, researchers need to place
their efforts toward reliably observing outcomes that are outside
the subset O�1

(for an excellent example, see Stephens et al.,
2018). In either case, it is possible to dismiss broad families of
models and shift our focus toward more promising options.

The remainder of this article is organized as follows: First, we
discuss discrete-state and continuous models of VWM in the

context of one of the main experimental paradigms used to com-
pare them, the change-detection task (e.g., Luck & Vogel, 1997;
Rouder et al., 2008; Wilken & Ma, 2004). We then discuss the
auxiliary assumptions that are typically made in this context and
propose a new critical test that does not require them. At the locus
of this test is the specific way these models handle confidence
judgments and the possibility of biased confidence, which we
define later. We then report two experiments (one of them prereg-
istered) that show the presence of biased confidence judgments,
which are forbidden by discrete-state models. For the sake of
readability, we first discuss somewhat simplified versions of the
discrete-state and continuous model, and later show that the results
of the critical test also hold across a number of more complex
model variants. Finally, we report complementary model fits
showing that, among the remaining candidate accounts, there is
support for a mixture account in which memory slots provide
graded, fallible representations.

Continuous and Discrete-State Models of the
Change-Detection Task

In each trial of the change-detection task, illustrated in Figure 1,
participants study a distributed array of items (e.g., squares) that
vary on a single dimension such as color. After a brief presentation
and some delay, one item location is probed with a test item and
participants judge whether the color of that item has changed
relative to the previous presentation, responding either “same” or
“change.” Thus, in any change-detection task there are at least two
trial types, change trials (with correct response “change”) and
same trials (with correct response “same”). In addition, researchers
typically manipulate the number of squares presented in a given
trial (e.g., Luck & Vogel, 1997). It is also common to manipulate
the proportion of same and change trials across different test
blocks (e.g., Donkin, Nosofsky, Gold, & Shiffrin, 2013; Donkin,
Tran, & Nosofsky, 2014; Rouder et al., 2008). In a few cases,
participants are also requested to indicate how confident they are
in their responses (e.g., Ricker, Thiele, Swagman, & Rouder, 2017;
Wilken & Ma, 2004; see also Rademaker, Tredway, & Tong,
2012; van den Berg, Yoo, & Ma, 2017).

According to the discrete-state model illustrated in the top row
of Figure 2, the tested item is stored in memory with probability m.
Because the item is stored with high precision, a correct response
is always expected.3 With probability 1-m, no information about
the item is stored and a guess has to be made, with response
“same” being made with probability g, and response “change”
being made with probability 1–g. The discrete-state model can be

1 “... astute evidence appraisal focuses on select features of the hypoth-
esis at issue with only secondary confidence adjustments, if any, in its
remainder. Holistic acceptance/rejection is for amateurs.” (Rozeboom,
2008, p. 1123).

2 For purely rhetorical purposes, let us assume without further discussion
that more recent models such as REM (Retrieving Effectively from Mem-
ory; Shiffrin & Steyvers, 1997) are more complex or flexible.

3 Please note that this assumption of high precision is only plausible
when applying the model to experimental designs where the stimuli are
highly discriminable (e.g. distinct color changes in change trials, such as
blue¡red). As discussed later, our experiments were designed in order to
make this assumption plausible. Later, we discuss the implications of
relaxing this high-precision assumption (despite the experimental design)
in different ways.
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extended to the case of confidence ratings by introducing
confidence-mapping parameters for memory-based (�) and
guessing-based responses (�). These mapping parameters are tra-
ditionally assumed to be conditionally independent, such that their
values do not depend on the value of m—all that matters is the
discrete state one is in, not the probability of entering such state
(for discussions, see Kellen & Klauer, 2015; Klauer & Kellen,
2010).

In the case of the continuous resource model, illustrated in the
bottom row of Figure 2, the information available for a tested item
can be represented as a sample from a latent-strength distribution,
one for cases in which the item has changed, and another one for
when it is the same. Both distributions are established on a latent
memory-strength scale. Individuals judge the tested item by com-
paring its value with a response criterion �, responding “same”
when the value is larger than it, otherwise responding “change.”
The continuous models can also be easily extended to accommo-
date confidence ratings. Specifically, one can introduce additional
criteria �, such that the intervals defined by them are mapped onto
different levels of the confidence-rating scale (see Figure 2).

Response-Bias Manipulations and ROCs

The motivation behind the manipulating of the proportion of
same and change trials is the belief that it selectively influences
participants’ response biases, which are captured in each model by
either the guessing probability g or the response criterion �. Under
this selective-influence assumption, we can derive clear predic-
tions from both models about the way that the probability of
“same” responses in same and change trials covaries across values
of g or �. These predictions are commonly referred to as the
models’ receiver operating characteristic (ROC) functions (Green
& Swets, 1966; Kellen & Klauer, 2018). We illustrate these ROCs
in Figure 3. Binary-response ROCs have been used in a number of
VWM studies (e.g., Donkin et al., 2013; Donkin et al., 2014;
Rouder et al., 2008). Of course, it is entirely possible that
response-bias manipulations also affect memory processes; that is,
there is no selective influence (e.g., Balakrishnan, 1999; Van
Zandt, 2000; see also Ashby, 1983; Diederich & Busemeyer, 2006;
Ratcliff, 1981). If that is the case, then it is no longer possible to
distinguish between both models based on the shape of the binary-
response ROCs.

