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Signal detection theory (SDT) plays a central role in the characterization of human judgments in a wide range
of domains, most prominently in recognition memory. But despite its success, many of its fundamental
properties are often misunderstood, especially when it comes to its testability. The present work examines five
main properties that are characteristic of existing SDT models of recognition memory: (a) random-scale
representation, (b) latent-variable independence, (c) likelihood-ratio monotonicity, (d) ROC function asym-
metry, and (e) nonthreshold representation. In each case, we establish testable consequences and test them
against data collected in the appropriately designed recognition-memory experiment. We also discuss the
connection between yes–no, forced-choice, and ranking judgments. This connection introduces additional
behavioral constraints and yields an alternative method of reconstructing yes–no ROC functions. Overall, the
reported results provide a strong empirical foundation for SDT modeling in recognition memory.
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In the construction of scientific knowledge, it is useful to distin-
guish theoretical accounts at different levels. At one level, we
consider a theory as usually understood, while at another level,
we consider an instantiation of the theory as a specific model.
Characterized in this way, a theory consists of a set of assumptions
that build a given picture of the domain of interest while a model
contains additional assumptions in order to make contact with the
world and to serve specific goals such as testing or parameter
estimation (e.g., Bailer-Jones, 2009; Frigg & Hartmann, 2018;
Kellen, 2019; Morgan & Morrison, 1999; van Fraassen, 1980).
These additional auxiliary assumptions help connect the theory to
data but are not part of the theory as such. For example, as we
discuss in detail below, signal detection theory (SDT) pictures the
evidence on which a decision is based as a latent variable (such
as memory strength) having some distribution on a continuum. To
turn this into a testable model, the auxiliary assumption that the
distribution has a specified form (usually Gaussian) is added.

Accordingly, a theory may be viewed as the intersection of the
set or family of models that are consistent with it (e.g., Suppes,
2002; van Fraassen, 1980). The distinction between the core as-
sumptions of a theory and the auxiliary assumptions of a specific
model derived from said theory complicates theory testing: Any
attempt to test a theory requires a demonstration that the conclusions
being drawn do not hinge on the auxiliary assumptions of the model
that actually comes into contact with the data. Rather, these conclu-
sions should hold across all relevant models. Otherwise, one could
always attribute the failure of a model to its auxiliary assumptions
rather than to the theoretical picture at its core (Duhem, 1954).

Unfortunately, the distinction between theory and model is often
overlooked. One example concerns the functional relationship
between a latent variable and the dependent variable that measures
it. While at a theoretical level this relationship may take any form, it
is frequently assumed to be linear, as presupposed in ANOVA-type
models (Dunn & Kalish, 2018; Garcia-Marques et al., 2014; Kellen
et al., 2021; Loftus, 1978; Wagenmakers et al., 2012). Based on this
assumption, statistically significant interactions are frequently inter-
preted as supporting more complex theories (e.g., Ashby &
Valentin, 2017) although such interactions may disappear under
alternative models that do not assume linearity (for a recent over-
view, see Stephens, Matzke, & Hayes, 2019). In some domains such
as syllogistic reasoning, the dismissal of linearity has led to drastic
reinterpretations of long-standing empirical results (Rotello et al.,
2015). In the context of response-time modeling, Jones and
Dzhafarov (2014) showed that the ability of diffusion and ballistic
accumulator models to successfully describe people’s responses
hinges on auxiliary distributional assumptions that are not an
essential part of the underlying theory.

If a particular model fails to fit the data, it is often possible to
attribute this to its auxiliary assumptions rather than to the core
assumptions of the underlying theory. This possibility is concerning
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as it may serve to protect the theory from falsification. A similar
issue arises when comparing models associated with competing
theories. The fact that onemodel outperforms another does not mean
that a similar result would be obtained under alternative models. For
these reasons, it is desirable to identify critical tests of properties that
can be found across large sets or families of models (e.g., Bamber,
1979; Birnbaum, 2008; Dunn & Anderson, 2018; Dunn & Kalish,
2018; Dunn & Rao, 2019; Falmagne, 1985; Karabatsos, 2005;
Krantz et al., 1971; Luce, 2010; Regenwetter, Dana, & Davis-
Stober, 2011; Steingrimsson, 2016; Suppes et al., 1989;
Townsend & Nozawa, 1995). Such tests are examples of what
Platt (1964) has famously referred to as strong inference.1

Relative to traditional model-fit comparisons (e.g., Pitt &Myung,
2002; Roberts & Pashler, 2000), critical tests offer two main
advantages: First, they establish a transparent relation between
theory and data—something that is not provided by penalized-fit
statistics, regardless of their sophistication (Birnbaum, 2011a;
Kellen, 2019). Second, the test results have farther reaching im-
plications. For instance, the critical-test results reported by
Birnbaum (2008) do not merely reject some parametric implemen-
tation of Prospect Theory—they reject the entire family of Prospect-
Theory models formalized by Tversky and Kahneman (1992).
Similarly, Regenwetter, Dana and Davis-Stober (2011) failure to
reject the assumption of transitivity in people’s preferences demon-
strate the viability of a large family of models without having to
enumerate the unique aspects of each of its members.
The aim of the present article is to apply a critical-test approach to

families of SDT models, focusing on their application to the domain
of recognition memory. SDT is arguably one of the most successful
theoretical frameworks in psychology today (for overviews, see
Green & Swets, 1966; Kellen & Klauer, 2018; Macmillan &
Creelman, 2005; Wickens, 2002) and has played a central role in
the modeling of recognition-memory judgments (see Egan, 1958;
Rotello, 2018; Wixted, 2007; Yonelinas & Parks, 2007). The
popularity of SDT can be attributed to two factors: Its empirical
success and its theoretical inclusiveness. First, SDT has been shown
to characterize judgments across a wide variety of psychological
domains beyond memory, such as perception and reasoning (e.g.,
Green & Swets, 1966; Macmillan & Creelman, 2005; Rotello, 2018;
Trippas et al., 2018). Second, its core assumption that judgments are
based on an evaluation of latent-strength values sampled from
continuous distributions plays well with popular theoretical ac-
counts of learning, forgetting, and generalization, among others
(Lockhart & Murdock, 1970). Nevertheless, SDT has been tradi-
tionally applied in ways that rely heavily on auxiliary assumptions,
which are often simply taken for granted by researchers. This
reliance is problematic as it tends to promote misconceptions
regarding the distinction between SDT and alternative models.
For example, Threshold Models are often contrasted with Gaussian
SDT models, under the premise that they provide theoretical ac-
counts that are fundamentally distinct (e.g., Bröder & Schütz, 2009;
Dube & Rotello, 2012). But a closer look shows that both models
can be cast as members of large families of SDT models (see
Falmagne, 1985, Chap. 10; Kellen & Klauer, 2018; Macmillan &
Creelman, 2005; Malejka & Bröder, 2019; Rouder et al., 2014).
Figure 1 illustrates our application of critical tests to a hierarchy

of properties, which are organized in a way that reflects their
increasing level of specificity (for very similar testing strategies,
see Luce, 2010; Steingrimsson, 2016). Families and subfamilies of

SDT models can be defined by establishing which properties its
members must satisfy. When testing for a specific property, we are
evaluating the empirical adequacy of the families or subfamilies of
models that satisfy it. Allowing for details to be discussed later on,
let us take a brief overview of the properties being tested. At the top
level, we identify a critical property of SDT models at large—the
assumption of a random-scale representation. In the context of
recognition memory, this representation holds that choices between
studied items and new items are characterized by a joint distribution
of latent-strength values and the probability distribution over rank
orders that it induces. Experiments 1 and 2 implement a direct test on
the family of SDT models that assume a random-scale representa-
tion. A failure of the random-scale representation hypothesis would
indicate a need to rethink the way in which latent-strength variables
are assumed to underlie recognition-memory judgments.

At the second level, we identify a property that is almost
universally assumed in existing SDT models: That the latent-
strength variables associated with the different items in a given
test trial [e.g., in an m-alternative forced-choice (m-AFC) task] are
independent. At the third level, we consider a property that is

Figure 1
Overview of the Critical Testing Conducted in the Present Manuscript

Note. Each step establishes a division in terms of whether or not a property
is satisfied. The properties supported by the reported experiments are
presented in bold. For details, see the main text.

1 It is worth noting that the same concerns and desire for greater generality
are found in some of the model-comparison approaches that have been
recently proposed (e.g., multiverse analyses, see Steegen et al., 2016; facto-
rial model comparisons, see Van den Berg et al., 2014).
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expected to hold for the latent-strength variables—likelihood-ratio
monotonicity. Experiments 1 and 2 will be used to test the empirical
adequacy of these two properties. At the fourth level, we focus on
the symmetry of ROC functions, a property that has been at the center
of many theoretical discussions (for a review, see Yonelinas &
Parks, 2007). Experiment 3 implements a critical test for ROC
symmetry that does not rely on parametric assumptions. Finally, at
the fifth level, we distinguish between threshold and nonthreshold
representations. Experiment 4 implements a critical test that dis-
tinguishes between these two representations. To foreshadow our
results, at each node in the family tree structure shown in Figure 1,
we find evidence supporting the branch labeled in bold text.
Altogether, the results obtained across these studies provide an
empirical foundation for SDT that has previously been unavailable,
opening new avenues for future research.

Signal Detection Theory and ROC Functions

Let us consider a general scenario in which a decision-maker is
tasked with classifying incoming stimuli as belonging to one of
several prespecified stimulus classes. For example, such a scenario
is encountered in a visual yes–no task in which the decision-maker
classifies stimuli as signal or noise by responding “yes” or “no,”
respectively. A second example would be a recognition-memory
yes–no task in which the decision-maker attempts to identify which
stimuli she previously encountered in a study phase, and which ones
she did not, once again by answering “yes” or “no”. The challenge
faced by the decision-maker is that these classifications always
involve some degree of uncertainty or confusability (for discussions,
see Lu & Dosher, 2008; Wixted, 2020). According to SDT, the
decision-maker classifies stimuli based on the latent-strength values
λ associated with each of them. These values are assumed to be
realizations of random variables established on a latent metric space.
In a simple scenario in which the decision-maker attempts to
discriminate between two stimulus classes—signal (S) and noise
(N)—the distributions of these random variables are established on a
latent unidimensional scale which we refer to as latent strength. In
the context of recognition memory, signal and noise items corre-
spond to studied and new items, respectively (these terms will be
used interchangeably throughout thisarticle).
In a yes–no task, the latent-strength λ value associated with a

given stimulus is evaluated by comparing it with a preestablished
response criterion κ.2 A “signal” or “yes” response is produced
when λ ≥ κ, otherwise a “noise” or “no” response is given. The
degree of overlap between latent distributions reflects the degree
of confusability between the different stimulus classes. The value of
criterion κ relative to these latent distributions denotes the degree of
response bias, with larger values indicating a more strict response
criterion. The left panel of Figure 2 illustrates this description of
SDT, under the assumption that the latent signal and noise distribu-
tions are Gaussian. The right panel of Figure 2 illustrates the
predicted relationship between the probabilities of “yes” responses
for signal and noise stimuli—referred to as hit (H) and false-alarm
probabilities (FA)—as the response criterion κ varies from strict to
lenient. The functional relationship between hit and false-alarm
probabilities, H = ρ(FA), which can be used to characterize the
decision-maker’s performance across different response biases, is
commonly referred to as the [yes–no] ROC function.

When discussing some of the more formal aspects of SDT, such
as establishing the kind of ROC functions that it can predict, or the
relationships between different types of judgments, it is convenient
to adopt a universal representation in which latent variables are
defined on a [0,1] interval (for previous applications, see Iverson &
Bamber, 1997; Rouder et al., 2010, 2014). Let fN and fS be the noise
and signal density functions, respectively, with corresponding
cumulative distribution functions (CDF) FN and FS. Let F

−1 denote
the inverse of the CDF. We will also assume that the noise
distribution is uniform on the [0, 1] interval, such that fN(κ) = 1
and FN(κ) = κ for all κ ∈ [0, 1]. No constraints are being imposed
on fS, with the exception of that ∫ 1

0f SðtÞdt = 1. Unless noted, this
universal representation will be assumed throughout the manuscript.
We acknowledge that this representation is not “standard” in the
sense that latent variables are typically represented on the entire real
line (e.g., see the left panel of Figure 2) rather than on the unit
interval. However, its adoption does not limit the scope of any of the
theoretical results discussed (as shown below, we can describe any
yes–no ROC function with it).

According to SDT, the hit and false-alarm probabilities corre-
spond to:

FA = PðλN ≥ κÞ = 1 − FNðκÞ, (1)

H = PðλS ≥ κÞ = 1 − FSðκÞ: (2)

As previously stated, the ROC function ρ expresses the hit
probability H as a function of the false-alarm probability FA.
Rearranging (Equation 1), we see that κ = F−1

N ð1 − FAÞ, which
leads us to a more explicit formulation of the yes–no ROC function:

H = ρðFAÞ = 1 − FSðF−1
N ð1 − FAÞÞ: (3)

But what kind of ROC functions are permissible under SDT? The
shape of an ROC function is given by its slope, ρ′(FA), at each point.
Taking the derivative of (Equation 3) with respect to FA:

ρ′ðFAÞ = f SðF−1
N ð1 − FAÞÞ

f NðF−1
N ð1 − FAÞÞ =

f SðκÞ
f NðκÞ

: (4)

Given that fN(κ) = 1 under a universal representation, it follows
that:

ρ′ðFAÞ = f SðκÞ: (5)

It turns out that the slope of the ROC function at any given point
corresponds to the signal density fS. Note that because fS ≥ 0, the
ROC function is necessarily monotonically increasing. It also
follows that any ROC shape (e.g., linear, concave) can be produced

2 Characterizations of SDT typically assume that the response criterion κ is
fixed across test trials. Althoughwe can relax this restriction and allow κ to be
a random variable (e.g., Kellen et al., 2012; Rosner & Kochanski, 2009), we
refrain from doing so here for two reasons: First, the present discussion of κ
takes place in a context in which SDT with fixed versus random κ is not
empirically distinguishable (see Rosner & Kochanski, 2009). Second, our
discussions will almost invariably focus on forced-choice judgments, which
are assumed to be based on comparisons between latent-strength values
(i.e., κ plays no role). The only exception is when we establish a critical test
comparing “threshold” versus “nonthreshold” representations (see Step 5 in
Figure 1). In this specific case, it turns out that the question of whether or not
κ is fixed across trials is completely inconsequential.
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by establishing a density fS that perfectly matches the slope of the
function. In other words, there is no (monotonically increasing) yes–
no ROC function that is at odds with the tenets of SDT.
Additional constraints can be introduced via the assumption that

the likelihood ratio f SðκÞ
f N ðκÞ is monotonically increasing, reflecting the

notion that signal items are more likely to take on larger latent-
strength values than noise items (Criss & McClelland, 2006; Glanzer
et al., 2009; Osth & Dennis, 2015; Zhang & Mueller, 2005). This
property, likelihood-ratio monotonicity, holds if and only if the ROC
function is concave (i.e., it has a monotonically nonincreasing slope).

