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Abstract

Cooper, Greve, and Henson (2017) discussed the use of different approaches for

measuring item and source memory, and how choices among these can affect the

comparison between different groups (e.g., younger versus older adults). The authors

argue that the tree structure adopted in the specification of item- and source-memory

retrieval in multinomial processing tree models implies a theoretical commitment to the

way memories are represented. According to the authors, this commitment can affect

the conclusions that are taken from the results and produce different model fits in

experimental designs involving confidence-rating judgments. Reported model fits

suggest that an alternative tree structure provides a superior account of the data. The

present comment argues that the particular tree structure used does not enforce any

commitment to a particular structure, as long as the trees are well defined in the sense

that parameters are monosemic across the entire structure of the model. The different

fit results reported by CGH are due to their reliance on tree structures that do not

ensure that all parameters are monosemic.
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Introduction

In the study of human memory, researchers often call upon the distinction

between individuals’ ability to remember the context and characteristics of previously

encountered stimuli — a faculty known as source memory — and their ability to merely

remember that stimuli were encountered before — item memory (e.g., Brainerd, Reyna,

Holliday, & Nakamura, 2013; Johnson, Hashtroudi, & Lindsay, 1993; Hautus,

Macmillan, & Rotello, 2008; Klauer & Kellen, 2010; Onyper, Zhang, & Howard, 2010).

Several studies have employed this distinction and assessed how item and source

memory are affected by different experimental variables (e.g., stimulus similarity;

Bayen, Murnane, & Erdfelder, 1996) and individual covariates (e.g., age; Ferguson,

Hashtroudi, & Johnson, 1992).

Cooper, Greve, and Henson (2017; henceforth CGH) discussed different ways in

which item and source memory can be measured. Their general take-home message was

that no measure is theory-free, and that it is the researcher’s responsibility to evaluate

the extent to which their results hinge on the adopted measures’ theoretical

assumptions (for similar points, see Bröder & Meiser, 2007; Rotello, Heit, & Dube,

2014). CGH’s discussion focuses on measurements obtained with multinomial

processing tree (MPT) models (for reviews, see Batchelder & Riefer, 1999; Erdfelder et

al., 2009), a class of measurement models that has long been associated to the study of

item and source memory (e.g., Batchelder & Riefer, 1990).

One of the claims made by CGH is that the tree structure of the MPT model used

by researchers implies a commitment to how memories are represented. The model is

typically specified in a way such that source memory is measured via the estimated

probability that source memory is available conditional on the presence of item memory.

CGH refer to this model as the item-source model. According to CGH, this model

implicitly assumes a single memory representation that at a minimum supports item

memory, but with sufficient quality is able to support both item and source memory

(see the left panel of Figure 1). CGH argue that by relying on different tree structure,

one can establish an alternative model, which they refer to as the source-item model,
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Figure 1 . Different memory representations as considered by Cooper, Greve, and Henson (2017).

that is in line with the notion that there are two distinct representations, one

supporting item memory, and another supporting both item and source memory (see

the right panel of Figure 1). This alternative model, which is reported to provide a

superior fit of the data, is argued to be more in line with neuroimaging data supporting

the notion of two distinct representations.

The claim that different tree structures embody different memory representations

is somewhat surprising given that the opposite scenario has been well documented in

the literature (e.g., Buchner & Erdfelder, 1996; Buchner, Erdfelder, &

Vaterrodt-Plünnecke, 1995; Hu, 2001). CGH admit that different memory

representations cannot be distinguished by tree structures when individuals provide

binary responses, but argue that a distinction is possible when confidence judgments are

also included. CGH’s argument is supported by different goodness-of-fit results for the

item-source model compared to the source-item model for data with confidence

judgments (their Experiment 2). However, CGH fail to inform the reader of the reasons

why confidence judgments allow for such a discrimination.

As will be shown below, the MPT model used to describe item and source memory

makes no assumptions whatsoever on the existence of one or two types of memory
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representations, even when applied to an extended design using a confidence-rating

scale. The differences in goodness of fit reported by CGH result from the particular tree

structures they adopted, which not only differ drastically from the ones used in previous

work the (e.g., Klauer & Kellen, 2010), but also have problematic features such as

parameter polysemy (i.e., parameters have a different meaning in different parts of the

model). The remainder of this comment is organized as follows: We will first discuss the

high-threshold model of source memory and its extension to a confidence-rating

paradigm. This discussion will be made along the lines of previous work with this

model (e.g., Klauer & Kellen, 2010), which CGH do not appear to have followed. We

will then fit the data from CGH’s Experiment 2 and show that changes in the tree

structure do no affect the model’s ability to characterize data. Finally, we will discuss

the problems associated with the tree structures used by CGH. Importantly, these

problems reinforce the message that CGH were trying to convey: one should always

keep in mind what parameters mean in the context of the model that they are part of.