Confidence Ratings and ROCs

ROCs can also be constructed using confidence-ratings. Instead
of being based on binary response proportion across different
response biases, the ROC is constructed from the cumulative
distributions across the confidence scale, from maximum-
confidence “change” to maximum-confidence “same.” Wilken and
Ma (2004) compared continuous and discrete-state models under
the assumption that memory-based responses in the latter are
deterministically mapped onto maximum-confidence judgments,
which enforces the prediction of linear confidence-rating ROCs.
The reliance on this assumption turns out to be fatal, given that it
has been thoroughly dismissed by a number of theorists (Bröder &
Schütz, 2009; Erdfelder & Buchner, 1998; Falmagne, 1985; Kellen
& Klauer, 2014, 2015; Klauer & Kellen, 2010; Krantz, 1969; Luce,
1963; Malmberg, 2002; Province & Rouder, 2012). Allowing
memory-based responses to include the range of the confidence
scale that is consistent with the binary judgment enables the model
to accommodate the curved confidence-rating ROCs that are typ-
ically observed.4

More recently, Ricker et al. (2017) proposed a new comparison
relying on the notion of conditional independence, using a modi-
fied change-detection task. Instead of judging whether the color at
test was the same presented before in that specific location (see
Figure 1), participants were asked to choose between two colors.
Also, they manipulated choice difficulty, such that the two colors
presented were more or less distinct. Ricker et al. found that the
confidence ratings obtained across choice difficulty levels did not
conform with the assumption of conditional independence, there-
fore speaking against a discrete-state account. The problem with
Ricker et al.’s conclusion is that it is questionable whether one
could even begin to assume that conditional-independence holds in
their experimental paradigm. As discussed by Kellen and Klauer
(2015, p. 547), it is only reasonable to assume that conditional
independence holds when dealing with experimental paradigms in
which there are no external features informing the participant of
the difficulty level of any given test trial. For example, in the
domain of recognition memory, Kellen and Klauer (2015) focused

4 More specifically, the discrete-state model can predict piecewise linear
ROCs that can capture the finite ROC data points collected in a given
experiment.

Fixation MaskStudy Array Retention Test 

change same 

+ ++ ++ +

+

Figure 1. Illustration of the procedure of the change-detection task in visual working memory. Depicted is a
change trial. Note that an eight-point confidence rating scale was used in the experiments reported here (the
German verbal labels were unterschiedlich [change] and gleich [same]). Snapshots of one of the test trials can
be found in the Open Science Framework project. See the online article for the color version of this figure.
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their testing of conditional-independence on study-strength manip-
ulations that were not identifiable during the test phase. In each test
trial, participants were shown a word, without any indication of
whether it might have been studied once or thrice (see also Prov-
ince & Rouder, 2012). In the case of Ricker et al.’s paradigm, these
external features are obviously present, as they correspond to
difference between the two colors.

A New Critical Test: Biased Confidence

The issues found with previous work using either binary-
response or confidence-rating ROCs indicate the need for an
alternative comparison approach that

1. does not assume selective influence in response-bias ma-
nipulations,

2. does not impose deterministic mappings on confidence
judgments, and

3. does not compromise the assumption of conditional
independence.

These requirements are achieved by the critical test proposed
here, which is based on the notion of biased confidence judgments
(Balakrishnan, 1999). In order to understand what this bias is, let
us first consider the continuous resource model: As illustrated in

0.60 0.30 0.09 0.01 0.00 0.00

0.01 0.09 0.30 0.37 0.17 0.05

Unbiased Biased towards ‘Change’ Biased towards ‘Change’

Rating 3 is more likely under ‘same’ trials

‘Change’ ‘Change’‘Change’‘Same’ ‘Same’ ‘Same’

Same Same SameChange Change Change

Change Trial
Same Trial

Change Trials Same Trials Confidence Ratio

1 2 3 4 5 6
M+G M+G M+G G G G

G G G M+G M+G M+G
Change Trial

Same Trial

M = memory-based response
G = guessing based response

Ratings 1-3 are always more (or equally) 
likely under ‘change’ trials.

Ratings 4-5 are always more (or equally) 
likely under ‘same’ trials.

6: Very Sure Same
5: Sure Same

m 4: Unsure Same

1-m
g

1-g

6: Very Sure Same
5: Sure Same
4: Unsure Same

1: Very Sure Change
2: Sure Change
3: Unsure Change

1: Very Sure Change
2: Sure Change

m 3: Unsure Change

1-m
g

1-g

6: Very Sure Same
5: Sure Same
4: Unsure Same

1: Very Sure Change
2: Sure Change
3: Unsure Change

Change more 
likely than Same

Same more 
likely than Change

Same more 
likely than Change

Figure 2. Top row: Discrete-state model for change and same trials, and the mixture components associated
with each confidence level. In both trees, parameter m denotes the probability of an item being stored in working
memory (in a slot), whereas parameter g denotes the probability of guessing “same.” The confidence levels are
described by one of two components, with M � G indicating that a given response confidence level in a given
type of trial can be reached via both memory and guessing processes, and G indicating that it can only be reached
via guessing. For clarity, the state-response mapping parameters � and � (associated with memory and guessing
states, respectively) are omitted. Bottom row: Illustration of the continuous resource model under unbiased and
biased response criteria (criteria correspond to the vertical solid lines). The likelihood ratio associated with a
given response corresponds to the average relative height of the two distributions within the region associated
with that response. It is shown how the model can predict biased confidence judgments (e.g.,“3: Unsure change”
is more likely under same trials), something that the discrete-state model cannot do. Note that the Gaussian
distributions and the equally spaced criteria are merely illustrative; they are not required for the discussed
predictions to hold. For clarity, models for a six-point confidence rating scale are shown in the figure, whereas
an eight-point confidence rating scale was used in the current experiment.
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Figure 2, confidence judgments result from the comparison be-
tween the latent-strength of a test item and a set of ordered
confidence criteria �. The position of each criterion relative to the
latent distributions determines the likelihood of each item type
given a certain response and confidence level. The introduction of
a response bias, for example toward responding “change,” intro-
duces the possibility of biased confidence judgments, especially
when confidence is at a minimum, and minimum confidence
covers a narrow range of strength values (Balakrishnan, 1999).5

This possibility follows from the continuous model’s core notion
that confidence judgments are based on the segmentation of a
latent-strength scale by confidence criteria. In the specific example
given in Figure 2 (lower row, right panel), a minimum-confidence
“change” response is more likely to occur in a same trial. This
confidence level can be said to be biased as the respondent would
improve their accuracy if they simply reassigned all their
minimum-confidence “change” responses to minimum-confidence
“same” instead (i.e., bundled all their minimum-confidence re-
sponses on the “same” side of the scale; see Balakrishnan, 1999).