ROC Shape Only Permits the Testing of SDT Family
Members

The fact that SDT can accommodate any monotonically increas-
ing ROC function raises important issues in the way SDT modeling
is traditionally approached in the domain of recognition memory.
Researchers often rely on ROC shape to compare different models,
such as the un/equal-variance Gaussian SDT model (Egan, 1958),
the Finite-Mixture Model (DeCarlo, 2002), the Dual-Process Model
(Yonelinas, 1997), or the High-Threshold Model (Bröder & Schütz,
2009). Rotello (2018) provides a thorough review. The problem
with these comparisons is that they often confound the SDT
assumption of “latent-strength-based judgments” with the Gaussian
assumption and the ROCs that it can yield. Manifestations of this
confound include evaluations of the number and nature of different
memory processes that are entirely based on how curved an ROC
function is (e.g., Parks et al., 2011), or attempts to dismiss a
dual-process account through the investigation of the fit residuals
associated with different candidate models (e.g., Dede et al., 2014;
Kellen & Singmann, 2016). These comparisons overlook—or at
the very least downplay—the fact that there is always some

latent-strength distribution fS that can perfectly capture the observed
ROC shape (for a similar point, see Rouder et al., 2014).3

One prominent example is the long-documented comparison
between the unequal-variance Gaussian SDT model and the
High-Threshold Model (e.g., Bröder & Schütz, 2009; Dube &
Rotello, 2012; Macmillan & Creelman, 2005). This specific com-
parison has been framed as distinguishing between continuous and
discrete accounts of recognition memory.4 Figure 3 shows the
universal SDT representation of both models and their correspond-
ing ROCs. In the case of the High-Threshold Model, it is clear that it
can be equivalently represented in terms of continuous distribu-
tions.5 This representability indicates that the success of the High-
Threshold Model, especially when relative to an alternative such as
the Gaussian SDT model (e.g., Kellen et al., 2013), cannot be used
to argue against SDT. The only thing these model comparisons can

Figure 2
Gaussian SDT Model
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Note. Left panel: Illustration of the gaussian SDT model latent-strength values above the response criterion result in a
“Yes” response, values below a “No” response. Right panel: The models’ respective Yes–No ROC, along with two ROC
points associated with different response criteria (one strict, the other lenient). Dashed lines delimiting the gray areas indicate
chance-level performance.

3 One reaction to this point is that the discussions mentioned above reflect
researchers’ interest in specific models, auxiliary assumptions included.
Although we acknowledge the legitimacy of such modeling practices, we
argue that the metatheoretical principles that underlie it severely limit what
can be meaningfully said and done. We will turn our attention to this issue in
the General Discussion.

4 We will discuss threshold models in detail later on when testing a
“generalized” threshold model (see Step 5 in Figure 1).

5 Macmillan and Creelman (2005, Chap. 4) and Swets (1986) showed that
the High-Threshold Model can be represented as an SDT model with
rectangular distributions. Our universal representation is slightly different
because both distributions are bound to the [0, 1] interval, which is entirely
covered by a uniform noise distribution. Unlike Macmillan and Creelman or
Swets, our formulation does not allow us to establish an upper region of
strength values that only the signal distribution covers.We, therefore, have to
represent the signal distribution as a mixture between a uniform distribution
and Dirac pulse located at the upper boundary 1. Importantly, note that these
differences do not indicate a limitation of either representation in their ability
to characterize the High-Threshold Model.
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achieve is determining which parametric assumptions perform best
in a given situation (see also Malejka & Bröder, 2019).

Step 1: Random-Scale Representation

A fundamental feature shared by all SDT models considered in
the recognition-memory literature at large is the existence of a
random-scale representation. That is, the different classes of stimuli
(e.g., studied and new items) can be characterized by a joint latent
distribution, and that choice probabilities can be induced from the
comparison of a joint realization of latent-strength values. In the
domain of forced-choice judgments, it can be shown that this random-
scale representation implies a set of order constraints originally

formalized by Block andMarschak (1960) and Falmagne (1978). These
results, known as the Block–Marschak inequalities, were originally
discussed in the context of the class of “random-utility” or “random-
scale” models, which includes SDT, Thurstonian models (Thurstone,
1927; Torgerson, 1958), Luce’s Choice Theory (Luce, 1959), among
others (for reviews, see Marley, 1990; Marley & Regenwetter, 2017).

Given its origins, it is useful to begin by discussing the Block–
Marschak inequalities in the broader context of “multialternative
decision-making,” and only then discuss the specific case of forced-
choice judgments in recognition memory. Let a, b, c, d, : : : , denote
alternatives or options in an option set T, and let A ⊆ T be a
nonempty option subset. Moreover, let (λa, λb, λc, λd, : : : ), be a
vector drawn from a latent joint distribution. Assuming that ties are

Figure 3
Examples of Models That Can Be Cast By Means of a Universal SDT Representation
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complements ( ~D , ~g ) in each tree correspond to the probabilities associatedwith the different binary branches. For the high-threshold
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Column: The models’ respective ROCs. Dashed lines delimiting the gray areas indicate chance-level performance.

1026 KELLEN, WINIGER, DUNN, AND SINGMANN

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.



impossible, it is easy to see that this joint distribution of latent
strengths implies a probability distribution over rank orders [e.g.,
P(λb > ⋯ > λd > ⋯ > λa, > λc > ⋯)]. Now, let us consider a
decision-maker that, when presented with the options in subset
A, chooses the one with the largest latent-strength value λ. It follows
that the probability of choosing x ∈ A, PhAi

x , corresponds to

PhAi
x = P

�
λx = max

z∈A
ðλzÞ

�
; x ∈ A ⊆ T , (6)

which can be induced from the probability distribution over rank-
ings. For example, if A = {a, b, c, d}, then

PhAi
a = Pðλa > λb > λc > λdÞ + Pðλa > λb > λd > λcÞ

+ Pðλa > λc > λb > λdÞ + Pðλa > λc > λd > λbÞ
+ Pðλa > λd > λb > λcÞ + Pðλa > λd > λc > λbÞ (7)

A random-scale representation is said to hold when choice
probabilities over option subsets A are based on a joint distribution
of latent variables and (Equation 6). This representation introduces a
number of inequality constraints at the level of choice probabilities
when comparing different option subsets. For example, consider the
probability of choosing option a when presented with subset A\{b},
in which option b is not included:

PhA\fbgi
a = Pðλa > λc > λdÞ + Pðλa > λd > λcÞ

= Pðλb > λa > λc > λdÞ + Pðλa > λb > λc > λdÞ
+ Pðλa > λc > λb > λdÞ + Pðλa > λc > λd > λbÞ
+ Pðλb > λa > λd > λcÞ + Pðλa > λb > λd > λcÞ
+ Pðλa > λd > λb > λcÞ + Pðλa > λd > λc > λbÞ (8)

The latter choice probability corresponds to the sum of probabili-
ties of rank orders in which option a is ranked above c and d, while
option b can be assigned any rank. Because (Equation 8) includes all
the probability summands in (Equation 7) and then some, it follows
that PhA\fbgi

a ≥ PhAi
a . Block and Marschak (1960) showed that the

example above is a small part of a system of inequalities that is
implied when choices can be induced from a probability distribution
over rank orders. For example, if A = {a, b, c, d}:

PhAi
a ≥ 0,

PhA\fbgi
a ≥ 0,

PhA\fbgi
a − PhAi

a ≥ 0,

PhAi
a + PhA\fb,cgi

a − PhA\fbgi
a − PhA\fcgi

a ≥ 0,

PhA\fb,c,dgi
a − PhA\fb,cgi

a − PhA\fb,dgi
a − PhA\fc,dgi

a − PhAi
a

+ PhA\fbgi
a + PhA\fcgi

a + PhA\fdgi
a ≥ 0, (9)

with analogous inequalities being enforced over the probabilities of
choosing options b, c, or d. This system of inequalities can be
described in a compact form:

X
B∶A⊆B⊆T

ð−1ÞjB\AjPhBi
x ≥ 0, (10)

for all nonempty A ⊆ T and x ∈ A, and with |B\A| denoting the
cardinality of option subset B minus subset A. As later proved by
Falmagne (1978), choice probabilities are consistent with a random-
scale representation if and only if they satisfy the system of Block–
Marschak inequalities (Block&Marschak, 1960). In other words, the
statements “a decision-maker is consistent with some random-scale
representation” and “the choice probabilities of a decision-maker
satisfy the Block–Marschak inequalities” are formally equivalent.

Two important aspects of Falmagne’s (1978) result need to
be highlighted: First, its generality—aside from the impossibility
of ties, no parametric assumptions are being imposed over the
latent distributions. Second, the system of inequalities defined by
(Equation 10) provides a complete description of the facets of a
convex polytope on a unit hypercube, with vertices representing the
possible ranking orders on 0/1 coordinates (for a minimal description
of this polytope, see Fiorini, 2004).6 Choice probabilities conforming
to this system of inequalities correspond to mixtures of these vertices
and therefore will be inside the convex polytope. The same holds
for averages of said choice probabilities, which means that the
inequalities cannot be spuriously violated because of aggregation
(e.g., across participants; see Estes, 1956; Heathcote et al., 2000; for a
recent overview, see Regenwetter & Robinson, 2017).7

From an empirical perspective, the Block–Marschak inequalities
are far from trivial: As shown by McCausland et al. (2020), the space
of choice probabilities that satisfy them is small under realistic choice
experiments, allowing researchers to apply strict tests to the hypothe-
sis that a random-scale representation holds (see also McCausland &
Marley, 2014). Nor are they theoretically trivial: For instance, one of
the properties that emerge from the random-scale representation is
regularity, according to which the probability of choosing a given
option (e.g., option a) cannot be increased by introducing addi-
tional options into the subset under consideration. The inequality
PhA\fbgi
a ≥ PhAi

a discussed earlier exemplifies this property. Violations
of regularity have been observed in a variety of domains, as reported in
the rapidly expanding literature on “context effects” (e.g., Spektor
et al., 2018; Trueblood et al., 2013). For example, according to the
attraction effect, the probability of choosing one option (e.g., apples)
over another (e.g., oranges) increases when introducing an inferior
option (e.g., apples of worse quality but not cheaper).

Block–Marschak Inequalities in the Context of
m-Alternative Recognition Judgments

In the context of recognition memory, we are dealing with
scenarios that are much simpler than the ones found in typical
multialternative decision-making scenarios. The option sets used in
m-AFC memory tasks are comprised of alternatives coming from
only two stimulus classes—signal and noise. More specifically, the
option set presented at a given test trial is always comprised of one

6 It turns out that many hypotheses in psychology can be appropriately
represented by convex polytopes, which has important implications for their
testing (for detailed tutorial discussions, see Heck & Davis-Stober, 2019;
Marley & Regenwetter, 2017; Regenwetter & Cavagnaro, 2019).