High-Threshold Models of Item and Source Memory

In a typical source-memory task, participants study stimuli from two sources, A

and B, which differ on one or more dimensions (e.g., color, position, gender/race of the

speaker, etc.). During the test phase, participants are presented with an intermixed list

of old and new items. For each test item, participants are requested to judge whether a

stimulus was studied in one of the sources (responses “A” and “B”) or not at all

(response “New”).

The high-threshold model originally proposed by Batchelder and Riefer (1990)

and later extended by Bayen et al. (1996) attempts to provide a principled

decomposition of the observed responses in terms of a mixture of memory- and

guessing-based processes. This decomposition is achieved by assuming that the tested

stimuli are mapped onto a finite set of discrete mental states M . In this particular

two-source task, the following mental states can be distinguished:

• M1: For an A item, it is remembered that the item is old and from Source A.
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• M2: For a B item, it is remembered that the item is old and from Source B.

• M3: For an old item, it is remembered that the item is old, but memory for the

source is absent.

• M4: For a new item, it is detected that it is new.

• M5: For an item presented at test, it is not remembered that the item is old, and

it is not detected that the item is new.

Note that state M3 corresponds to a situation of partial information given that the

individual can determine the tested stimulus as old but not its source. In the case of

state M5, there is no information available whatsoever (i.e., there is complete

information loss; see Kellen & Klauer, 2015).

The probability of each mental state being entered, given a particular stimulus (A,

B, or new), is determined by a stimulus-state mapping function π. For example, for A

stimuli, we can specify πM1|A, πM3|A, and πM5|A, as the probabilities of a Source A

stimulus entering mental states M1, M3, and M5, respectively (with

πM1|A + πM3|A + πM5|A = 1). As shown by Hu and Batchelder (1994), this mapping

function can be always be represented by a binary tree structure without any loss of

generality. The binary tree structure shown in Figure 2 is one such representation in

which πM1|A = DA × dA, πM3|A = DA × (1 − dA), and πM5|A = 1 −DA. Parameter DA

corresponds to the probability that item memory is retrieved, whereas dA corresponds

to the probability of source memory being retrieved, conditional on the fact that item

memory was retrieved. Analogous parameters DB and dB can be established for M2 and

M3, as well as a parameter DN that captures the probability of a new item being

actively rejected as new (i.e., entering M4).

At this point, it is easy to see how using different tree structures does not change

the model in any meaningful way (e.g., change any representational assumptions). For

example, one could follow CGH and build a so-called source-item model that instead

assumes that πM1|A = d′
A, πM3|A = (1 − d′

A) ×D′
A, and πM5|A = (1 − d′

A) × (1 −D′
A),

where d′
A is the probability that item and source memory are retrieved, and D′

A is the
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Figure 2 . Stimulus-state and state-response mapping functions of the high-threshold model. DA =
Probability of detecting a Source A item as old. dA = Probability of detecting a Source A item as
coming from Source A, conditional on remembering it as old. DB = Probability of detecting a Source
B item as old. dB = Probability of detecting a Source B item as coming from Source B, conditional on
remembering it as old. DN = Probability of detecting a new item as new. gI = Probability of guessing
a stimulus as old, conditional on the stimulus not being remembered. gS = Probability of guessing a
stimulus as coming from Source A, conditional on the stimulus being deemed old. δO = Probability of
producing a high-confidence response, given that the stimulus was detected as coming from either
Source A or B. δN = Probability of producing a high-confidence response, given that the stimulus was
detected as new. γO = Probability of producing a high-confidence response, given that the stimulus
was guessed to be old. γN = Probability of producing a high-confidence response, given that the
stimulus was guessed to be new.

probability that item memory is retrieved, conditional on the failure to retrieve both

item and source memory. This parametrization simply represents a different way to

express the exact same thing, namely the probabilities of each mental state M being

reached.1

When discussing different tree structures, CGH argue that the different tree

structures yield parameters with different meanings. Although this is entirely true, it is

important to keep in mind that ultimately there is no information gain nor loss when

using a specific parametrization versus another. One can easily transform the parameter

values from one parametrization into the other parameterization (e.g., d′
A = DA × dA).