In contrast, the discrete-state account precludes the possibility of
biased confidence judgments. Confidence judgments result from
the mapping of the different discrete-states onto a confidence
scale, with the mapping of memory- and guessing-based responses
being established by parameters � and � respectively (for a dis-
cussion, see Klauer & Kellen, 2010). For instance, consider the
probability of response “change” made with minimum confidence:

P(“changemin ” | Change trial) � m · �min � (1 � m) · (1 � g) · �min,
P(“changemin ” | Same trial) � (1 � m) · (1 � g) · �min.

Because the former probability cannot be smaller than the latter,
confidence judgments cannot be biased (see Figure 2, top row,
right panel). This inability to predict biased confidence judgments
stems from the core notion within the discrete-state theory that, in
the absence of stored information on the target stimulus, responses
are invariably based on the same guessing process (i.e., conditional
independence).

Continuous and discrete-state models can be compared by test-
ing for the presence of biased confidence judgments. The discrete-
state model only permits the inequalities

P(“change ” , conf � i | Change trial) � P(“change ” , conf � i | Same trial),

P( ” same ” , conf � i | Same trial) � P( ” Same ” , conf � i | Change trial),

for all i among possible confidence levels, whereas the continuous
model imposes no such constraint. What this means is that the set
of permissible outcomes of the discrete-state model is a subset of
the permissible outcomes of the continuous model. Our task then
is to attempt to reliably observe cases in which these inequalities
are violated; that is, try to obtain data belonging to the discrete-
state model’s set of forbidden outcomes. Given our understanding
of the continuous model, we expect the occurrence of forbidden
outcomes to be most likely when (a) individuals show a clear bias
toward one binary response, and when (b) individuals seldom
make minimum-confidence judgments (see also Balakrishnan,
1999). These expectations are illustrated in Figure 2, which shows
the occurrence of biased confidence judgments for minimum-
confidence “change” judgments when there is a bias toward re-
sponding “change.” Given these expectations, we focus our anal-
yses on minimum-confidence judgments.

Experiment 1

Method

We conducted a change-detection task experiment in which we
attempted to observe biased confidence judgments. To ensure that
the test was applied in conditions where items are expected to be
stored with high fidelity (in line with the discrete-state model
assumptions), we relied on highly dissimilar colors. Similar to
previous studies (e.g., Rouder et al., 2008), biases in binary re-
sponses were encouraged by manipulating the proportion of
change trials across blocks (75% vs. 25%).

Participants. A total of 44 participants took part in the ex-
periment. Our plan was to collect at least 40 participants, in order
to roughly match the sample sizes used in previous critical tests
comparing continuous and discrete-state models (e.g., 45 partici-

5 In other words, the observation of a response bias is necessary but not
sufficient for the observation of biased confidence judgments.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Discrete−State Model

P(''Same''| Change Trial)

P
(''

S
am

e'
'| 

S
am

e 
Tr

ia
l)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Continuous Model

P(''Same''| Change Trial)

P
(''

S
am

e'
'| 

S
am

e 
Tr

ia
l)

Figure 3. Illustration of different receiver operating characteristic (ROC) functions predicted by the discrete-
state and continuous models for binary response data (i.e., no confidence rating responses).
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pants in Kellen & Klauer, 2014). We slightly overshot our in-
tended target number as data collection was performed by a
research assistant in a day-wise manner with as many participants
as possible per day (i.e., on the second to last day of data collection
we had not reached 40 participants, so we decided to continue for
one more day).

The average age of our participants was 23.8 years, ranging
from 18 to 29 (SD � 3.7). In exchange for their participation,
participants received CHF 15 or course credit. Each session took
about 50 min. All participants reported having normal or
corrected-to-normal vision and normal color vision.

Stimuli and apparatus. Our stimuli and presentation gener-
ally followed Donkin et al. (2013). We used a set of 10 highly
dissimilar colors (white, black, red, blue, green, yellow, orange,
cyan, purple, and dark blue–green). These colors were taken from
Table 5 of Donkin et al. (colors with suffix “–1”). Importantly,
note that these colors are expected to yield “large” change trials
(see Donkin et al., 2013, p. 891). The discrete-state model’s
assumption that memory-based judgments are always accurate is
assumed to be reasonable here (see Footnote 3; see also Nosofsky
& Donkin, 2016). Stimuli were presented within a light gray
rectangle of approximately 9.8- � 7.3- degree visual angle. Stimuli
were 0.75 � 0.75 degrees in size. Participants were seated approx-
imately 60 cm away from the screen and no chin rest was used.
The position of each stimulus was chosen randomly with the
constraint of a minimal distance of two degrees from other stimuli
and the screen center (measured from the center of the stimuli).

Procedure. The experiment was comprised of a practice block
with 20 trials using a confidence-rating scale, followed by eight
blocks with 52 trials each also using a confidence-rating scale, and
one last block of binary-response trials. In the practice block and
the final binary-response block, half of the trials were change
trials, whereas in the remaining blocks using confidence ratings
they were either 75% or 25% (four blocks with each proportion).
The biased blocks were randomized, with the constraint that the
same proportion of change trials did not occur more than twice in
a row. Before each block, participants were informed about the
percentages of change and same trials. In each trial, the percent-
ages of change trials as well as the percentage of same trials were
displayed in the labels shown above the confidence-rating scale
(see the figure in the Open Science Framework [OSF] project).