7 Although the Block–Marschak inequalities cannot be spuriously vio-
lated, they could be spuriously satisfied. This possibility is reflected in the
fact that we can always concoct scenarios in which individual choice
probabilities outside of the polytope fall within it (or very close to it)
when aggregated. However, the small volumes of the polytopes in question
(we will compute these volumes later on) suggest that the natural occurrence
of such scenarios is quite implausible.
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signal alternative andm − 1 noise alternatives. Alternatives coming
from the same stimulus class are all associated with the same
(marginal) latent-strength distribution.
The latent variables associated with the m − 1 noise stimuli

are not only assumed to be identically distributed—they are
assumed to be exchangeable (for an introduction to exchangeability,
see Bernardo, 1996):8 Let λS be the latent-strength value of the
signal option and let λN, i be the latent-strength values of the ith noise
option. Under exchangeability, the probability distribution over rank
orders is the same across permutations of the noise options:

PðλN,1 > : : : > λN,m−1Þ = PðλN,ξð1Þ > : : : > λN,ξðm−1ÞÞ, (11)

where ξ denotes some permutation of the indices i = 1, : : : , m − 1.
The rationale behind the assumption of exchangeability is
straightforward: In an m-AFC recognition task, the indexing of
noise options, which are all assumed to belong to the same stimulus
class, is completely arbitrary. In fact, when removing a noise option
from a option set; that is, going from m to m − 1 alternatives total,
there is no substantive distinction between the removal of the ith noise
option vis-à-vis the jth noise option.9 Because noise options are
exchangeable, the characterization of people’s choices can be reduced
to how often they choose the signal stimulus when the latter is
presented alongside m − 1 noise stimuli.
Another characteristic of m-AFC judgments in recognition mem-

ory is that the probability of choosing the signal option should not go
below 1

m; that is, chance performance. This lower boundary corre-
sponds to an individual that is completely unable to differentiate
between studied and new items (i.e., we are assuming that indivi-
duals are not actively trying to make incorrect judgments).
Altogether, the use of only two stimulus classes (signal and noise)

and the exchangeability of noise options results in a simplification of
the Block–Marschak inequalities. To better observe this simplifica-
tion, let A = {a, b, c, d}, and let a denote the signal option whereas
b, c, and d denote the exchangeable noise options. Now, let Phmi

S
denote the probability of selecting the signal option (a) in an option
subset of size m. This probability, which has a lower bound of 1

m, is
the same across all possible option subsets of size m:

Ph4i
S = PhAi

a

Ph3i
S = PhA\fbgi

a = PhA\fcgi
a = PhA\fdgi

a

Ph2i
S = PhA\fb,cgi

a = PhA\fb,dgi
a = PhA\fc,dgi

a

Ph1i
S = PhA\fb,c,dgi

a = 1

Going back to the inequalities given in (Equation 9):

Multialternative decision-making ⇒ m-AFC recognition

PhAi
a ≥ 0 ⇒ Ph4i

S ≥ 1
4

PhA\fbgi
a ≥ 0 ⇒ Ph3i

S ≥ 1
3

PhA\fbgi
a − PhAi

a ≥ 0 ⇒ Ph3i
S − Ph4i

S ≥ 0

PhAi
a + PhA\fb,cgi

a − PhA\fbgi
a − PhA\fcgi

a ≥ 0 ⇒ Ph4i
S + Ph2i

S
− 2Ph3i

S ≥ 0

PhA\fb,c,dgi
a − PhA\fb,cgi

a − PhA\fb,dgi
a − PhA\fc,dgi

a

+ PhA\fbgi
a + PhA\fcgi

a + PhA\fdgi
a − PhAi

a ≥ 0
⇒ Ph1i

S − 3Ph2i
S + 3Ph3i

S
−Ph4i

S ≥ 0

Now that we clarified the transition to the specific context of m-
AFC recognition, we can provide a more general statement about the
system of Block−Marschak inequalities that applie to it. In a sequence
of m-AFC trials, with m ∈ {1, 2, : : : , M}: (See above Equation 12)

The system of linear inequalities described in (Equation 12) also
constitutes a convex polytope (for proof, see Grünbaum, 2003,
Chap. 3), established on a unit hypercube withM − 1 nonredundant
dimensions, each referring to a given Phmi

S . The polytope’s vertex
representation is included in the online Supplemental Materials
hosted at the Open Science Framework (see Author Note).

The transition to the case of recognitionmemory also has a positive
effect on the plausibility of the statistical assumptions that are going
to be made. Both choice-probability estimation and hypothesis
testing (which will be detailed later on) will be conducted under
the premise that each discrete choice is an independent and identi-
cally distributed (i.i.d.) sample. For example, the choice probability
PhAi
a would be estimated from the data by considering the number of

times option a is chosen out of multiple presentations of option set A
(e.g., Regenwetter, Dana & Davis-Stober, 2011). One concern is that
choices might not be i.i.d. when each individual participant is
presented with the exact same option sets multiple times (for a
discussion, see Birnbaum, 2011b; Regenwetter, Dana, Davis-
Stober, & Guo, 2011). This concern is considerably less serious

Phmi
S ≥

1
m
, for 1 ≤ m < M,

Phmi
S − Phm+1i

S ≥ 0, for 1 ≤ m < M,

Phm−1i
S − 2Phmi

S + Phm+1i
S ≥ 0, for 2 ≤ m < M,

Phm−2i
S − 3Phm−1i

S + 3Phmi
S − Phm+1i

S ≥ 0, for 3 ≤ m < M,

Phm−3i
S − 4Phm−2i

S + 6Phm−1i
S − 4Phmi

S + Phm+1i
S ≥ 0, for 4 ≤ m < M,

Phm−4i
S − 5Phm−3i

S + 10Phm−2i
S − 10Phm−1i

S + 5Phmi
S − Phm+1i

S ≥ 0, for 5 ≤ m < M,

etc: (12)

8 Note that independent and identically distributed (i.i.d.) variables are
exchangeable, but the converse is not true. For example, consider a bivariate
Gaussian distribution with mean vector μ = [0, 0] and covariance matrixP

=
�
1 ρ
ρ 1

�
. The two variables established by this distribution are not

independent, but they are exchangeable.
9 To be clear, we are not denying the possibility of setting up richer

experimental designs in which we can distinguish between different classes
of noise stimuli (e.g., high- and low-frequency words). We are only assum-
ing exchangeability among options belonging to the same stimulus class.
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when estimating Phmi
S from recognition judgments, given that the

multiple m-AFC trials encountered by any given participant are each
comprised of a unique set of items. In other words, nom-AFC trial is
exactly replicated. The only thing being replicated across m-AFC
trials is the fact that there is one studied item and m − 1 nonstu-
died items.

The Testability of the Block–Marschak Inequalities in
Recognition Memory

Given our previous discussion on the flexibility of the SDT family,
and its ability to capture any yes–no ROC, it is reasonable to ask how
much do the Block–Marschak inequalities constrain choice probabil-
ities inm-AFC recognition trials. This is an important question, given
that the support for any given model or family of models is more
compelling the more strict or limited is the range of permissible
predictions (Roberts & Pashler, 2000). As shown below, the inequal-
ities turn out to be very strict under reasonable experimental designs.
First, let us consider some concrete cases that the Block–

Marschak inequalities cannot accommodate, beyond context effects
(e.g., Trueblood et al., 2013). At the core of the Block–Marschak
inequalities is the assumption that choice probabilities across dif-
ferent choice subsets can be induced from a probability distribution
of rank orders, which in turn is determined by a joint distribution of
latent-strength values. If the way in which individuals evaluate
options differs across option subsets, then this assumption is
violated, leading to choice probabilities that are at odds with the

Block–Marschak inequalities. As a first example, consider the Phmi
S

vector [.84, .75, .69, .55, .46, .39, .34], fromm = 2 tom = 8. At first
glance, this vector appears to be perfectly plausible, as performance
is always above chance and regularity is satisfied. However, it
violates several Block–Marschak inequalities. For instance,

Ph3i
S − 2Ph4i

S + Ph5i
S = 0.75 − 1.38 + 0.55 = −0.08. These choice

probabilities are associated with a decision-maker who perfectly
follows an unequal-variance Gaussian SDT model with μS = 1.5
and σS2 = 1.3, but cannot rank more than four alternatives, perhaps
due to some limitation in their working memory capacity (e.g.,
Cowan, 2001).10 A similar example involves participants shifting
from a relative comparison of latent strengths to a serial, self-
terminating search, in which a sequence of options is compared
with a response criterion κ until one of them surpasses it (see Starns
et al., 2017).11

For a more general evaluation of the testability of the Block–
Marschak inequalities, we considered vectors of Phmi

S , going from
m = 2 to m = 8. These vectors can be represented as points on a
seven-dimensional unit hypercube. Because this space includes
many choice-probability vectors deemed unreasonable in the
context of a forced-choice recognition task, it is important to
narrow our focus: First, we will only consider choice probabilities
at or above chance (i.e., Phmi

S ≥ 1
m). Second, we will only consider

choice probabilities that satisfy regularity such that accuracy de-
creases as the number of alternatives increases (i.e., Ph2i

S ≥
Ph3i
S ≥ : : : ≥ Ph8i

S ). The satisfaction of these two properties, which
correspond to the first two inequalities in (Equation 12), can be seen
as the minimum requirement for any set of choice probabilities to be
deemed “reasonable.” With the support of R packages geometry
(Habel et al., 2015) and vertexenum (Robere, 2018), we found that
the satisfaction of these two properties restricts predictions to

approximately 1
13;021 of the probability space. When applying the

same computations to the entire system of Block–Marschak inequal-
ities described in (Equation 12), we found that only 1

37;405;425 of this
already restricted space are permitted. What this means is that the
constraints imposed by Block–Marschak inequalities (beyond
above-chance performance and regularity) are very strict.

Goodness of Fit and Statistical Power

The statistical testing of inequality constraints such as
(Equation 12) is going to be conducted as follows: The likelihood
of the (presumed i.i.d.) discrete choices observed in each m-AFC
condition will be described by a joint binomial model, with each
probability parameter corresponding to our estimate of a given Phmi

S .
More specifically, we will estimate the probability parameters under
which the choice data are most likely while enforcing the inequality
constraints established by (Equation 12), for example (for an over-
view of this approach, see Riefer & Batchelder, 1988). The misfit of
the data under these parameter estimates will be quantified by theG2

statistic. Unfortunately, the evaluation of this statistic is complicated
by the fact that its sampling distribution under the null hypothesis
that the inequalities hold does not follow a χ2 distribution (for a
review, see Davis-Stober, 2009). In the present work, we addressed
this challenge by computing p values using a double semiparametric
bootstrap procedure (see Kalish et al., 2016; for further details, see
also van de Schoot et al., 2010; Wagenmakers et al., 2004).12

We assessed statistical power by generating discrete choice data
from choice probabilities Phmi

S , for m ∈ {2, : : : , 8}. These probabili-
ties were all above chance and satisfied regularity.13 Based on the
previous analysis on the volume of predictions consistent with the
Block–Marschak inequalities, we know that these data-generating
probabilities will in all likelihood violate them. The simulated choice
frequencies were then fit by a joint binomial model whose probabilities
were constrained to conform to the Block–Marschak inequalities.
When simulating 500/1,000 choice trials per m-AFC condition (cor-
responding approximately to the sample sizes of Experiments 2 and 1,
respectively), we observed statistically significant misfits (p < .05)
86%/95% of the times. These simulation results complement the
previous volume analysis of the Block–Marschak inequalities: Not
only are they highly restrictive, but their violation can also be reliably
detected in experiments with reasonable sample sizes.

10 Forced-choice accuracy here is given by Phmi
S = ∫ ∞

−∞FNðxÞm−1f SðxÞdx,
for m ≤ 4, and Phmi

S = 4
m ∫

∞
−∞FNðxÞ3f SðxÞdx, for m > 4.

11 As in the previous example, we assumed a Gaussian SDT model with
parameters μS = 1.5 and σS2 = 1.3, as well as κ = 0.75. We assumed that if
no option is recognized in the serial search (i.e., all their latent strengths are
below κ), then a recognition judgment is produced by randomly selecting one of
the options. The probability of a correct response under this serial-search process

is given by Phmi
S = 1

mFNðκÞm−1FSðκÞ + 1
m

P
m−1
i=0 FNðκÞið1 − FSðκÞÞ. In the

present example, we assumed a mixture of comparative judgments and serial
search, with the probability of the former taking place being ω = (.95, .90,
.80, .40, .20, .10, .05). The predictions of this model also violate several
inequalities. For instance, it predicts that Ph3i

S − 3Ph4i
S + 3Ph5i

S − Ph6i
S = −0.06.

12 Note that this double-bootstrap procedure overcomes the biases
observed in the application of typical bootstrap procedures to cases of
order-constrained inference (van de Schoot et al., 2010).

13 For each m, response probabilities were obtained by generating inde-
pendent random values from a uniform distribution ranging between 1

m and
.85. Cases in which regularity was not satisfied were discarded. These
probabilities were then used to generate response frequencies from a joint
binomial distribution.
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Reanalysis of Swets (1959)

As a first empirical test of the Block–Marschak inequalities as
expressed in (Equation 12), we reanalyzed data from an auditory
detection task originally reported by Swets (1959). Three partici-
pants with “considerable practice” in psychophysical studies
engaged in 2-, 3-, 4-, 6-, and 8-AFC trials. The signal was a tone
of 1,000 Hertz. Each alternative had a duration of 100 ms, and was
separated by a 600 ms interval. Participants received feedback after
each response. Swets (1959) used an incomplete sequence of m
alternatives, withm = 5 andm = 7 missing. This omission does not
allow us to test the Block–Marschak inequalities exactly as
described in (Equation 12) given that they require complete se-
quences of m. We overcame this problem by canceling the Ph5i

S and
Ph7i
S terms in the set of inequalities through the weighted sum of

inequalities in which the to-be-canceled terms have opposite signs.
As shown in Figure 4, only one of the three individual data sets

deviates noticeably from the best-fitting expectations that respect the
Block–Marschak inequalities (Subject 3; G2 = 4.17, p = .10). The
cause of misfit here is a slight violation of regularity between Ph3i

S
and Ph4i

S . Visual inspections were consistent with the bootstrap-
based p-values obtained for each individual participant. Overall, the
results show that at least two of the individual data sets reported by
Swets (1959) were consistent with the null hypothesis that the
Block–Marschak inequalities are satisfied.

Experiment 1: Testing the Random-Scale
Representation in Recognition Memory

In this experiment, we collected m-AFC recognition judgments,
with m ranging between 2 and 8. In each test trial, participants were
presented with m alternatives, one of them being a studied item, and
requested to choose the item they believed to have been previously
studied. One key aspect of this experiment is that we collected a
small number of trials per m-AFC condition, and placed our focus on
the aggregated data. This move was motivated by the fact that the
inequalities cannot be spuriously rejected due to data aggregation.