1Ultimately, one could simply set aside these parametrizations and estimate the stimulus-state map-
ping parameters π directly (e.g., Hu & Batchelder, 1994).
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The only difference is that the parameter estimates one obtains might be more or less

amenable to the comparisons researchers want to do. For example, if one wants to

study the relationship between some covariates and the probability of both item and

source memory being retrieved, then it might be more useful to rely on a

parametrization that sets πM1|A = d′
A rather than πM1|A = DA × dA as one has to deal

with a single parameter rather than the product of two.

State-Response Mapping

Establishing the different states and how they can be reached is not sufficient, as

one still needs to specify the observed responses that result from these states — i.e., a

state-response mapping function. In cases where both item and source memory is

retrieved, or a new item is actively rejected, it is assumed that individuals respond

correctly with probability 1. When partial information or no information are available,

the individual is assumed to rely on guessing processes, guessing whether the stimulus is

“old” or “new” with probabilities gi and 1 − gi, respectively. Moreover, when a stimulus

is deemed to be old (either due to item memory or via guessing) but no source memory

is available, the individual guesses “A” or “B” with probabilities gs and 1 − gs,

respectively.

If the experimental design also includes confidence-rating judgments, the

state-response mapping function needs to be extended accordingly. Specifically, we need

to establish the probabilities with which the different confidence levels of a given

response can be reached. For example, when individuals are requested to report low or

high confidence for their response, we need to consider the probabilities with which an

individual who reaches mental state M1 responds “A” with low and high confidence.

Figure 2 illustrates this extended response mapping using different parameters for the

different mental states M . It is sometimes assumed that certain states should be

assumed to always generate high confidence responses (e.g., Yonelinas, 1999). However,

these additional constraints are ultimately inadequate as they impose something that

ultimately is not part of the core principles of the model (see Klauer & Kellen, 2010;
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Malmberg, 2002). Also, the state-mapping functions should be flexible enough to

capture different response styles participants might have (e.g., use of extreme ratings)

rather than conflate specific response categories with postulated processes (Bockenholt,

2016; Klauer & Kellen, 2010). More reasonable constraints on state-response mapping

functions (e.g., inequality constraints) that still allow for responses to be distributed

across the confidence scale have been shown to provide good accounts of the data (e.g.,

Klauer & Kellen, 2010; Klauer & Kellen, 2015), and focused experimental tests have

shown that these state-response mappings can be selectively influenced (e.g., Bröder,

Kellen, Schütz, & Rohrmeier, 2013; Kellen, Singmann, Vogt, & Klauer, 2015).2

One important aspect that will be critical below is the notion of parameter

monosemy. Each parameter in the model has exactly the same meaning across the

whole model. For example, in all trees. parameter gi corresponds to the probability of

guessing old, conditional on the absence of any memory information. As will be

discussed below, the differences reported by CGH result from having parameters that

are polysemic; the meaning of the parameter changes across trees within the same

model.

Fitting CGH’s Experiment 2 Data

We will now fit the confidence-rating data from younger and older adults from

CGH’s Experiment 2. We will fit the high-threshold model illustrated in Figure 2,

which establishes parameters for source retrieval conditional on the retrieval of item

memory — an item-source model according to CGH’s terminology. In line with CGH’s

analysis we will restrict the detection parameters for the old stimuli, DBT and dBT , to

be equal across the two sources. We will also fit a variant which specifies a parameter

for the joint retrieval of item and source memory (see the description above):

πM1|BT = d′
BT , πM3|BT = (1 − d′

BT ) ×D′
BT , and πM5|BT = (1 − d′

BT ) × (1 −D′
BT ). In line

with CGH’s terminology we will refer to this second model as the source-item model.
2Selective influence tests not only show that one can manipulate the state-response mapping parame-

ters (e.g., change how individuals use the scale) without affecting the stimulus-state parameters, but also
that we can manipulate memory performance without affecting the state-response mapping parameters
(Province & Rouder, 2012).
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Table 1
Results of Fitting the Traditional Source-Memory Model for Confidence Rating to CGH’s Experiment 2

Younger Adults
Item-Source Model

Goodness of Fit Mean Parameters
Summed G2 df p-value Significant misfits DBT dBT DN gI gS δON γO γN