Each trial followed the structure outlined in Figure 1: Each trial
started with a fixation cross that was presented for 1,000 ms. An
array of five square stimuli was then presented for 500 ms,
followed by a blank screen for 500 ms. After the blank screen, a
multicolored checkerboard-like mask was presented at each stim-
ulus location for 500 ms. The test phase of each trial was self-
paced: A test item was presented at a random stimulus location. Its
color was either the same that was presented at the beginning of
the trial at this location (same trial), or a color that was shown at
the beginning of the trial, but at a different location (change trial).
Participants were then asked to decide whether they are in a
change trial or a same trial, while simultaneously stating their
confidence by clicking on a response button on an eight-point
confidence rating scale. For each half of the scale, confidence was
represented by a plus sign (�) increasing in size from low to high
confidence. A verbal label above each half of the scale clearly
indicated the binary choice (i.e., “change” vs. “same”; the actual

German words used were unterschiedlich vs. gleich). Participants
did not receive feedback on their performance.

Results

Manipulating the proportion of change trials succeeded in af-
fecting individuals’ binary-response bias, although they were gen-
erally biased toward responding “change” across blocks. In blocks
with 75% and 25% change trials, the average proportion of
“change” responses was .78 and .40, respectively. In the last block
with 50% change trials and binary judgments, the average propor-
tion of “change” responses was .62. Overall, these proportions
indicate a general bias toward “change” responses irrespective of
experimental condition, although the base-rate manipulation ap-
pears to have produced an effect in the expected direction. This
impression was corroborated using signal-detection bias measure
c, which turned out to be more strict in 75% change condition
(M � 0.58, SD � 0.33) than in the 25% change condition (M �
0.17, SD � 0.39; Wilcox’s W � 941, p � .0001). The left panel
of Figure 4 shows the confidence-rating ROC functions obtained
with the grouped confidence ratings, for each of the bias condi-
tions. Note that the point obtained in the binary-response condition
falls close to the ROCs. The ROCs take on concave and symmet-
rical shapes, as typically found in this type of data.6 Given these
results, our hope to observe biased confidence judgments is limited
to the 75% change condition. After all, this is the only condition in
which we observe a strong response-bias effect, with minimum-
confidence “change” responses being seldom made (see also
Balakrishnan, 1999). For the sake of completeness, Figure 5 (first
and second column) illustrates the results obtained in the 25%
change condition, but we refrain any further discussion (for further
details, see the OSF project).

As shown in Figure 5 (top row, third panel), the observed propor-
tions of minimum-confidence “change” responses in the 75% change
condition were generally greater in same trials, indicating the presence
of a bias in confidence that is forbidden under the discrete-state
model. Specifically, P(“changemin”| Same trial) was greater/equal/
smaller than P(“changemin”| Change trial) in 68%, 11%, and 20%
of the individual cases, respectively. At the group level,
P(“changemin”| Same trial) and P(“changemin”| Change trial) were
.12 and .07, respectively.

The individual minimum-confidence responses were fitted with
a joint-binomial hierarchical-Bayesian model. In a Bayesian
framework, the uncertainty regarding model parameters is repre-
sented via probability distributions, with prior distributions being
updated into posterior distributions (via Bayes’s theorem) in light
of the data. The key component of the joint binomial model
adopted were the probabilities P(“changemin”| Same trial) and
P(“changemin”| Change trial), whose difference was captured by
an effect-size parameter 	 with mean 
	 (for details, see the OSF
project). The range of predictions permitted under the discrete-
state model correspond to a 
	 that is greater or equal to zero,
indicating that the minimum-confidence “change” responses are
more likely in change trials than in same trials. The discrete-state
model’s ‘forbidden region,’ which is expected under the continu-
ous resource model, corresponds to a negative 
	, indicating that

6 As a reminder, the discrete-state model can accommodate curved
confidence-rating ROC data.
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such responses are more likely in same trials than in change trials.
The visual inspection of the confidence-rating proportions in Fig-
ure 5 was corroborated by the joint binomial model’s posterior
parameter estimates, which yielded a posterior mean of 
	

of �0.19, with a 95% credibility interval of [�0.26, �0.13] (see
Figure 5, top row, right-most panel).

The evidence for the discrete-state model’s forbidden predic-
tions relative to its permitted predictions can be quantified by
means of a Bayes factor (BF), which in the present case can be
computed via the following ratio of posterior probabilities (Klug-
kist, Kato, & Hoijtink, 2005):

BF �
Ppost(�	 
 0)
Ppost(�	 � 0) .

Values larger than 1 support the presence of biased confidence
judgments, which are not permitted under the discrete-state model,
whereas values between 0 and 1 indicate support for the absence of
such bias. For the 75% change trials condition, we obtained a BF
of roughly 60,000 (as none of the 60,000 
	 samples were larger
than zero), indicating strong support for the presence of biased
confidence ratings.

One potential objection to the analysis reported so far is that,
whereas many of the minimum confidence responses fall into the
‘forbidden region’ of the discrete-state model, the magnitude of
these violations might be comparatively small and still compatible
with a discrete-state model when taking sampling variability into
account. To corroborate the obtained BF, we conducted a
posterior-predictive test (see Gelman & Shalizi, 2013; Klauer,
2010). Specifically, we generated one set of synthetic data, xsynth,
per posterior parameter sample �̂post from a joint-binomial model
constrained to follow the predictions of the discrete-state model
(i.e., 
	 was constrained to be non-negative). We then computed
the misfit of the true data, ��xobs,�̂post� , as well as the misfit of the
synthetic data, ��xsynth,�̂post� , according to the expectations de-
rived from the posterior parameter sample. The latter can be
understood as the expected amount of misfit if the only source of
noise is sampling variability (and the true data generating process
respects the constraints of the discrete-state model). We used these
quantities to compute Bayesian p values by estimating the proba-

bility of the misfit of the real data being larger than of the synthetic
data; that is, P���xobs,�̂post� � ��xsynth,�̂post�� . Small p values
indicate a poor fit of the model to the data. We obtained a Bayesian
p value of .003, which indicates that the observed data is very
much at odds with the discrete-state model’s range of predictions,
even when taking sampling variability into account. Importantly,
when applying the same procedure to a joint-binomial model
constrained to produce biased confidence judgments, the obtained
Bayesian p value was .52, consistent with the fact that a confidence
bias is generally present in the data.