Participants, Materials, and Procedure

One-hundred and ten participants took part in this study online.
The participants were recruited through Figure Eight (www.figure-
eight.com) and received a fixed $2.50 reward in exchange for their
participation. The experiment took roughly 10 min to complete. The
experiment began with a study phase in which participants were
presented with a list of 70 common nouns, each presented for
2,000 ms, with a 400 ms interval between each word. The study
list was presented twice in random order without a break between
the two presentations. An additional primacy/recency buffer of five
words was presented at the beginning and end of the study phase.
These buffer words were not tested. After the study phase, parti-
cipants initiated the test phase, which was comprised of 70 test trials.
The test trials were comprised of 10 trials per choice-set-size
condition (randomly intermixed), with set sizes ranging from
m = 2 to m = 8 in steps of 1 (i.e., roughly 1,000 trials per
m-AFC condition in total). Words were presented in the center of
the screen. In trials involving smaller set sizes and/or shorter words,
all test items were presented next to each other. In trials involving
larger set sizes and/or longer words, the test-item presentation was

Figure 4
Analysis of Individual Data From Swets (1959)
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split into more than one row, with several words in each row
presented next to each other. Participants were informed that their
task was to select the one studied word from the m presented words.
They selected the word of their choice by simply clicking on it.
They moved on to the next test trial after confirming their choice.
After completing all of the test trials, participants filled in a short
demographic survey, were thanked, and received their monetary
reward.

Results and Discussion

As shown in Figure 5, forced-choice accuracy was clearly above
chance for all choice-set sizes m. Regularity was also satisfied, with
performance decreasing as m increased. But do the data respect the
complete system of Block–Marschak inequalities? The model fits
shown in Figure 5 indicate a near-perfect fit, with G2 = 0.13,
p = .98. Note that our previous simulations indicate that this
experiment is suitably powered to detect violations. These fit results
show that the data are in very close agreement with a quite strict set
of inequality constraints, providing empirical support for a very
large family of SDT models in the literature.

Step 2: Latent-Variable Independence

As previously discussed, the Block–Marschak inequalities make
no assumptions regarding the presence or absence of dependencies
among the latent variables associated with each option. This is also
true in the case of recognition memory discussed here, in which
noise variables are assumed to be exchangeable. However, many
SDT models go one step further and assume that the latent variables
are independent (Green & Swets, 1966; Kellen & Klauer, 2018;
Macmillan & Creelman, 2005; Wickens, 2002). For reference,
latent-variable independence means that the joint CDF of latent-

strength values corresponds to the product of their marginal CDF
(e.g., FS,N(x, y) = FS(x) × FN(y) for all permissible x and y values).
In this section, we discuss a direct test of this assumption and
establish an additional predictive test based on the relationships
between forced choice, ranking, and yes–no judgments that follow
from latent-variable independence.14

Sattath and Tversky (1976) formally showed that the assumption
of latent-variable independence implies a number of multiplicative
inequalities at the level of choice probabilities (see also Shaw, 1980;
Suck, 2002; Suppes et al., 1989). Let A, B ⊆ T be option subsets
including alternative a (i.e., a ∈ A ∩ B). Then:

PhA∪Bi
a ≥ PhAi

a × PhBi
a : (13)

In the context of an m-AFC task, we obtain the following set of
multiplicative inequalities:

Ph3i
S ≥ ðPh2i

S Þ2,
Ph4i
S ≥ ðPh2i

S Þ3,Ph2i
S × Ph3i

S ,

Ph5i
S ≥ ðPh2i

S Þ4, ðPh2i
S Þ2 × Ph3i

S , ðPh3i
S Þ2,Ph2i

S × Ph4i
S ,

etc: (14)

These multiplicative inequalities are necessary under latent-
variable independence, although not sufficient (see Sattath &
Tversky, 1976). What this means is that these inequalities cannot
be used to dismiss models assuming dependent latent variables.
However, the satisfaction of the multiplicative inequalities under
strict testing conditions can still be used to motivate the exploration
and testing of models that assume independent latent variables (for a
similar testing approach, see McCausland & Marley, 2014).

Some of the multiplicative inequalities implied by latent-variable
independence might not be obvious at first glance: For example,
consider the values Ph2i

S = .90, Ph3i
S = .70, and Ph4i

S = .60. These
values might seem reasonable; after all, they are all above chance,
satisfy regularity, and satisfy one of the Block–Marschak inequal-
ities, Ph2i

S − 2Ph3i
S + Ph4i

S = 0.10 ≥ 0. However, they cannot be
accommodated by the subfamily of SDT models that satisfy
latent-variable independence. To see this, simply note that it violates
the first inequality in (Equation 14), as .70 < .902.

Using the same simulation procedure described in Footnote 13,
we generated vectors of correct-response probabilities Phmi

S , from
m = 2 tom = 8. These probabilities were all above chance and satisfied
regularity. We then checked how many of these vectors also
conformed to the multiplicative inequalities described above (i.e.,
were consistent with latent-variable independence). We found that
only 7% of them did, which means that latent-variable independence
is not easily satisfied, even when focusing on “reasonable” choice
probabilities.

In order to determine our ability to detect violations of multipli-
cative inequalities, we used the nonconforming probabilities ob-
tained in the previous simulation to generate artificial choice data,
with 500/1,000 trials per m-AFC condition. When fitting these
artificial data with a joint binomial model that conforms to the
multiplicative inequalities, we found it to yield statistically signifi-
cant misfits (p < .05) in 85%/91% of cases. These simulation

Figure 5
Experiment 1 Results
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Note. Observed and predicted performance in the m-AFC trials. Bars repre-
sent the marginal 95% confidence intervals. BMI = Best-Fitting Estimates that
respect the block–marschak inequalities. The dashed lines delimiting the gray
areas indicate chance-level performance.

14 Please note that the issue of latent-variable independence is distinct
from the question of whether or not discrete choices are i.i.d..
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results suggest that experiments with the sample sizes considered
(which are comparable to Experiments 1 and 2) are well suited to
detect violations of latent-variable independence.
When applying the same model-fitting procedure to the data from

Experiment 1, we obtained a perfect fit (G2 = 0, p = 1), which
indicates that the observed choice proportions are entirely consistent
with the hypothesis that latent-variable independence holds. This
result is quite impressive given that most “reasonable” choice
probabilities do not satisfy the multiplicative inequalities, and
that the sample size used in Experiment 1 is able to detect violations
(Roberts & Pashler, 2000).

The Relationship Between Forced-Choice, Ranking, and
Yes–No Judgments

Now that we have established some of the inequality constraints
imposed by latent-variable independence, and found the data
from Experiment 1 to be in perfect alignment with them, we
turn to some of the implications that follow from this property.
Under the assumption of latent-variable independence, it can be
shown that each Phmi

S corresponds to the m − 1th moment of the
yes–no ROC function ρ. Once again, relying on the universal SDT
representation:

Phmi
S = PðλS > maxðλN,1, λN,2, : : : , λN,m−1ÞÞ

=
ð
1

0
FNðtÞm−1f SðtÞ dt

=
ð
1

0
tm−1 dFSðtÞ

= Eðλm−1S Þ, (15)

with Eð·Þ being the expectation operator. Moments are quantities

describing a function (the first moment is the mean, the second
central moment is the variance, etc.). Because the ROC function
is bounded between 0 and 1, it can be fully described by its
moments (see Feller, 1971, Chap. 7). Note that Ph2i

S = EðλSÞ,
which means that the probability of a correct response in 2-AFC
trials, corresponds to the area under the yes–no ROC function.
This equality is the famous Area Theorem established by Green and
Moses (1966). The formal result in (Equation 15), which includes
Green and Moses’ Area Theorem as a special case, was coined the
Generalized Area Theorem by Iverson and Bamber (1997).
Based on (Equation 15), we can determine the probabilities

associated with ranking judgments, which have also been modeled
using SDT (e.g., Kellen & Klauer, 2014; Kellen et al., 2012;
McAdoo & Gronlund, 2016). In a typical ranking task, the
decision-maker is requested to rank the options according to her
belief that they are the signal (rank 1 being the highest,m the lowest).
Let Rhmi

i denote the probability of the signal stimulus being assigned
rank i among m alternatives. Under the assumption that the latent
variables are independent, signal-ranking probabilities are given by:

Rhmi
i =

�
m − 1

i − 1

�ð
1

0
ð1 − FNðtÞÞi−1FNðtÞm−if SðtÞ dt

=
�m − 1

i − 1

�ð
1

0
ð1 − tÞi−1tm−i dFSðtÞ, (16)

with the binomial coefficient

�
m − 1
i − 1

�
counting the number of

ways that the signal option can be outranked by i − 1 out of m − 1
noise options.

The expansion of the integrand (1 − t)i−1tm−i in Equation 16
provides us with a simple way to express signal-ranking probabilities
Rhmi
i in terms of forced-choice probabilities Phmi

S . For example,
consider the probability of the signal being assigned rank 3 form = 4:

Rh4i
3 = 3

ð
1

0
ð1 − tÞ2t dFSðtÞ

= 3
ð
1

0
t3 − 2t2 + t dFSðtÞ

= 3 × ðPh4i
S − 2Ph3i

S + Ph2i
S Þ: (17)

Note that the Phmi
S summands in (Equation 17) correspond

to one of the linear functions in the Block–Marschak inequalities

[see the third line of (Equation 12)] scaled by

�
m − 1
i − 1

�
= 3. This

correspondence reasserts the intimate relationship between the
Block–Marschak inequalities and ranking probabilities across sub-
sets—a violation of some of the inequalities would imply negative
signal-ranking probabilities, a nonsensical scenario. Based on these
observations, it should not come as a surprise that there is also a close
relationship between ranking and yes–no judgments. The theoretical
result below will help us understand this relationship precisely.

Analogous to Rhmi
i , let Qhmi

i be the probability of some noise
option being assigned rank i among m options. Given the exchange-
ability of noise options, it follows that

Qhmi
i =

1 − Rhmi
i

m − 1
: (18)

Using formal results reported by Feller (1971, Chap. 7),
Iverson and Bamber (1997) showed that as m → ∞, the cumulative
sums

P
t
i=1 R

hmi
i and

P
t
i=1 Q

hmi
i , t = 1, : : : , m, converge to the

universal representations of the signal and noise’s cumulative
distribution functions, FS and FN. Figure 6 illustrates the accuracy
of this approximation using the cumulative sums of Rhmi

i and Qhmi
i

across different choice-set sizes m.
Based on the latter result, it is possible to reconstruct the

underlying yes–no ROC function from recognition-memory studies
that have collected ranking judgments. Such experiments were
conducted by Kellen and Klauer (2014) and McAdoo and
Gronlund (2016). In both sets of experiments, the strength of the
studied items was manipulated via study repetition (e.g., weak
items being studied once and strong items thrice). In Kellen and
Klauer’s experiments the items were common words, whereas in
McAdoo and Gronlund’s experiments they were human faces. As
shown in Figure 7, the reconstructed yes–no ROCs appear to be
slightly concave with ROCs corresponding to strong-studied items
dominating their weak counterparts. Also, these ROCs appear to be
asymmetric relative to the negative diagonal. Note, however, that
the small option set sizes in each of these studies (m = 3 and
m = 4) only allows for rather crude reconstructions (see Figure 6).
Figure 8 illustrates the reconstructed ROCs obtained with the four-
alternative “answer-until-correct” forced-choice paradigm used by
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Chechile et al. (2012). According to SDT, the choices made in
such a paradigm should follow the ranking of the different alter-
natives. Again, we observe concave and asymmetric ROCs, with
ROCs from “stronger” study conditions dominating their “weaker”
counterparts.

Step 3: Likelihood-Ratio Monotonicity

The relationship between ranking judgments and the yes–no ROC
function provides an important insight into the constraint that the
slope of the latter should bemonotonically decreasing (i.e., the ROC
is concave). As shown by Equation 4, a decreasing ROC slope

follows from the fact that the likelihood ratio f SðκÞ
f N ðκÞ is monotonically

increasing, which is in line with the widely held assumption that
small/large latent-strength values are more likely under the noise/
signal distribution (e.g., Criss & McClelland, 2006; Glanzer et al.,
2009; Osth & Dennis, 2015).
Now, let us go back to the reconstruction of the ROC function

based on rankings. In order for the reconstructed ROC function
to be concave (i.e., for likelihood-ratio monotonicity to hold), the

signal-rank probabilities Rhmi
i need to be monotonically decreasing

with respect to rank position, such that:

Rhmi
i − Rhmi

j ≥ 0, (19)

for 1 ≤ i < j < m. To see how ROC concavity (i.e., likelihood-
ratio monotonicity) imposes this order constraint, simply note that
the reconstructed ROC function is piecewise linear, and that the
slope of the linear segment connecting the ith and (i + 1) th ROC

point corresponds to the ratio
Rhmi
i+1

Qhmi
i+1

. It should also be noted that a

mixture of concave functions (e.g., ROCs) will always yield a
concave function, which means that (Equation 19) cannot be spuri-
ously violated by aggregation.

The order constraint in (Equation 19) leads us to the following
insight: In terms of ranking judgments, likelihood-ratio monotonic-
ity implies that more egregious errors are less probable than more
moderate errors. For instance, assigning rank 5 to a signal option is
less probable than assigning rank 4, which in turn is less probable
than assigning rank 3, and so forth.

Figure 6
Theoretical and Reconstructed Yes–No ROC Functions (Lines and Points, Respectively) for
Different Choice Set Sizes m
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As shown in (Equation 17), rank probabilities Rhmi
i can be

expressed in terms of forced-choice probabilities Phmi
S , which

allows us to recast the inequality constraint described in
(Equation 19). For example, in the case of forced-choice proba-
bilities up to m = 4:

Ph4i
S|{z}

Rh4i
1

− 3ðPh3i
S − Ph4i

S Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Rh4i
2

≥ 0,

3ðPh3i
S − Ph4i

S Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Rh4i
2

− 3ðPh4i
S − 2Ph3i

S + Ph2i
S Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Rh4i
3

≥ 0,

3ðPh4i
S − 2Ph3i

S + Ph2i
S Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Rh4i
3

− ð−Ph4i
S + 3Ph3i

S − 3Ph2i
S + Ph1i

S Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Rh4i
4

≥ 0: (20)

This system of inequalities can be imposed alongside the
Block–Marschak inequalities, allowing us to test for a random-
scale representation comprised of latent variables that satisfy
likelihood-ratio monotonicity. When imposing these additional
constraints over a sequence of m-AFC judgments from m = 2 to

m = 8, we observe a considerable reduction of the volume of
permitted choice probabilities.15 Specifically, this volume now
corresponds to 1

413,121,934,659 of the already restricted volume of
Phmi
S that are above chance and satisfy regularity. Simulations

showed that with a sample size of 500/1,000 trials per m-AFC
condition, the percentage of cases in which this extended set of
inequality constraints is rejected (p < .05), is around 95%/98% (for
details on this simulation, see Footnote 13).