91.45 84 .27 3/12 (= 25%) .83 .80 .49 .36 .37 .81 .33 .63
Source-Item Model

Goodness of Fit Mean Parameters
Summed G2 df p-value Significant misfits D′

BT d′
BT DN gI gS δON γO γN

91.45 84 .27 3/12 (= 25%) .57 .65 .49 .36 .37 .81 .33 .63
Older Adults

Item-Source Model
Goodness of Fit Mean Parameters

Summed G2 df p-value Significant misfits DBT dBT DN gI gS δON γO γN

94.26 84 .21 3/12 (= 25%) .88 .54 .56 .32 .47 .89 .56 .67
Source-Item Model

Goodness of Fit Mean Parameters
Summed G2 df p-value Significant misfits D′

BT d′
BT DN gI gS δON γO γN

94.26 84 .21 3/12 (= 25%) .76 .49 .56 .32 .47 .89 .56 .67
Note. Subscript BT denotes the detection parameters set equal across Bottom and Top stimuli.
Column “Significant misfits” reports the number of individuals fits (each with df=7) for which
the computed G2 statistic yielded a p-value below .05. δON is the probability of a high
confidence response given that the item was detected as old and its source remembered or the
item was detected as new. γO is the probability of a high confidence response given that the item
was guessed to be old. γN is the probability of a high confidence new response given that the
item was guessed to be new. In order to sidestep unstable parameter estimates due to zero cells,
the mean estimates reported were obtained with data to which 1

6 was added to each cell (this
amounts to adding a single additional trial to each stimulus type).

The task used in CGH’s Experiment 2 involved individuals judging whether a

stimulus was previously presented in the bottom (B) or top (T ) part of the screen. In

order to fit this model we also imposed a restriction on the state-response mapping

functions. Specifically, we set δO = δN ; due to this equality we will refer to parameter

δON below. For each participant, CGH’s experimental design yields 3 × 5 = 15 degrees

of freedom, which outnumber the 8 parameters estimated by the model. Note that the

model fitted by CGH to this data also employed 8 parameters. Fits were conducted with

R package MPTinR (Singmann & Kellen, 2013) using the maximum-likelihood method.

Fit results and parameter estimates are reported in Table 1. The so-called
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item-source and source-item models produced exactly the same fits and all but the

detection parameters for the old stimuli (i.e., DBT and dBT versus D′
BT and d′

BT ) were

identical, as expected. Overall, model fits indicate that were no gross

mischaracterizations of the data (three statistically-significant misfits per age group).

Mean parameter estimates for the item-source model suggest that younger and older

adults have comparable probabilities of retrieving item memory (Wilcoxon W = 71,

p = .98), but the probabilities of further retrieving source memory are smaller for the

latter group (W = 108, p = .04). The parameters of the source-item model suggest that

younger adults have a lower probability of retrieving both item and source memory, but

conditional on the failure of this joint retrieval, older adults seem to be more likely to

retrieve item memory alone. However, none of these differences seem to be systematic

(largest W = 94, smallest p = .24). The fact that the statistical results from these tests

differ is not surprising, after all both models assume different parameters and therefore

partition the uncertainty in the data differently. Whereas the item-source memory

estimates source-memory retrieval conditional on the retrieval of item memory, the

source-item memory estimates the joint retrieval of item and source memory. When

attempting to evaluate differences in source memory alone across groups, the

parametrization of the item-source model appears to be more suitable, as it does not

conflate source-memory retrieval with the retrieval of item memory.

The state-response mapping parameters, which are identical for both models, show

that individuals tend to map memory-based responses onto higher-confidence judgments

than guessing-based responses. This pattern, which is expected to hold under minimal

theoretical assumptions (individuals should be more sure of their responses when they

are based on memory information rather than guessing), replicates previously-published

studies (Bröder et al., 2013; Kellen et all., 2015; Klauer & Kellen, 2010).

What is Behind the Differences Reported by CGH?

Given the equivalence between both models, we now need to understand what

drove the differences in fit reported by CGH. Because their respective tree structures
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Figure 3 . Illustration of Cooper, Greve, and Henson’s (2017) item-source and source-item models.
CGH’s parameter definition: Ds = probability of remembering source (assumed to be equal for both
sources). Di = Remembering item as old (assumed to be equal for both sources). Gs = Guessing an
item’s source as A. Gi = Guessing an item as old. Dn = Concluding that an unstudied item is new.
Dh = Veridical recollection. Df = False recollection. Dm = Missed encoding

.

deviate from traditional specifications in non-trivial ways, it is informative to go

through it in detail. Figure 3 provides a detailed description of their item-source and

source-item models, including their parameter nomenclature.