Discussion

Although our results provide clear evidence against the discrete-
state account, several concerns can be raised. First, our focus on
minimum-confidence judgments might appear somewhat post hoc
and even self-serving. After all, we focused our analyses on the
minimum-confidence judgments coming from the 75% change
condition, based on the fact that it was the only condition in which
we observed a clear response-bias effect in the expected direction.
Instead, shouldn’t one engage in joint evaluation of the evidence
for biased confidence judgments across all condition? No, not at
all. The first thing one should keep in mind is the nested (and thus
asymmetric) relationship between the two theoretical accounts in
the present experimental setup: One account includes the possibil-
ity of biased confidence ratings, whereas the other one does not.
The failure to observe response biases or biased confidence ratings
only indicates that both accounts are sufficient (i.e., the data are
not diagnostic).7 In contrast, the observation of biased confidence
judgments is highly diagnostic, as it cannot be accounted by a
variety of discrete-state models (as will be shown later on). Given
this state of affairs, our focus should be directed toward the

7 Note that sufficiency results are relevant when dealing with two
theoretical accounts that differ in terms of their ontological complexity,
such as single-process versus two-process accounts. Specifically, one can
use them to make the case that there is no need to assume two-process
accounts given that their single-process counterparts survived every at-
tempt to reject them (for a discussion, see Stephens et al., 2018). However,
this is not the case here.

Figure 4. Circles show the receiver operating characteristic (ROC) functions obtained with the grouped data
from both bias conditions. The square shows the results from the binary condition. The 95% confidence intervals
associated with each point were obtained via nonparametric bootstrap.
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experimental conditions that seem most promising, namely the
minimum-confidence judgments in a condition showing strong
response biases (see Balakrishnan, 1999). The same strategy is
found in other critical tests, where the focus is placed on individ-
uals or groups showing specific preferences or successful study-
strength effects (see Birnbaum, 2008; Kellen & Klauer, 2015;
Kellen, Steiner, Davis-Stober, & Pappas, 2019). A joint analysis
including nondiagnostic data would be a counterproductive move,
akin to tempering one’s inferences coming from the observation of
black swans by keeping tabs on all the white ones encountered
along the way.

Another concern is that participants might not have fully under-
stood the large differences between colors, which might have
compromised their performance. This possibility is not implausi-
ble, especially given our failure to observe a bias toward “same”
responses in the 25% change condition. Given these concerns, it is
advisable to conduct a follow-up (preregistered) experiment in
which we would try to minimize potential misunderstandings and
would be more likely to observe a response bias in the 25% change
condition.8

Experiment 2

Method

We implemented two major changes in our experimental design:
First, we manipulated the proportion of change and same trials
between subjects. The goal was to increase the possibility of
observing a bias toward “same” responses in the 25% change
condition. Second, to avoid any misunderstanding regarding the
large color differences in our study, participants first engaged in a
training block in which they received feedback after every re-
sponse. Participants also received feedback at the end of every
block.

Participants. A total of 73 participants took part in the ex-
periment. We aimed for a total of 80 participants but did not reach
that goal by a predefined date deadline. This resulted in 36 par-
ticipants in the 75% change trial condition and 37 participants in
the 25% change trial condition. The average age of our participants

8 The preregistration is available on the OSF (https://osf.io/4gh9e).
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Figure 5. The scatterplots show the observed individual proportions of minimum confidence “same” responses
(in the 25% change condition) or “change” responses (in the 75% change condition) in change and same trials.
The density plots show the group-level posterior distribution of the difference parameter 
	. In all plots, the
shaded areas correspond to the forbidden regions of the discrete-state model.
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was 24.5 years, ranging from 18 to 35 (SD � 3.90). In exchange
for their participation, they received CHF 15 or course credit.
Experimental sessions took about 50 min. All participants reported
having normal or corrected-to-normal vision and normal color
vision.

Procedure. The experiment started with a practice block of 40
trials in which only binary responses were requested, followed by
10 test blocks, also with 40 trials, in which responses were given
using a confidence-rating scale. In the practice block, half of the
trials were change trials; Also, participants received feedback after
each trial in the form of a green checkmark “✓” (correct response)
or a red “�” (incorrect), presented at the center of the screen. In
the remaining blocks, the proportion of change trials were either
75% or 25%, depending on the participant’s condition. In contrast
with Experiment 1, this proportion stayed the same throughout the
experiment (i.e., the proportion of change trials was manipulated
between subjects). Participants did not receive feedback after each
trial anymore. However, after each block, they were reminded of
the actual proportion of change trials in the experiment together
with their proportion of “change” responses in that block (see
Dube & Rotello, 2012).

Results

In conditions with 75% and 25% change trials, the average
proportion of “change” responses was .77 and .34, respectively. In
terms of response-bias measure c, we found a (weak) bias toward
“same” responses in the 25% change condition (M � �0.08, SD �
0.34, W � 482, p � .05) and a (stronger) bias toward “change”
responses in the 75% change condition (M � 0.47, SD � 0.36,
W � 3, p � .0001).9 Figure 4 shows the ROC functions obtained
with the grouped confidence ratings from both bias conditions.
Once again, they show the expected curvilinear, symmetrical
shape.

As shown in Figure 5 (lower row, right panels) we again find
evidence for biased confidence judgments in the 75% condition.
The observed proportions of minimum-confidence “change”
responses were generally greater in same trials, indicating the
presence of a bias that is not permitted under a discrete-state
model. Specifically, P(“changemin”| Same trial) was greater/
equal/smaller than P(“ changemin”| Change trial) in 75%, 5%,
and 20% of the individual cases, respectively. At the group
level, P(“changemin”| Same trial) and P(“changemin”| Change
trial) were .12 and .09, respectively.