We tested the constraints imposed by likelihood-ratio monoto-
nicity along with the Block–Marschak inequalities, using the data
from Experiment 1. The resulting fit was still very good (G2 = 0.88,
p = .93). We also reconstructed the yes–no ROC function from
Experiment 1 and assessed the impact of the constraints introduced
by likelihood-ratio monotonicity. To do this, we converted the
best-fitting Phmi

S values obtained under each set of constraints

Figure 7
Reconstructed Yes–No ROC Functions Based on Ranking Judgments
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15 The intersection between two convex polytopes—such as the ones
defined by the random-scale representation and likelihood-ratio monotonic-
ity—is itself a convex polytope (see Grünbaum, 2003, Chap. 3). The vertex
representation of the latter is reported in the online Supplemental materials
(see Author Note).
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(i.e., random-scale representation with and without likelihood-ratio
monotonicity) into ranking probabilities Rhmi

i . The reconstructed
ROCs illustrated in Figure 9 show that the constraints imposed by
likelihood-ratio monotonicity removed a couple of small violations
of concavity. Note that the small difference in misfit found between
the two tests suggests that these violations of concavity are well
within what one would expect under the null hypothesis that all of
the inequalities coming from random-scale representation and
likelihood-ratio monotonicity are satisfied.

Experiment 2: Further Testing of Latent-Variable
Independence and Likelihood-Ratio Monotonicity

When applied to the results of Experiment 1, the constraints
imposed by a random-scale representation, as well as latent-variable
independence and likelihood-ratio monotonicity, were all found to
hold. The aim of Experiment 2 is to replicate and extend these
findings, using a slightly modified design in which yes–no judgments
for single items are also collected. These yes–no judgments will
enable us to conduct a predictive test of independence and likelihood-
ratio monotonicity: If the reconstructed concave ROC function
accurately captures the relationship between hits and false alarms,
then it should be able to capture the observed yes–no ROC point.

Participants, Materials, and Procedure

One-hundred and three new participants took part in this study
online. As before, the participants were recruited through Figure
Eight and received a fixed $2.50 reward in exchange for their
participation. This experiment was identical to Experiment 1,
with two changes. First, we introduced 20 single-item trials (10
studied and 10 nonstudied) in which participants were requested to
judge whether the item was previously studied, responding “yes” or
“no”. Second, we alleviated the task demands by reducing the
number of m-AFC trials to five per m (i.e., roughly 500 trials per
m-AFC condition in total).

Results and Discussion

The data are shown in Figure 10. As before, we found perfor-
mance to be above chance and regularity satisfied. Note that
performance was generally better than in Experiment 1, a result
that can be attributed to the fewer number of m-AFC trials collected
per participant and its relation with output interference (Criss et al.,
2011; Murdock & Anderson, 1975): The more items one encounters
throughout the test phase, the more performance should be impaired
(see Murdock & Anderson, 1975, Table 7).

The data were once again consistent with the Block–Marschak
inequalities (G2 = 0.70, p = .91). As before, enforcing likelihood-
ratio monotonicity leads to a virtually identical fit (G2 = 0.74,
p = .95), and the multiplicative inequalities were once again per-
fectly satisfied (G2 = 0, p = 1). The right panel of Figure 10 shows
the reconstructed yes–no ROC. Again, this function takes on a
concave, asymmetric shape.Most importantly, the yes–no data point
is entirely consistent with the ordered ROC points in the sense that
they can all be described by a single monotonically increasing
function with a monotonically decreasing slope. Altogether, these
results provide support for the subfamily of SDT models that satisfy
latent-variable independence and likelihood-ratio monotonicity.

Figure 8
Reconstructed Yes–No ROC Functions Based on “Answer-Until-
Correct” Judgments Reported by Chechile et al. (2012)
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Step 4: Yes–No ROC Symmetry

The reconstructed yes–no ROCs obtained so far are all asymmet-
ric relative to the negative diagonal (see Figures 7–10). In the
domain of recognition memory, ROC asymmetries of this kind
have been a major motivation for the development of extensions of
the equal-variance Gaussian SDTmodel. These extensions involve a
myriad of theoretical concepts such as variable encoding, attentional
failure, or additional retrieval processes (for a review of different
models, see Yonelinas & Parks, 2007). In more applied domains, the
violation of ROC symmetry has important implications for our
ability to assess and compare different decision-makers (for a
discussion, see Rotello et al., 2015).
Assessments of ROC symmetry almost invariably rely on

confidence-rating judgments (e.g., Yonelinas & Parks, 2007). How-
ever, there are several issues that speak against this approach: For
instance, a recent critical test by Kellen and Klauer (2015) showed
that confidence ratings do not behave as expected under a large
subfamily of models that includes the Gaussian SDT model (for a
replication of these results, see McAdoo et al., 2018; for other
issues, see Benjamin et al., 2013; Van Zandt, 2000). Given these
issues, some researchers have considered alternatives such as con-
structing ROCs using binary yes–no judgments obtained across dif-
ferent response-bias conditions (e.g., Bröder & Schütz, 2009; Dube &
Rotello, 2012). But unfortunately, this alternative approach often leads
to extremely noisy data that can fail to meet some basic selective-
influence assumptions (both response criterion and memory discrimi-
nability might be affected; see Kellen et al., 2013; Van Zandt, 2000).
As a solution to these challenges, we propose a direct test of ROC
symmetry that hinges on a simple equality prediction across response
probabilities and does not depend upon any parametric assumptions.
Formally, an ROC function ρ is symmetric if and only if

the inclusion of point {FA, H} implies the inclusion of point

{1 − H, 1 − FA} (Iverson & Bamber, 1997; Killeen & Taylor,
2004). Figure 11 provides an illustration. This constraint can be
expressed in terms of the following equality:

ρðFAÞ + ρ−1ð1 − FAÞ = H + ð1 − HÞ = 1, (21)

where ρ−1 is the inverse of the ROC function. Under a universal
representation, this equality constraint can also be expressed in
terms of FS and F−1

S :

FSðtÞ + F−1
S ð1 − tÞ = 1. (22)

Iverson and Bamber (1997) formally showed that ROC symmetry
implies an equality betweenm-AFC judgments and judgments made
in a modified m-alternative forced-choice task (m⋆-AFC) in which
individuals are requested to choose the single noise option from among
the m − 1 signal options.16 To see this, let us denote the probability
of a correct response (noise being chosen) by Phm⋆i

N , which corre-
sponds to the probability that the single λN value is smaller than all
them − 1 λS values. Again, using the universal SDT representation:

Phm⋆i
N = PðλN < minðλS,1, λS,2, : : : , λS,m−1ÞÞ,

=
ð
1

0
f NðtÞð1 − FSðtÞÞm−1 dt:

=
ð
1

0
tm−1 dðð1 − F−1

S ð1 − tÞÞ: (23)

If symmetry holds, then FSðtÞ = 1 − F−1
S ð1 − tÞ [see

(Equation 22)] and therefore Phm⋆i
N = Phmi

S for all m (compare the
penultimate and last lines of Equations 15 and 23, respectively). The
predicted equality in choice accuracy between m-AFC andm⋆-AFC
under ROC symmetry allows us to dismiss the latter if any Phm⋆i

N

systematically differs from Phmi
S for some m. Importantly, testing

these predicted equalities does not require the elicitation of confi-
dence judgments nor the use of response-bias manipulations.

With the type of asymmetry typically observed in recognition-
memory ROCs, including the one reconstructed in Experiment 1, we
expect Phmi

S > Phm⋆i
N . For example, an unequal-variance Gaussian

SDT model with parameters μS = 1 and σS2 = 1.3, which yields an
asymmetric ROC, expects the following forced-choice probabilities:

Ph4i
S = .55, Ph5i

S = .49, and Ph6i
S = .45, whereas Ph4⋆i

N = .51,

Ph5⋆i
N = .45, and Ph6⋆i

N = .40.
Interestingly, the opposite prediction is made by some well-

known parametric distributions. For instance, take the double-
exponential distribution discussed by Yellott (1977). Yellott showed
that under rather benevolent conditions (including latent-variable
independence), the latent variables underlying preferences must be
double-exponentially distributed, which in turn implies that choice
probabilities must conform to Luce’s Choice Theorem (Luce, 1959;
see also Luce, 1977). For example, if the signal and noise distribu-
tion have location parameters 0 and 1, respectively, then Ph4i

S = .48,

Ph5i
S = .40, and Ph6i

S = .35, which are all respectively smaller than

Ph4⋆i
N = .55, Ph5⋆i

N = .50, and Ph6⋆i
N = .47.

Figure 9
Reconstructed Yes-No ROC (Experiment 1)
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Note. Reconstructed Yes–No ROC of the data from experiment 1 using the
predicted forced-choice performance under the block–marschak inequalities
without (BMI) and with likelihood-ratio monotonicity (BMI-LRM; white
and gray points, respectively). The dashed line delimiting the gray area
indicates chance-level performance.

16 Both m-AFC and m⋆-AFC judgments should not be confused with the
judgments made in an oddity task (O’Connor et al., 2011). In the latter task,
participants are requested to choose the “odd item”without knowing whether
the m-alternative choice set includes m – 1 signal or m − 1 noise stimuli.
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Experiment 3: Testing ROC Symmetry

In this experiment, forced-choice recognition judgments were
obtained under signal-recognition instructions (m-AFC trials) and
noise-recognition instructions (m⋆-AFC trials).

Participants, Materials, and Procedure

Three-hundred and fifty-nine new participants were recruited
online, again through Figure Eight. As before, a $2.50 reward
was given in exchange for participation. The task participants
engaged in (m-AFC vs. m⋆-AFC) were manipulated between sub-
jects. We recruited 180 participants in them-AFC condition and 179
participants in the m⋆-AFC condition. Of those, we had to exclude
10 participants in the m⋆-AFC condition who did not follow the
instructions and indicated incorrectly in a postexperiment survey
that their task was to select the studied items. The study and test
phases were similar to the previous experiment, with the exception
that we only considered forced-choice trials, and only for choice-set
sizes m = 4, 5, and 6 (6 test trials per m per participant, which
resulted in roughly 1000 trials per m/m⋆-AFC condition in total).
The focus on a limited number of choice-set sizes was motivated by
previous simulations showing that differences would be more easily
detected with these set sizes. The reduction in the total amount of test
trials was necessary when trying to have the same number of trials
per condition. After all, each m-AFC trial involves only one studied
item, whereas each m⋆-AFC trial involves m − 1 studied items.

Results and Discussion

The proportion of correct responses are illustrated in Figure 12.
These proportions are all above chance and satisfy regularity, and
although the m⋆-AFC judgments violate the Block–Marschak
inequalities, as Ph4⋆i

N − 2Ph5⋆i
N + Ph6⋆i

N = −0.03, this was not statis-
tically significant (G2 = 0.74, p = .18). We tested whether the
equality hypothesis following from the assumption of ROC sym-
metry holds by comparing the goodness of fit of two joint binomial
models. First, we fitted a model that imposed the inequality
constraints Ph4i

S ≥ Ph4⋆i
N , Ph5i

S ≥ Ph5⋆i
N , and Ph6i

S ≥ Ph6⋆i
N . We then

Figure 10
Experiment 2 Results
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Note. Left panel: observed and predicted performance in the m-AFC trials. Bars represent the marginal 95%
confidence intervals. BMI = Best-Fitting Estimates that respect the block–marschak inequalities. Right panel:
Reconstructed Yes–No ROC using the predicted forced-choice performance under the block–marschak inequal-
ities and likelihood-ratio monotonicity. Black square represents the observed hit and false-alarm probability. in
both panels, the dashed lines delimiting the gray areas indicate chance-level performance.

Figure 11
Illustration of a Symmetrical Yes–No ROC Function and the
Constraint That It Must Include Points {FA, H} and {1 – H,
1 − FA}
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compared this fit with the one from another model imposing the
equality constraints Ph4i

S = Ph4⋆i
N , Ph5i

S = Ph5⋆i
N , and Ph6i

S = Ph6⋆i
N .

The difference in fit between the two models was statistically
significant, with ΔG2 = 16.62, p < .001, indicating that the equal-
ity constraint imposed by the hypothesis of ROC symmetry does not
provide a reasonable characterization of the data. Furthermore, note
that these results are also at odds with the latent-strength distribu-
tions assumed by Luce’s Choice Theory (Luce, 1959, 1977; Yellott,
1977) as they predict the opposite pattern, namely Phmi

S ≤ Phm⋆i
N . The

present results suggest that the yes–no ROC is asymmetric, corrob-
orating what has been so far observed in ROCs constructed with
response-bias manipulatons (e.g., Dube & Rotello, 2012; Kellen
et al., 2013) or confidence ratings (e.g., Kellen & Klauer, 2015;
Pratte et al., 2010), or with ROCs reconstructed from forced-choice/
ranking judgments (see Figures 7–10).
Finally, it is worth noting that the present approach for testing

ROC symmetry has been applied in other domains: Trippas et al.
(2018) conducted a large-scale meta-analysis on ROCs obtained
with syllogistic-reasoning judgments and found them to be symmet-
ric. This meta-analytic result was corroborated by a subsequent
comparison between m-AFC and m⋆-AFC judgments, which were
not reliably different from each other. At least in the domains of
syllogistic reasoning and recognition memory, the a/symmetry
found in ROCs is in line with the outcomes of this critical test.