Figure 3 describes two models reflecting the item-source and source-item models

as specified by CGH (we only discuss the trees for Source A and new stimuli as these

two suffice). One important aspect of the two models is that they include the possibility

of “false recollection” measured via parameter Df , which is invariably mapped onto

incorrect source judgments with maximum confidence. In fact, all of CGH’s models

assume that such high-confidence errors can only result from false recollection. This

assumption is much stricter to what has been previously done in the literature:
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Although many before have associated recollection processes to maximum-confidence

judgments, they nevertheless allowed for other processes (e.g., guessing) to be mapped

onto maximum-confidence judgments as well (e.g., Yonelinas, 1999). CGH do not make

such concessions, but also do not provide any justification for their stronger

assumptions.3

The different ways in which Df is specified in the two models is what is behind

the differences in fit. In the Source A tree of the item-source model, Df corresponds to

the probability that there is false recollection conditional on the absence of any kind of

veridical memory (the branch is (1 −Di) ×Df ). The exact same notion applies the New

stimulus tree (e.g., (1 −Dn) ×Df ×Gs). However, this is not the case in CGH ’s

source-item model, where the meaning of Df depends on the tree: In the Source A tree,

Df represents the probability of false recollection conditional on the absence of a joint

retrieval item and source memory (the branch is (1 −Ds) ×Df ), such that the retrieval

of item memory (captured by parameter Di) is yet to be determined. In the New

stimulus tree, Df again represents the probability of false recollection conditional on the

absence of any kind of veridical retrieval. The polysemy of Df in CGH’s source-item

model is instrumental in its apparent superiority over the item-source model. When

using CGH’s formulation across age groups, the performance of source-item model

(summed G2 = 242.48, df = 168, p < .001) is superior to the item-source model

performance of source-item model (summed G2 = 304.02, df = 168, p < .001), a

difference that is statistically significant (Wilcoxon test, W = 28, p = .004).

If one adjusts CGH’s source-item model such that Df always represents the

probability of false recollection in the absence of any veridical memory (e.g., we would

have (1 −Ds) × (1 −Di) ×Df instead of (1 −Ds) ×Df ), then the source-item model

again always yields fits that are exactly equal to the item-source model. Note that the

superior fit of CGH’s “uncorrected” source-item model should not interpreted as

3Another questionable aspect of Df is that for old items it always leads to incorrect source judgments
(capturing the notion that the source is incorrectly recollected), but in the case of new items, individuals
still have to engage in a guessing process to determine the source of the stimulus. The meaning of Df is
again not well defined. Note that previous models including false-recollection parameters (e.g., Brainerd
et al., 2013) do not have this issue as they do not assume that such a process can take place with new
items.
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evidence that this model provides a better characterization of the data. Ultimately the

validity of this model is questionable as it relies on stimulus-state and state-response

mapping functions that are difficult to justify. As forcefully discussed by Roberts and

Pashler (2000), the goodness of fit of a model (even after correcting for flexibility) is

only one of the criteria based on which it should be judged. Other criteria such as

theoretical soundness and parameter validity should also be factored in.4

Discussion

CGH argued that a source-memory MPT model with an alternative tree

structure, where source is not dependent on the retrieval of item memory, yields not

only different but better results than the traditional version of the model. As we

showed here, the two tree structures are mere reparametrizations of the same model,

and do not commit to any particular representation of memory. It turns out that the

reported differences in fit reported by CGH are due to the peculiarities of the tree

structures they considered, namely the introduction of a polysemic parameter in one of

the models. This issue bring us back to a key message of CGH’s paper, which is that

the meaning of each parameter (i.e., measure) should be carefully considered and

clarified when constructing and implementing any model.

The equivalence between different tree structures (when all parameters are

monosemic) raises the question of whether one can compare different conceptualizations

of how memory processes are arranged (e.g., do they follow some specific serial order?).

Fortunately we can, but the conditions that permit it are not trivial and specific

experimental designs often need to be employed (e.g., Schweickert & Han, 2016;

Schweickert & Chen, 2008; Schweickert & Xi, 2011). Another promising approach

involves the incorporation of response times into the MPT model by estimating the

duration times associated with the different tree branches (Hu, 2001). Similar

opportunities seem to arise when combining behavioral and neural data, as shown
4Even if one would focus on fit performance alone – something we do not advocate – there would

still be no support for CRH’s source-item model. We compared it with the traditional specification of
the high-threshold model used in our reanalysis. According to the Fisher Information Approximation, a
model selection statistic that takes the functional flexibility of models into account, CRH’s source-item
model was found to perform worse in 92% of the individual datasets.
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recently by Anderson, Zhang, Borst, and Walsh (2016).
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