The individual minimum-confidence responses in the 75% con-
dition were fitted with the same joint-binomial hierarchical-
Bayesian model used in Experiment 1. As a reminder, the discrete-
state account expects the difference parameter 
	 to be greater or
equal to zero. Parameter estimates yielded a posterior mean of 
	

of �0.14, with a 95% credibility interval of [�0.20, �0.08] (see
Figure 5). We obtained a BF of roughly 30,000 (as only two of the
60,000 
	 samples were larger than zero), indicating again strong
support for the presence of biased confidence ratings. This result
was again corroborated by means of posterior predictive tests. For
the model that is constrained to follow the predictions of the
discrete-state account, we obtained a Bayesian p value of .002. For
the model that can produce biased confidence judgments, we
obtained a Bayesian p value of .40.

Establishing the Scope of the Critical Test

At this point, it is not clear whether the implications of our test
results are circumscribed to an overly simplistic set of models,
especially in the case of the discrete-state model. This discussion
is especially relevant given that both of our studies only used
five-item arrays, a number that does not surpass many people’s
working memory capacity (Cowan, 2001). This means that pro-
cesses other than guessing are playing a major role. The purpose of
this section is to provide some clarification on this matter and
show that the model predictions discussed above hold across
several possible extensions and/or modifications. We also discuss
one discrete-state model variant that can account for biased con-
fidence judgments and show that it outperforms a “pure” contin-
uous counterpart.

Adopting Non-Gaussian Distributions in the
Continuous Model

The illustration of the continuous model given in Figure 2 assumes
that memory-strength distributions are Gaussian with equal variance.
It is reasonable to ask whether the ability to predict biased confidence
ratings requires specific distributional assumptions. It does not. The
possibility of biased confidence only requires the ability to establish a
pair of confidence criteria along an interval of latent values in which
one stimulus type is more likely than the other. Note that differences
in likelihood are implied by the mere observation of above-chance
performance, as it implies that values larger than the binary criterion
� are more likely under same trials, and values below � are more likely
under change trials.10

Relaxing the Discrete-State Model’s Confidence
Mapping

The discrete-state model can account for the observed biased con-
fidence judgments if we relax the way in which each discrete state is
mapped onto the confidence scale (e.g., Malmberg, 2002). So far, we
have assumed that the memory state reached with probability m is
always mapped onto the levels of the confidence-rating scale associ-
ated with one of two binary responses (see also Kellen, Singmann,
Vogt, & Klauer, 2015; Klauer & Kellen, 2010, 2015; Province &
Rouder, 2012). Note that by doing so we are not introducing any
additional constraints to the model—we are merely retaining the
assumption made in the case of binary choices.

We do not see this extension as a convincing way to salvage
discrete-state models. Specifically, we do not find any justification

9 Given that the bias towards “same” responses in the 25% change
condition is relatively weak, making the observation of biased confidence
judgments unlikely (see also Footnote 5). And indeed, no bias was found.
We decided to omit these analyses from the main text and report them in
the OSF project. In any case, we report the relevant data in Figure 5.

10 Note that the assumption that ROC functions are concave (which
includes linearity as a boundary case) implies that the likelihood ratio is
monotonic. Any point of the ROC with slope larger/smaller than 1 indi-
cates that the value of binary-response criterion � is more likely under the
latent distribution associated with same/change trials (for details, see
Kellen, Winiger, Dunn, & Singmann, 2019). To obtain biased confidence
ratings, one only needs to place the confidence criteria associated with a
“change”/“same” response along a range of values in which the latent
memory-strength values are more likely under the distribution associated
with same/change trials.
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for not imposing the constraints already in place when dealing with
binary choices. Also, such a relaxation implies that individuals are
willing to go against their memories in order to respond in con-
formity with the biases promoted by the experimental manipula-
tion (e.g., responding “same” in a block with 25% change trials
despite detecting a change), while simultaneously being willing to
respond counter to the same biases when guessing (e.g., guessing
“change” in a block with 25% same trials). Such an account is
directly at odds with the idea that response biases affect first and
foremost guesses (see Erdfelder, Küpper-Tetzel, & Mattern, 2011;
Krantz, 1969; Luce, 1963). Moreover, we note that by assuming a
relaxed mapping, proponents of discrete-state models can no lon-
ger resort to ROC shapes as a source of empirical support, given
that the models no longer make clear predictions.11

Swap Errors in the Discrete-State Model

One limitation of our discrete-state model is that it omits the
possibility of participants incorrectly associating one of the other
studied colors with the test position—a swap error (Bays, Catalao,
& Husain, 2009; Wheeler & Treisman, 2002). Let w denote the
conditional probability of a swap error, given that the correct color
was not remembered. In the case of same trials, swap errors will
always lead to a “change” response, as the color has to be different
than the one presented at test. In contrast, in change trials, the
probability of the remembered color mismatching the one at test is
3
4 (see Donkin, Tran, & Le Pelley, 2015). The equations for
minimum-confidence “change” judgment are then:

P(“changemin ” | Change trial)�m · �min�(1 � m) · w · 3
4 · �min

�(1 � m) · (1 � w) · (1 � g) · �min,

P(“changemin ” | Same trial)�(1 � m) · w · �min

�(1 � m) · (1 � w) · (1 � g) · �min.

Based on these equations, we can see that a biased confidence

rating is only expected when m
�1�m�


 w
4 , which only holds when

m .20. The upper boundary m � .20 requires that w � 1, which
implies that there are no guessing-based responses, only swap
errors. The required m values are extremely low—with a set size
of five items, they would imply a discrete capacity (with successful
binding) of at most one item. Such a characterization is not
consistent with the overall performance observed in both experi-
ments (see the ROC plots in Figure 5).

Color-Position Binding Failures

Now, let us consider an extended model according to which a
person can also make a judgment based on the fact that they
remember the color presented at test from earlier in the trial but not
its exact location:12

P(“changemin ” | Change trial) � m · �min�(1 � m) · c · z · �min

�(1 � m) · (1 � c) · (1 � g) · �min,

P(“changemin ” | Same trial)�(1 � m) · c · z · �min

�(1 � m) · (1 � c) · (1 � g) · �min,

with c denoting the probability that the color at test is remem-
bered (but not its location), z as the probability that this color is

not attributed to the test item location, and �min corresponding
to the probability of mapping this judgment onto a minimum-
confidence “change” response. Once again, it is easy to see
that P(“changemin” | Change trial) cannot be smaller than
P(“changemin | Same trial), therefore excluding the possibility
of biased confidence.