Step 5: Threshold and Nonthreshold Representations

The results from the critical tests conducted up to this point are
consistent with a random-scale representation that is comprised of
independent latent-strength distributions that satisfy likelihood-ratio
monotonicity, and that yield asymmetric yes–no ROCs. In this
section, we will further divide this subfamily of models by introduc-
ing the distinction between “threshold” and “nonthreshold” repre-
sentations. This distinction hinges on conditional independence,
a property that we will elaborate upon below (for earlier discussions

on this property, see Kellen & Klauer, 2014, 2015; Province &
Rouder, 2012; Rouder et al., 2014; Rouder & Morey, 2009).

According to threshold models, people’s judgments are governed
by a small number of mutually exclusive discrete mental states that
are entered with some probability. In turn, each of these mental
states is associated with a probability distribution over the response
alternatives—a state–response mapping (see Klauer & Kellen,
2010; Rouder & Morey, 2009). As an example, let us consider
one of the best-studied threshold models in the literature, the High-
Threshold Model (e.g., Bröder & Schütz, 2009; Dube & Rotello,
2012). This model, which is illustrated in Figure 13 (see also the
bottom row of Figure 3), postulates that signal and noise items can
fall into one of three mutually exclusive discrete mental states M.
The probability with which each state can be reached differs
between stimulus classes. In fact, some of the states can only be
reached by certain stimulus classes:

• M1: Noise-Detection State
P(Signal Stimuli) = 0
P(Noise Stimuli) = qN

• M2: Uncertainty State
P(Signal Stimuli) = 1 − pS
P(Noise Stimuli) = 1 − qN

• M3: Signal-Detection State
P(Signal Stimuli) = pS
P(Noise Stimuli) = 0

Conditional independence enforces the same state–response map-
ping to all stimuli that happen to be in the same mental state M,
irrespective of the stimulus class they belong to. For instance, the
same guessing probabilities g and 1 − g apply to signal and noise
stimuli that reach the uncertainty state M2 (see Figure 13).

Conditional independence also establishes that a state’s response
mapping is unaffected by experimental manipulations that vary the
probability of that state being reached by stimuli of a given class (for
discussions, see Kellen&Klauer, 2018; Rouder et al., 2014; Rouder &
Morey, 2009). For example, consider an experimental design that
includes a study-strength manipulation that is applied to the class of
studied items (e.g., some items are studied once, others thrice), such
that we can refer to the subclasses of weak and strong-studied
items.17 The response mapping associated with each mental state
will be the same for both subclasses of studied items, a situation that
implies a number of equality constraints at the level of response
probabilities. For instance, incorrect “new” responses can only
result from the mapping of the uncertainty state M2 (see the top
tree in Figure 13). It follows that the probability distribution of such
responses is the same for weak and strong-studied items (for tests,
see Chen et al., 2015; Kellen & Klauer, 2015; McAdoo et al., 2018;
Province & Rouder, 2012).

In recent years, many studies have pitted the High-Threshold
Model against nonthreshold SDT models (e.g., Bröder & Schütz,

Figure 12
Experiment 3 Results
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Note. The bars represent the marginal 95% confidence intervals.

17 Importantly, the different subclasses introduced by the study-strength
manipulation (weak vs. strong) are not to be correlated with external (e.g.,
word color and font), internal (e.g., word frequency and category member-
ship), or contextual features (e.g., experimental block). Otherwise, condi-
tional independence cannot be assumed (e.g., one can guess differently for
green/weak and red/strong words). For a similar point, see Kellen and Klauer
(2015).
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2009; Chen et al., 2015; Dube & Rotello, 2012; Kellen et al., 2013;
Kellen & Klauer, 2014, 2015; Province & Rouder, 2012; Starns
et al., 2018). One limitation found in these model comparisons is
that their implications do not generalize beyond this specific thresh-
old model. For instance, Kellen and Klauer (2014) reported a critical
test that rejected the High-Threshold Model (for a replication, see
McAdoo & Gronlund, 2016). However, the results of their critical
tests can be successfully accommodated by the Low-Threshold
Model originally proposed by Luce (1963; see also Kellen et al.,
2016; McAdoo & Gronlund, 2020; Starns et al., 2018). One dis-
tinctive property of this Low-Threshold Model is that assumes that

noise stimuli can be incorrectly signal-detected. It should be noted
that an extension of the Low-ThresholdModel has been proposed by
Krantz (1969). This extended model includes a super-signal-detec-
tion state that can only be reached by signal stimuli.

The limited scope of the existing critical tests for threshold
representations is unsatisfactory. Ideally, one would be able to
directly test properties associated with a large family of threshold
models, some of them more complex than the High- and Low-
Threshold models discussed so far. In the section below, we achieve
this desideratum by specifying a novel recognition-memory para-
digm that allows for the direct testing of a Generalized Threshold
Model (GTM), a model that includes all of its predecessors as
special cases.

A Generalized Threshold Model and a Critical Test

The GTM assumes that a test item can be in one of five mutually
exclusive mental states M′. These states can be reached by signal
and noise stimuli with some probability, which is determined by the
occurrence or nonoccurrence of a number of detection processes
(see Figure 14). These processes can either lead to an item being
detected as studied (“signal-detection” or “super-signal-detection”
states) or nonstudied (“noise-detection” or “super-noise-detection”
states). Some states can be reached by both signal and noise stimuli,
whereas others are exclusive to one of the stimulus classes. In
the following, we list the mental states included in the GTM and
their respective probabilities (see also Figure 14). We also refer-
ence any previous threshold model that has postulated such state
[in brackets]:

• M′1: Super-Noise-Detection State
P(Signal Stimuli) = 0
P(Noise Stimuli) = (1 − qS) × qN × qN

⋆

• M′2: Noise-Detection State
P(Signal Stimuli = (1 − pS) × pN
P(Noise Stimuli) = (1 − qS) × qN × (1 − qN

⋆)
[High-Threshold Model]

• M′3: Uncertainty State
P(Signal Stimuli) = (1 − pS) × (1 − pN) [all threshold models]
P(Noise Stimuli) = (1 − qS) × (1 − qN) [all threshold models]

• M′4 Signal-Detection State
P(Signal Stimuli) = pS × (1 − pS*) [all threshold models]
P(Noise Stimuli) = qS [Low-Threshold Model]

• M′5: Super-Signal-Detection State
P(Signal Stimuli) = pS × p�S [Low-Threshold Model]
P(Noise Stimuli) = 0

Note that in order to ensure the prediction of above-chance
performance in recognition-memory tasks, one must assume that
the probability of correctly detecting the class of a stimulus is always
greater than the probability of an incorrect detection (i.e., qS ≤ pS
and pN ≤ qN).

The GTM includes all the threshold models previously discussed
as special cases. For example, when pS* = pN = qS = qN* = 0, the
GTM reduces to the High-Threshold Model illustrated in Figure 13,
a model that has been at the center of many recent discussions
(e.g., Bröder & Schütz, 2009; Dube & Rotello, 2012; Kellen &

Figure 13
Processing Tree Representation of the High-Threshold Model for
the Yes–No Task

Note. White squares correspond to the latent mental states, whereas gray
squares correspond to the observed responses. State–response mappings are
represented by the dashed branches. The parameters associated with each
branch correspond to its respective probability (when omitted, the probability
of a branch is 1). Parameters: pS = Probability that a signal stimulus is signal-
detected. qN = Probability that a noise stimulus is noise-detected. g = Prob-
ability of guessing “yes,” conditional on the stimulus is in the uncertainty state.
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Klauer, 2014, 2015; Province & Rouder, 2012). Alternatively, the
constraint pN = qN = qN

⋆ = 0 reduces the GTM to Krantz’s
extended Low-Threshold Model (Krantz, 1969). However, note
that the GTM goes beyond any of these models. For instance, it

allows signal stimuli to be incorrectly noise-detected (for a theoreti-
cal motivation, see Moran, 2016).

As in all preceding threshold models, conditional independence is
assumed to hold. In the specific case of the GTM, conditional

Figure 14
Processing Tree Representation of the Generalized Threshold Model (GTM) for the Yes–No Task

Note. White squares correspond to the latent mental states, whereas gray squares correspond to the observed
responses. State–response mappings are represented by the dashed branches. The parameters associated with each
branch correspond to its respective probability (when omitted, the probability of a branch is 1). Parameters:
pS/qS = Probability that a signal/noise stimulus is signal-detected. pN/qN = Probability that a signal/noise stimulus
is noise-detected, conditional on not being signal-detected. p�S=q

�
N = Probability that a signal/noise stimulus is super-

signal/noise-detected, given that it was signal/noise-detected. g = Probability of guessing “yes”, conditional on the
item being in the uncertainty state.

1040 KELLEN, WINIGER, DUNN, AND SINGMANN

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.



independence also imposes a constraint on pN, the conditional
probability of a studied item reaching the noise-detection state.
As argued by Moran (2016), the assumption in High- and Low-
Threshold models that individuals cannot actively reject studied
items is nothing more than a convenient idealization. For exam-
ple, consider a scenario in which a participant was often distracted
during the study phase. There is no reason to assume that the
studied items that the participant missed cannot be subjected to
the same kind of metacognitive inferences assumed to underlie
the noise-detection of nonstudied items (for discussions, see
Bröder & Schütz, 2009: Klauer & Kellen, 2010).18 Because
such inferences are predicated on the absence of any kind of
remembering (e.g., “I would have remembered it, if I had seen
it”; see Strack & Bless, 1994), it follows that the probability of a
studied item reaching the noise-detection state M′2 is conditionally
independent from the probability of successfully remembering
studied items; that is, pN is unaffected by the experimental manipu-
lation of pS and pS

⋆ (but see Footnote 17, for boundary conditions).
When dealing with test trials involving multiple alternatives

(as done in the task detailed below), the mental-state probabili-
ties associated with each of the alternatives are assumed to
be independent (i.e., latent-variable independence holds). For
example, if a signal stimulus and a noise stimulus are presented
together in a 2-AFC trial, the probability of the former being
in state M′4 and the latter being in state M′2 corresponds to

pS × p�S
zfflfflffl}|fflfflffl{signal stimulus

× qN × ð1 − q�NÞ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{noise stimulus

. The assumption of latent-variable9
independence has a precedent in previous work involving
High- and Low-Threshold models (e.g., Luce, 1963; Province &
Rouder, 2012).

Multiple-Alternative Subsetting Task

In order to pit the GTM against nonthreshold SDT models of
recognition memory, we developed a novel multiple-alternative
subsetting task (for a similar task in preferential choice, see
Regenwetter et al., 1998). At each subsetting trial, participants are
shown five items. They are informed that the total number of studied
items can range between one and four and that this number varies
randomly across subsetting trials. Participants are requested to select
which items they believe to have been previously studied (i.e., select
a subset). The total number of items selected per trial can range
between one and four. The left panel of Figure 15 provides an
illustration.
Some of the subsetting trials were immediately succeeded by a

follow-up 2-AFC trial. Participants were informed that these follow-
up 2-AFC trials would occur randomly and that their occurrence was
unrelated to the accuracy of their responses in the immediately
preceding subsetting trial. The two alternatives presented in these
follow-up 2-AFC trials were always two items that received the
same judgment (i.e., they were both judged to be studied or non-
studied) in the immediately preceding subsetting trial. The

participant’s task here is to choose the item that they are more
willing to reverse their previous judgment (e.g., which one would
they rather judge to be studied; see the right panel of Figure 15).

GTM Predictions

According to the GTM, the unrecognized test items presented in
the follow-up 2-AFC trials are either in the uncertainty stateM′3 or
being actively rejected (i.e., statesM′1 andM′2). When confronted
with two unrecognized items, a decision is assumed to be made
based on their respective states: If the two items are in different
mental states, then the one with the largest index will be chosen
(e.g., Luce, 1963; Province & Rouder, 2012). For example, if one
item was detected as new (M′1 orM′2) whereas the other one was in
uncertainty M′3, then the latter item would be chosen. Alterna-
tively, if two items are in the same mental state, then one of them
will be chosen with probability 1

2 (for a discussion on the compari-
son of items based on their mental states, see Erdfelder
et al., 2011).

When the pair presented in the follow-up 2-AFC trial consists
of an unrecognized studied item and an unrecognized new item—a
〈S, N〉 pair—the probability of a correct response (i.e., the studied
item being selected) is given by19: (See above Equation 24)

The products (1 − pS) (1 − qS) in the numerator and denominator
cancel out. Also, conditional independence establishes that the
probabilities of noise-detection processes (given by parameters
pN, qN, and qN

⋆) are unaffected by study-strength manipulations.
Together, these constraints enforce the prediction that the proba-
bility of a correct response in a follow-up 〈S, N〉 pair does not
depend on the signal-detection probabilities. In context of the
study-strength manipulation referred to earlier, this means that
the probability of an unrecognized studied item being chosen in
a follow-up 2-AFC trial is predicted to be the same for
〈weak-studied, new〉 and 〈strong-studied, new〉 pairs. Henceforth,
we will denote these pairs of unrecognized items by 〈WS, N〉 and
〈SS,N〉 pairs, respectively. A similar argument can be used to show
that the probability of choosing an unrecognized weak item over
an unrecognized strong item in a 〈WS, SS〉 pair; that is, PhWS,SSi

WS
is predicted to be 1

2. These predictions concerning unrecognized
pairs are summarized by the following hypothesis, which we denote
by ℋGTM:

ℋGTM∶P
hWS,Ni
WS = PhSS,Ni

SS ; PhWS,SSi
WS =

1
2
:

PhS,Ni
S =

ð1 − pSÞð1 − qSÞ½qNq�N + pNqNð1 − q�NÞ 12 + ð1 − pNÞqNð1 − q�NÞ + ð1 − pNÞð1 − qNÞ 12�
ð1 − pSÞð1 − qSÞ

: (24)

18 The GTM nevertheless includes state M′1, which is exclusive to noise
stimuli. This inclusion is motivated by the existence of certain kinds of
active rejection that could only apply to nonstudied items (see Gallo, 2006,
Chap. 5).