Assuming Varying Discrete-State Probabilities

One way to accommodate biased confidence ratings is to allow
for probability m to differ between change and same trials (i.e.,
establish mchange and msame parameters instead of a single m
parameter). For instance, the confidence bias observed in the 75%
change condition would be accounted for if mchange�msame. One
explanation for these probability differences is that the differential
expectations induced by base-rate manipulation affects sensory
processing (e.g., Summerfield & de Lange, 2014). Although we
cannot provide a clear-cut evaluation of this hypothesis using the
present data, we can nevertheless point out that it yields predic-
tions that do not seem to pan out in when inspecting the binary-
response ROC data coming from change-detection tasks. Specifi-
cally, the discrete-state model no longer expects linear and
symmetric binary-response ROCs when mchange and msame are
allowed to differ across response-bias conditions. To illustrate this
point, we considered three possibilities:

1. mchange and msame vary in opposite directions across
response-bias conditions, such that mchange�msame when
there is a bias toward “change” responses and mchange�msame

when there is a bias toward “same” responses.

2. mchange varies across response-bias conditions, but msame re-
mains fixed (the inequalities stated above are also expected).

3. msame varies across response-bias conditions, but mchange re-
mains fixed (the inequalities stated above are also expected).

As shown in the left panel of Figure 6, the first possibility results
in curved binary-response ROCs, which mimic the predictions of
the continuous model illustrated in Figure 3. The prediction is
somewhat implausible given that binary-response ROCs obtained
in change-detection paradigms are generally well captured by a
linear and symmetric function (e.g., Donkin et al., 2014; Rouder et
al., 2008). If this first possibility held, then one would expect the
extant ROC data to generally favor the continuous model. In turn,
the center and right panels of Figure 6 show that the second and
third possibilities would lead to asymmetric binary-response
ROCs. These asymmetries are at odds with the symmetric func-
tions predicted by both discrete-state and continuous models (see
Figure 3). They are also somewhat implausible given that to the
best of our knowledge, ROC data coming from change-detection

11 It is worth pointing out that Malmberg’s (2002) case for a relaxed
mapping of memory states hinges on the imposition of additional con-
straints on the mapping of guesses. Specifically, Malmberg assumed that
guesses are distributed uniformly across confidence-rating scale. Without
this constraint, one no longer needs to relax the mapping of memory-based
responses to predict curvilinear ROCs (see Kellen & Klauer, 2015; Klauer
& Kellen, 2010).

12 As a reminder, note that the color tested in change trials was always
presented in the study array of the same trial in one of the other locations.
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tasks have generally been well accounted for by models assuming
symmetrical functions (whether they are continuous or discrete).
One counterargument is that it is entirely possible for a small
asymmetry to be masked by the noise usually found in binary-
response ROC data (for a review, see Kellen, Klauer, & Bröder,
2013). But then again, this noise would have to somehow leave the
prediction of biased confidence ratings unaffected.

Allowing for Fallible Memory Representations in the
Discrete-State Model

Our discrete-state model assumes that items stored in VWM are
represented with high fidelity, such that responses based on them are
always accurate. It is not difficult to see how this assumption can
be unreasonable in certain circumstances. For example, it implies the
ability to detect the smallest differences between colors. Our first
reaction to such criticism is to note that both experiments reported
here relied on distinct colors, which should reduce the probability of
memory-based errors. Moreover, to dismiss any concerning regarding
the possibility of individuals misunderstanding the large difference
between the colors, participants in Experiment 2 were given trial-by-
trial feedback in an initial training phase.

But the key question remains: Could a somewhat fallible rep-
resentation provide the discrete-state model with the ability to
account for biased confidence judgments? The answer is no. To
show this, we have to extend the model so that it includes the
possibility of incorrectly remembering the color at a given posi-
tion, while preserving the conditional-independence assumption
(Rouder & Morey, 2009). Specifically, let m� denote the proba-
bility that a remembered color in VWM is correctly determined to
be different from the test item in a change trial. Also, let m��

denote the probability that a remembered color in VWM is incor-
rectly determined to be different than the test item in a same trial.
Based on this extension, the equations for minimum-confidence
“change” judgment correspond to

P(“changemin ” | Change trial) � m · m* · �min � (1 � m) · (1 � g) · �min,

P(“changemin ” | Same trial) � m · m** · �min � (1 � m) · (1 � g) · �min.

It follows that biased minimum-confidence judgments are only
expected when the probability of an accurate memory represen-
tation in VWM in a change trial, m�, is smaller than the
probability m�� of an inaccurate memory representation in a

same trial; that is, m*

m** 
 1 . What this means is that the memory

representations provided by the discrete-state model would
have to predict below-chance accuracy, which is not to be
expected under any reasonable circumstances. To show this, let
us consider a case in which both m� and m�� are determined by
the comparison of noisy representations and test items using a
pair of perceptual thresholds. More specifically, let us assume
that the noisy representation x of a given studied item is
characterized by the normal distribution illustrated in Figure 7.
When a test item T with value t is presented, the color is deemed
to be the same as the one stored in VWM if x falls within the
interval [t��,t��], and different otherwise. The right panel of

Figure 7 shows the ratio m*

m** under different values of � and t.

This ratio is larger than 1 across all the different values con-
sidered, therefore failing to show the condition necessary for
the model to predict biased confidence judgments.