19 So far, we used the superscript 〈m〉 to denote the number of alternatives
in a given trial. In the present context, the actual stimulus-class composition
of alternatives matters, which led us to include this information in the
superscript.
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This hypothesis is in line with other recent tests conducted on
threshold models, which establish equality and/or chance-level
constraints at the level of choice probabilities (see Malejka &
Bröder, 2016; McAdoo, 2019; Starns et al., 2018; Voormann
et al., 2020).

“Nonthreshold” SDT Predictions

According to SDT, the inclusion of items into a subset will
depend on their latent-strength values. We will assume that these
judgments are based on a comparison of the test items’ latent-
strength values with a response criterion κ, such that any test item
whose latent-strength value surpasses it is judged to be studied
(i.e., included in the subset). Latent-variable independence is
assumed to hold.20 Now, let us consider the case in which the
decision-maker is presented with an unrecognized 〈S, N〉 pair in a
follow-up 2-AFC trial. Given the way items that are assumed to be
judged in the subsetting task, it follows that the latent-strength
values of both unrecognized items are below the response criterion
κ. Conditional on this inequality, the probability of selecting the
studied item over the nonstudied item in this pair is given by the
probability that the latent-strength value of the former is greater
than the latter. Formally:

PhS,Ni
S =

Ð
κ
l f SðtÞFNðtÞ dt
FSðκÞFNðκÞ

: (25)

for l ≤ κ ≤ u, with l and u denoting the lower and upper bounds
of the latent-strength scale. The reason why we are not fixing these
bounds to 0 and 1, respectively, is that the formal result discussed
below will not rely on the universal representation used so far.
This change is motivated by the specific approach used here to
contrast models assuming threshold and nonthreshold representa-
tions: We will formally establish a property at the level of the latent
distributions that—whenever present—implies a violation of

conditional independence (i.e., implies a nonthreshold representa-
tion) at the level of the follow-up 2-AFC choice probabilities. We
will then show that this property holds across a wide range of
parametric distributions.

Theorem. Let FN(t) and Fμ(t), for t ∈ (l, u), be the CDFs of the
noise and signal distributions, the latter being parametrized by
parameter μ. Moreover, assume that Fμ is differentiable in μ for

every admissible t. Finally, let HμðtÞ =
∂
∂μFμðtÞ
FμðtÞ . If Hμ(t) is mono-

tonically increasing in t for all μ, then PhS,Ni
S is monotonically

increasing in μ.

Proof. First, let us express PhS,Ni
S as a function of μ, using a more

convenient formulation:

PhS,Ni
S ðμÞ = 1 −

Ð
κ
l FμðtÞf NðtÞdt
FμðκÞFNðκÞ

:

If PhS,Ni
S ðμÞ is monotonically increasing, then the fraction on the

second term, which we will denote here as g(μ), is monotonically
decreasing (i.e., its derivative with respect to μ is negative).
Rearranging terms and differentiating under the integral sign:

∂
∂μ

gðμÞ =
ð
κ

l

f NðtÞ
FNðκÞFμðκÞ2

·

�
∂
∂μ

FμðtÞFμðκÞ −
∂
∂μ

FμðκÞFμðtÞ
�
dt:

Figure 15
The Two Types of Trials Used in the Experiment

Note. The gray shades symbolize the selected words (i.e., the words judged as “old”). in the
subsetting task, the horizontal displacement was randomly determined for each word on each trial
anew. Note that the follow-up trial on the right is an example of a new-to-old trial, which occurred
probabilistically.

20 We note that a formally equivalent model has been previously proposed
in the domain of social-choice modeling (see Marley, 1993; Regenwetter
et al., 1998).
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The first multiplicative term can be ignored, as it is always
positive. For the second term to be negative, the following inequality
needs to hold

∂
∂μFμðtÞ
FμðtÞ

≤
∂
∂μFμðκÞ
FμðκÞ

,

which corresponds to

HμðtÞ ≤ HμðκÞ:

Given that t ≤ κ, this inequality can only hold if Hμ is monotoni-
cally increasing. □

What the theorem above shows is that, if Hμ is monotonically
increasing, then PhS,Ni

S should increase as a function of parameter μ.
With this formal result as a backdrop, let us consider the predicted
choice probabilities for unrecognized 〈SS, N〉 and 〈WS, N〉 pairs:
The study-strength manipulation is expected to make strong
studied items more memorable than their weak counterparts.
In terms of the latent-strength distributions of studied items
and their respective parameters μ, this manipulation means that
μWS ≤ μSS, which leads us the following hypothesis, which we
denote by HSDT

21:

HSDT∶P
hWS,Ni
WS ≤ PhSS,Ni

SS ;PhWS,SSi
WS ≤

1
2
:

But how general is this hypothesis? Quite so, actually. It turns
out that function Hμ is monotonically increasing for a large
family of parametric distributions. For instance, take the case
of the family of shift distributions fμ(t) = f(t − μ), which in-
cludes many well-known distributions such as the Gaussian,
logistic, exponential, ex-Gaussian, Weibull, Gumbel, etc. As
shown by Chechile (2011), the members of this family have

monotonically decreasing reverse-hazard functions rðtÞ = f μðtÞ
FμðtÞ.

It is easy to see that Hμ(t) = −r(t) for members of this family of
distributions. However, note that the monotonicity of Hμ is not
limited to shift-type distributions, as it can be shown to hold in
cases such as the Gamma distribution (see Kellen & Klauer,
2014, 2015).
There is one notable exception though: HSDT can be violated

by a Gaussian SDT model that allows σS2to differ between weak
and strong studied items. However, we do not see this situation
as problematic. A closer inspection of this specific SDT model
shows that such violations have nothing to do with this model’s
merits, such as its ability to describe asymmetric, concave
ROCs, or the relationship between study-strength manipulations
and ROC asymmetry (Heathcote, 2003; Lockhart & Murdock,
1970; Ratcliff et al., 1994). Instead, violations of HSDT are made
possible by the model’s unfortunate ability to make pathological
predictions, such as below-chance accuracy or partially convex
ROCs (all of which follow from violations of likelihood-ratio
monotonicity; see DeCarlo, 2002; Kellen & Klauer, 2011). In any
case, this exception does not put into question the test results
reported below.
The hypothesis HGTM is included within HSDT as a boundary

case. This relationship reflects Rouder et al. (2014) argument that
threshold models are nothing more than a subfamily of SDT models
for which conditional independence holds. We also see the same
kind of theoretical characterizations found in previous critical tests
(Kellen & Klauer, 2014, 2015): Conditional independence imposes

the prediction that the ‘magnitude’ of errors is invariant to the
probability of said errors being committed. Even though
recognition-failure is greater for weak studied items than for strong
studied items, the probability of correcting such failures in a follow-
up 2-AFC trial is the same for both stimulus subclasses. In contrast,
nonthreshold representations that violate conditional independence
predict that the probability and magnitude of errors go hand in hand,
such that the probability of correcting a failed recognition in a
follow-up 2-AFC trial is expected to be greater for strong-studied
items than weak-studied items.

Under any realistic experimental design, the number of follow-up
2-AFC trials that one could ever hope to collect per participant is
going to be extremely small. This unfortunate reality severely
compromises the ability to test HGTM and HSDT at the individual
level. However, these hypotheses can nevertheless be tested using
aggregate data, as neither of them can be spuriously rejected when
aggregating individual data that are in conformity with them.
One fortunate consequence of this robustness to aggregation is
that it also applies to the aggregation of heterogeneous data coming
from the same individual respondents. As discussed in Footnote 2,
one could in principle relax the assumption in SDT that the response
criterion κ is fixed across test trials (e.g., Kellen et al., 2012; Rosner
& Kochanski, 2009). The aggregation of responses from follow-up
2-AFC trials, when the latter were obtained under different κ (i.e., in
the presence of criterion noise), will not spuriously reject HSDT the
same way that aggregating responses from heterogeneous respon-
dents would not.

Experiment 4: Testing the Generalized Threshold Model

Participants, Materials, and Procedure

Four-hundred and one participants took part in this study online.
Participants were recruited through Prolific (www.prolific.co), and
received a fixed £1.5 reward in exchange for their participation. The
experiment took roughly 12 min to complete.

After instructions were given, the experiment began with a
study phase in which participants were presented a list of 70
common words. Half of the words were presented once (weak
words), whereas the other half was presented three times (strong
words). Words were presented in random order with a minimal
distance of five words between the repetitions of strong words.
Each word was presented for 2,000 ms, with a 400 ms interval
between words. A primacy/recency buffer of five words was
presented at the beginning and end of the study phase. These buffer
words were not tested. After the study phase was completed,
participants initiated the test phase, which was comprised of 28
subsetting trials and a variable amount of follow-up 2-AFC trials.
The total number of follow-up trials varied across participants as it
depended on chance.

Subsetting trials consisted of five words, each presented on a
separate row with a random horizontal displacement to it (see
Figure 15, left panel). The reason behind the use of a jittered
display was to help to distinguish the different words clearly and

21 By replacing the noise distribution with the weak-signal distribution, the
theorem above can be used to show that PhWS,SSi

WS decreases along with the
memory-strength μ of the strong-signal distribution. The upper boundary of
this probability is 1

2, which corresponds to the boundary case in which there is
a null study-strength effect and the latent variables associated with weak and
strong studied words are identical (i.e., μWS = μSS).
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prevent them from being perceived as grouped units. Participants
were asked to select between one and four words, which they judged
to be old. This request was made along with the information that each
subsetting trial included between one and four studied words, with the
exact composition being randomly determined across trials.
After each subsetting trial, there was a chance that a follow-up

2-AFC trial would take place: If two or more words were not
recognized, then a follow-up 2-AFC trial comprised of unrecog-
nized words would take place with probability .40. If only one word
was not recognized, then a follow-up 2-AFC trial comprised of
recognized words would take place with probability .40. In either
case, the words included in a follow-up trial were randomly selected
among the ones available. In each of these follow-up 2-AFC trials,
participants were requested to select the word for which they were
more willing to reverse their judgment (for an illustration, see
Figure 15, right panel). Participants had to select one of the words
in order to continue with the experiment.
After completing the test phase, participants filled in a short

demographic survey, were thanked, and received their monetary
reward. The demographic survey included a question in which
participants could state that they did not take the experiment seriously
and that we should better not analyze their data (without having
negative consequences for their pay). Data from participants who
responded affirmatively were discarded, which left us with a total of
395 participants. We also excluded data from 39 individuals whose
observed performance in the subsetting trials was not consistent with
the experimental manipulation of study strength (i.e., failed to show a
better performance for the strong words relative to the weak words in
the subsetting trials; for a similar exclusion criterion, see Kellen &
Klauer, 2015), leaving us with data from a total of 356 participants.

Results and Discussion

Among the retained participants, the average recognition rates in
the subsetting trials were 19%, 52%, and 77% for new, weak, and
strong words, respectively. These differences show a clear study-
strength effect, which is necessary to ensure a diagnostic compari-
son of follow-up 2-AFC trials (if there is no study-strength effect,
then HSDT reduces to HGTM).
On average, the retained participants engaged in 8.20 follow-up

2-AFC trials, 5.50 of which involved unrecognized word pairs.
Among the latter, an average of 1.10 trials were 〈WS, SS〉 pairs, 1.20
〈SS, N〉 pairs, and 3.20 〈WS, N〉 pairs. In these follow-up 2-AFC
trials, unrecognized weak words were selected over unrecognized
newwords 60% of the times (PhWS,Ni

WS ; 95%CI = [.57, .63]), whereas
unrecognized strong words were selected over unrecognized new
words 68% of the times (PhSS,Ni

SS ; 95% CI = [.63, .72]). Moreover,
unrecognized weak words were selected over unrecognized strong
words only 44% of the time (PhWS,SSi

WS ; 95%CI = 39, .49]). In order to
quantify the discrepancy between the observed 2-AFC choices and
HGTM, we fitted themwith a joint binomial model which assumed that
PhWS,Ni
WS = PhSS,Ni

SS and PhWS,SSi
WS = 1

2. This model grossly misfitted the
data (G2 = 13.74, p = .0004). In contrast, a joint binomial model
implementing HSDT provided a perfect fit (G2 = 0, p = 1).
Overall, the 2-AFC choices from Experiment 4 suggest that errors

are less egregious in conditions where they are less frequent. These
results violate the conditional-independence assumption that unites
the family of threshold models encompassed by the GTM and are
consistent with a nonthreshold representation.

General Discussion

We began the present investigation by distinguishing theories
from the families of models that instantiate them. This distinction
highlighted the fact that models incorporate a number of choices
with respect to different possible properties that can be assumed to
hold. Testing any given model corresponds to an omnibus test of the
set of assumptions defining it. This means that if that model fails to
fit the data, it may not be apparent which of the postulated properties
are violated, and hence which alternative assumptions could have
been made. With this distinction between theories and models as a
backdrop, we pursued the strategy of identifying a set of properties
that are relevant to a large family of SDT models of recognition
memory. The choices with respect to each property partitions the set
of possible models into different subfamilies. By identifying and
testing each relevant property, it is possible to find evidence either
for or against each subfamily of models. The critical tests conducted
here serve both to support the general framework of SDT as applied
to recognition memory and to identify subfamilies of models that are
more strongly supported by the data. We considered five different
properties which we discuss in turn.