Casting Working-Memory Slots Through Mixture
Signal-Detection Modeling

Finally, a discrete-state model extension that can account for biased
confidence judgments in a plausible way assumes that people’s re-
sponses consist of a mixture of guesses and memory-based judg-
ments, the latter being based on a comparison between graded and
fallible memory representations with response criteria (e.g., Nosofsky
& Gold, 2018; Xie & Zhang, 2017; see also Keshvari, van den Berg,
& Ma, 2013; Zhang & Luck, 2008). As illustrated in Figure 8,
memory-based confidence judgments are based on a comparison
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Figure 6. Illustrations of binary-response receiver operating characteristics (ROCs) for three possibilities of
varying parameters mchange and msame. In the left panel, the parameter values aremchange � [.600, .525, .450, .375,
.300], msame � [.300, .375, .450, .525, .600], and g � [.20, .35, .50, .65, .80], with each entry corresponding to
one response-bias condition, going from a bias toward “change” to a bias toward “same.” In the center panel,
msame is fixed to.45, whereas in the right panel, mchange is fixed to .45.
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between the memory representation and the item presented at test.
Specifically, the difference between the two is compared with pairs of
confidence criteria. Confidence judgments are determined by the
tightest pair of criteria that includes the difference. For instance,
low-confidence “change” judgments (e.g., Rating 4 in Figure 8) are
expected when the difference is relatively small.

Despite some minor differences, the characterization of
memory-based responses given above ends up being pretty much
the same as the continuous account’s (see Figure 2; see also
DeCarlo, 2013). Therefore, it is reasonable to question whether it
is even necessary to consider a mixture between guesses and
memory-based judgments. In other words, would a pure continu-
ous account be enough, given that the memory component in the
mixture is what is doing the leg work? Although the present data
do not provide us with the means to implement a critical test on the
need for guessing-based confidence judgments, a tentative assess-
ment can be obtained through parametric modeling. The approach
we pursued here consisted of fitting a mixture model to individual
ROC data coming from each base-rate condition (details can be
found in the OSF project).13 Using Bayesian methods, we evalu-
ated the posterior estimates of the mixture weight quantifying the
proportion of memory-based judgments (and its complement the
proportion of guesses). If guessing-based responses make a non-
negligible contribution, then the posterior distributions of indi-
viduals’ mixture weights tend be concentrated on values away
from 1.14 The posterior estimates reported in Figure 9 show that
even though there is considerable uncertainty, the mixture
weights were often concentrated along values away from 1.
This result suggests that guessing-based responses play a non-
negligible role in describing the data (see also Nosofsky &
Gold, 2018).15

Conclusion

The present work shows that several discrete-state models of
VWM exclude the possibility of biased confidence ratings. In two
experiments, we were able to observe biased “change” judgments,
a behavioral signature that speaks directly against these models.
These results provide us with a clear standard for evaluating the

sufficiency and necessity of certain theoretical features (e.g., the
nature of memory representations in VWM). Subsequent analyses
show that a mixture account assuming pure guesses along with
graded memory representations provides a good account of the
results (e.g., Nosofsky & Gold, 2018). Altogether, these results
contribute to the behavioral foundation of mixture modeling in
VWM. These results also have strong implications on the inter-
pretation of previous model comparisons. For instance, it no longer
seems reasonable to consider model comparisons supporting a
discrete-state account, when such results are predicated on models
that fail the present critical test (e.g., Donkin et al., 2014; Rouder
et al., 2008).

More broadly, the present work demonstrates the potential of
critical tests in the comparison of formal theories (Birnbaum,
2011; Kellen & Klauer, 2014, 2015). Researchers should keep the
advantages of this approach in mind: First, it often allows for the
direct testing and dismissal of broad classes of models; that is,
strong inference (Platt, 1964). Second, it shifts the focus away
from global model-performance statistics, which can be somewhat
opaque, and places it entirely on the specific behavioral patterns
that have a clear diagnostic value. Third, it contributes to the
development of a corpus of behavioral results that any candidate

13 The mixture model used assumes that the memory representation in
same trials follows a Normal distribution with mean 0 and variance 1. In
turn, the representation of change also follows a normal distribution, this
time with mean 
 and variance 1. The confidence criteria were free to vary
(aside from their order constraints). Guessing-based confidence judgments
is captured by an unconstrained multinomial distribution. Finally, the
model has a mixture-weight parameter �.

14 The mixture model considered here has more parameters (16) than
there are degrees of freedom (15), which means that not all of its param-
eters are identifiable. The lack of identifiability can sometimes be a
problem, even in the context of Bayesian parameter estimation (see Spektor
& Kellen, 2018). Fortunately, the mixture-weight parameter that we are
interested in is not severely compromised given that it plays a major role
in establishing the model’s ability to describe data, a role that cannot be
generally fulfilled by the other model parameters.

15 For reference, the rank-correlation of the median posterior mixture
weights across base-rate conditions in Experiment 1 (a within-subjects
manipulation) was 0.84.
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Figure 7. Example illustration of graded, fallible memory representation and its predictions. The densities
characterize the fallible memory representations, whereas t corresponds to the value of the test item.
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theory needs to be able to accommodate (see Oberauer et al.,
2018).

To finalize, a clarification: The focus on specific portions of the
data advocated by the critical-test approach discussed here can be
seen as being antagonistic toward the development of accounts that

include as many sources of data as possible (e.g., categorical
responses, RTs; Donkin et al., 2013). This is inaccurate. Both
approaches are complementary, serving different goals and criteria
(for a discussion, see Kellen, 2019): Critical tests provide sharp,
localized evaluations of theories, whereas the development of
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Figure 8. Example illustration of memory-based judgments according to the mixture model. The densities
characterize the graded, fallible memory representations. The different vertical lines correspond to the confi-
dence criteria, whereas t corresponds to the test item. For clarity, a six-point confidence scale is shown in the
figure (rather than the eight-point confidence scale used in the experiment), which ranges from 1 (very sure
change) to 6 (very sure same).
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is no contribution from the guessing component.
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increasingly encompassing models tests the ability of certain key
theoretical notions to provide a competent and consistent charac-
terization of the different types of data, and how these can differ
across people and conditions. This complementarity is demon-
strated by our parametric mixture-model fits, which show that
among the theoretical accounts that happen to provide a plausible
characterization of biased confidence judgments, one can find
support for the presence of pure guesses.
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