As our first step, we focused on the existence of a random-scale
representation which is fundamental to all SDT models considered
in the literature. A random-scale representation implies that choice
alternatives (i.e., a signal or noise item) are characterized by a joint
distribution in latent-variable space. One alternative to this picture is
that the latent-strength distributions are context-dependent. In other
words, the joint distribution changes as a function of the composi-
tion of the set of alternatives under consideration (e.g., Trueblood
et al., 2013), a situation that would undermine the viability of the
kind of SDT modeling that is typically found in the literature. We
tested the hypothesis that a random-scale representation is possible
by assessing whether the data from two m-alternative forced-choice
experiments satisfy the system of Block–Marschak inequalities
(Block & Marschak, 1960; Falmagne, 1978). The forced-choice
data from both Experiment 1 and Experiment 2 were found to be
consistent with these inequalities, supporting (at least in this
instance) the existence of a random-scale representation.

In our second step, we directed our attention to the hypothesis
that the latent-strength distributions being postulated are
independent. Latent-variable independence is a property that
underwrites many extant models and enables a set of crisp and
powerful relationships between m-AFC tasks, ranking tasks, and
the yes–no ROC function. If this property does not hold, then more
complex models would be required to characterize the data.
We applied a direct test of latent-variable independence to the
forced-choice data from Experiments 1 and 2. In Experiment 2, we
also invoked the aforementioned relationships between the differ-
ent tasks and the yes–no ROC function and established an
additional predictive test. Overall, the results were consistent
with the assumption that recognition judgments can be success-
fully described by an SDT model assuming independent latent-
strength variables.

In our third step, we were concerned with the requirement that the
likelihood ratio of latent signal and noise distributions is monotoni-
cally increasing. This property, likelihood-ratio monotonicity,
which is often assumed but rarely tested, is formally equivalent
to stating that the yes–no ROC function is concave. We showed that
it is possible to derive a series of implications from likelihood-ratio
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monotonicity, which take the form of a set of inequality constraints
at the level of signal-ranking or forced-choice probabilities. More
specifically, ROCs are concave if and only if the signal-ranking
probabilities are ordered, such that more egregious errors are less
probable than more moderate errors. The data from both Experi-
ments 1 and 2 were found to be in agreement with the constraints
imposed by likelihood-ratio monotonicity.
Our fourth step concerned the symmetry of the yes–no ROC

function. It has been generally agreed that ROCs in recognition
memory are positively asymmetric. However, this finding might be
due to the way latent-strength values are mapped onto confidence
values (e.g., Kellen et al., 2012; Klauer & Kellen, 2010) and/or to a
misinterpretation of the effect of response-bias manipulations (e.g.,
Van Zandt, 2000). We constructed a critical test of ROC symmetry
that sidesteps all of these issues. The test is based on the comparison
of a traditional m-AFC task with a m⋆-AFC task. Data from
Experiment 3 implementing this critical test were found to be at
odds with the hypothesis that the yes–no ROC function is symmet-
ric. Instead, the data were consistent with the hypothesis that yes–no
ROC functions are positively asymmetric.
Our fifth and final step addressed the way in which the latent-

strength distributions are affected by study-strength manipulations.
We contrasted a large subfamily of threshold models with an
alternative subfamily of nonthreshold (often described as continu-
ous) models. We showed that the conditional-independence prop-
erty underlying threshold representations implies a number of
equality constraints at the level of response probabilities. Using a
subsetting task in Experiment 4, we were able to establish a critical
test that yielded results that were found to be inconsistent with a
threshold representation.
The SDTmodeling approach taken here is so far not a part of most

researchers’ toolboxes. We will therefore dedicate the remainder of
the general discussion to two things: First, we will address certain
kinds of skepticism regarding the value of critical-test approaches.
Second, we will delineate potential future directions and the differ-
ent ways in which the present work may contribute to lines of
research where SDT plays a major role.

Metatheoretical Clarifications

One possible reaction to the arguments motivating the critical-test
approach taken here is that they overlook the fact that many
researchers are interested in models as a whole. After all, models—
not the theories from which they descend—are what ultimately
comes into contact with data, characterizing them in terms of a
number of well-defined conceptual components (e.g., parameters
that modulate a number of postulated processes or representations).
Therefore, when someone argues that a model MA outperforms
a model MB, that is all that is being said, with little or no interest
in the theoretical propositions from which these models stem. When
taking this “view from the trenches,” the concerns we raise may
appear somewhat esoteric and out of touch with a perfectly consis-
tent way of engaging with models in psychology. Moreover, one
could also argue that critical tests often resort to experimental
designs that differ markedly from the ones that are otherwise
adopted. Therefore, one would answer negatively the question
of whether or not the failure of the model MA under experimental
design ε1 should in any way detract from its successes under
experimental design ε2.

These criticisms are predicated on a number of misconceptions
that are important to dispel. The best place to begin is the agreement
among philosophers and scientists at large that the term “modeling”
encompasses many different “systems of practice” that cannot be
reduced to a monolithic set of principles, goals, and criteria (see
Bailer-Jones, 2009; Chang, 2012). Although this acknowledgment
loudly echoes Feyerabend’s (1975) famous maxim that anything
goes, we are always required to make a number of metatheoretical
commitments. These commitments will allow us to adjudicate what
can be meaningfully stated (see Maraun, 1998). The commitment to
consider models “as a whole” works to prevent us from scrutinizing
the specific elements of each model that drive their respective
successes or failures. We can say that the model MA outperforms
the model MB according to some penalized-fit statistic, but we are
unable to directly inquire about which specific properties of each
model are driving their performance.22 Indeed, one can establish a
system of practice that only engages with models as a whole. But
this would be an unnecessarily impoverished one, as it would force
us to remain silent in cases where much could be said.

In reaction, one could argue that we are resorting to a straw-man
argument, in the sense that nobody would really defend an embargo
on dissecting models. But if that is the case, then the justification for
the above-described reluctance toward the critical-test approach is
undermined. For it is unclear what kind of intellectual gerrymander-
ing could sustain a system of practices that would permit a more
careful scrutiny of models while at the same time dismissing or
downplaying the present focus on specific properties that demarcate
subfamilies of models. The importance of engaging in critical
testing becomes obvious as soon as we begin disentangling the
different properties of a model and trying to figure out which ones
are doing the leg work.

Finally, let us turn to the use of different experimental designs and
their inferential value. Under specific systems of practice, such as
the ones found in cognitive psychometrics (see Batchelder &
Alexander, 2013), it is deemed perfectly reasonable to continuously
apply a model MA to data coming out of experimental design ε2
even though its failures with data coming from experimental design
ε1 are well documented. The reason being that the cognitive-
psychometric goal is not to test theories but to establish measure-
ment apparatuses with desirable properties that trump their known
shortcomings. For instance, consider the recent applications of
streamlined evidence-accumulation models (e.g., van Ravenzwaaij
et al., 2017): Even though these models make predictions that have
long been falsified, they nevertheless provide a convenient way to
characterize differences across groups and experimental conditions.
Outside of the cognitive-psychometric system of practice, it is
unclear to us how one could ever justify bestowing a specific
experimental design with some kind of privileged status (beyond
experimental knowledge; see Mayo, 1996), especially if one’s
interests lie in the theoretical propositions that underlie the set
of candidate models: On the one hand, such a privileged status
would effectively discourage the derivation of novel observable

22 More formally: Let M be a model that is defined by a conjunction of
postulates Pi, : : : , PN , and let C be an observational consequence of M.
Empirical verification of C can affect our credence onM as a whole, however
these effects do not necessarily extend to each of the postulates that constitute
it, only to those that contribute to the derivation of C (for discussions, see
Rozeboom, 1970, 2008).
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consequences from theories, a fundamental step in every scientific
domain that we can think of. On the other, it would assist in the
development of self-reinforcing relations between models and
experiments that ultimately inhibit the possibility of “paradigm-
shifting” developments (see Hacking, 1992).

Boundary Conditions

The present work focused on recognition memory, an area where
SDT plays a major role. An obvious question is whether the same
type of critical tests could be applied in other domains, such as visual
working memory (Cowan, 2001; Donkin et al., 2014; Van den Berg
et al., 2012). The answer is: it depends. In the case of visual working
memory, it is well established that the fidelity of stimulus repre-
sentations is negatively affected by increases in stimulus set size
(e.g., van den Berg et al., 2012). This result indicates that one cannot
describe people’s judgments across set sizes using the same joint
latent distribution, whichmeans that the Block–Marschak inequalities
are not expected to hold. However, one could still test the Block–
Marschak inequalities (and perhaps reconstruct yes–no ROCs) in
designs where the set size is fixed (e.g., Donkin et al., 2014).

Testing SDT in More Complex Designs

The critical tests discussed here only considered two classes of
stimuli—signal and noise. Future work should also consider more
complex designs in which multiple classes of stimuli, such as
different types of nonstudied items, are considered. Note that these
“enriched scenarios” are already covered in the original formulation
of the Block–Marschak inequalities [see (Equation 9)]. For exam-
ple, a more complex design would allow us to test Malmberg’s
(2008) conjecture that retrieval processes are adjusted to the com-
position of test items, with more recollection-type processes being
involved when most of the nonstudied items are extremely familiar
and/or similar to the studied items (see also Heathcote et al., 2006).
Such designs could also be used in more applied domains such as
eyewitness identification, where it has been shown that the intro-
duction of certain types of alternatives (e.g., decoys similar to a
suspect) can affect performance in rather nuanced ways (see Wixted
et al., 2018).
Further critical testing of SDT can also be achieved by revisiting

previously published studies. For example, Wixted (1992) tested
whether 2-AFC choice probabilities for a number of different
stimulus-class pairings satisfy strong stochastic transitivity (Luce &
Suppes, 1965): Let X, Y, and Z denote three distinct stimulus
classes. Choice probabilities satisfy strong-stochastic transitivity
if and only if

PhX,Yi
X ,PhY ,Zi

Y ≥ 1
2 implies that

PhX,Zi
X ≥ max

�
PhX,Yi
X ,PhY ,Zi

Y

�
:

Using six different stimulus classes,Wixted (1992) found the data
to be consistent with strong-stochastic transitivity. Hintzman et al.
(1995) reported similar results with an experimental design involv-
ing a total of eight stimulus classes.

A random-scale representation implies a property known as the
triangle inequality (Niederée & Heyer, 1997), which is satisfied if
and only if

PhX,Yi
X + PhY ,Zi

Y − PhX,Zi
X ≤ 1:

Strong-stochastic transitivity implies the triangle inequality.
When dealing with five stimulus classes or less, the triangle
inequality being satisfied is both a necessary and sufficient condition
for the existence of a random-scale representation. But this is no
longer the case when dealing with more than five stimulus classes
(for an overview, see Regenwetter et al., 2010). This means that
the tests conducted by both Wixted (1992) and Hintzman et al.
(1995) did not include an exhaustive evaluation of all of the
constraints implied by a random-scale representation. They also
did not directly test whether latent-variable independence is vio-
lated (Suck, 2002; see also McCausland & Marley, 2013, 2014).
Until recently, a reanalysis of these previously published data
would have been unfeasible—but recent algorithmic developments
have made the challenge much more tractable (see Smeulders
et al., 2018). Future research efforts should be placed on revisiting
these studies.

The Usefulness of Ranking Judgments

Although we did not collect ranking judgments in the present
work, researchers should not overlook the possibility of reconstruct-
ing ROC functions from them. Especially in areas of research where
the predominance of confidence-rating ROCs might raise some
concerns. For instance, Rotello et al. (2015) used confidence-rating
ROC data to assess the performance of maltreatment referrals for
black and white children. Instead of confidence ratings, one could
reconstruct ROCs based on ranking judgments (“please order these
cases according to their likelihood of being cases of maltreatment”).
Among other things, one could use such an approach to evaluate
performance in the absence of racial information and/or whether
performance is affected by the separate/joint ranking of black and
white children.

Ranking judgments can also play an important role in the study of
eyewitness identification (e.g., Wixted et al., 2018). Typical para-
digms have focused on single choices that participants may or may
not make. Requesting participants to rank alternatives, even when
they do not believe that a suspect is among them, can provide
additional information that is valuable for the theoretical characteri-
zation of eyewitness judgments (see Brewer et al., 2020; Carlson
et al., 2019).

Confidence-Rating Judgments

Most of the ROCs reported in the literature are based on
confidence-rating judgments (for reviews, see Wixted, 2007;
Yonelinas & Parks, 2007). The fact that our results yield ROCs
that are concave and asymmetric is consistent with the character-
istics of ROCs obtained with confidence ratings. However, it would
be unwise to interpret our results as legitimizing the general use of
confidence ratings to estimate yes–no ROCs. Our reluctance comes
from the fact that confidence judgments often do not behave as
expected and/or can change the phenomena being studied (see
Benjamin et al., 2013; Brainerd et al., 2017; Kellen & Klauer,
2015; Miyoshi et al., 2018). Also relevant is the way in which
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confidence judgments are requested (e.g., one-step vs. two-step
procedure; see Moran et al., 2015; Stephens, Dunn, & Hayes,
2019). On a more technical side, the modeling of confidence-
rating judgments often requires auxiliary assumptions that can
affect results (e.g., how response criteria can segment regions of a
latent-strength continuum; see Moran & Goshen-Gottstein, 2015).
Given these issues, we think that further work is necessary to
better understand the agreement between performance as described
by SDT and confidence-rating ROCs across a wide range of
conditions.

Final Remarks

The present work demonstrated how we can isolate some of the
properties underlying SDT models and directly evaluate them using
critical tests. But beyond providing an empirical foundation for SDT
modeling in recognition memory, the present work demonstrates the
value of critical-test approaches. One of the merits of critical testing
is its ability to establish a clear relationship between theoretical
statements and data. This contrasts with the model-fit comparisons
that are typically found in the literature at large, in which the failure
of a given model (rather than a family of models) is often discussed
without an explicit reference to the theoretical properties found to be
at odds with the data. Our hope is that the present work encourages
researchers to expand their toolboxes and consider going beyond
traditional model-comparison practices.
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