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Abstract

Using a large data corpus, Wang, Solloway, Shiffrin, and Busemeyer (2014) showed that

order effects in the responses given to pairs of related agree/disagree questions presented

in succession follow a specific pattern termed QQ-equality. The fact that QQ-equality

corresponds to a parameter-free prediction of a proposed quantum-probability model,

together with the failure of several alternative classic-probability accounts, led Wang et

al. to conclude that it constitutes strong evidence for the quantum nature of human

judgments and to issue a challenge for the development of suitable classic-probability

accounts. We respond to Wang et al.’s challenge by discussing a class of repeat-choice

models that is able to yield the QQ-equality as a parameter-free prediction (or a

very-likely prediction a priori) and provide an overall account of the data that is

comparable to the quantum model. The success of this class of models establishes a

plausible benchmark against which quantum accounts of order effects – like the ones

observed in this data corpus – can be compared. Finally, we argue that the assumption

of respondent homogeneity implied in Wang et al.’s use of aggregated data is extremely

problematic for some of the alternative models discussed here (but not necessarily for

the quantum account), leading to spurious rejections at non-negligible rates. We also

discuss how a move away from aggregated data could help resolve some theoretical

challenges that the quantum account of QQ-equality currently faces.

Keywords: human judgments, order effects, quantum probability
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In recent years, there has been a surge of research developing models for

psychological data based on quantum probability models (for introductions and reviews,

see Busemeyer & Bruza, 2012; Pothos & Busemeyer, 2013). A major motivation for

developing models based on quantum probability theory is that they provide an elegant

characterization of sometimes-problematic phenomena in human judgments, such as

order effects or violations of classic logic and probability theory. For example, a

quantum account can seamlessly describe the so-called “Linda effect” (Tversky &

Kahneman, 1983), in which participants tend to perceive the conjunction “Linda is

active in the feminist movement and a bank teller” as more likely than the simple

statement “Linda is a bank teller” (Busemeyer, Pothos, Franco, & Trueblood, 2011;

Busemeyer, Wang, Pothos, & Trueblood, 2015). Quantum accounts achieve this by

representing probabilities as arising from projections into a Hilbert space, where for

example, some basic operations are not commutative. Due to its many departures from

classic probability theory, the recent use of quantum theory in cognitive modeling has

become a polarizing but exciting topic among researchers (see the numerous comments

to Pothos & Busemeyer, 2013). Recently, Wang, Solloway, Shiffrin, and Busemeyer

(2014) tested a critical prediction of their quantum-probability model that holds

independently of any particular model parametrization. This prediction, which was

considered by Busemeyer and colleagues to be “the strongest to date” (Busemeyer et

al., 2015, p. 241), concerns the direction and magnitude of question-order effects in

polls and questionnaires (Moore, 2002). Consider response matrices P and Q in the

upper-left and lower-left side of Table 1, both summarizing “yes” and “no” responses to

two questions A and B:

Question A: “Do you generally think Bill Clinton is honest and trustworthy?”

Question B: “Do you generally think Al Gore is honest and trustworthy?”

In one question-order condition, question A was asked first, immediately followed

by question B (condition P), whereas in a second condition the question order was

reversed (condition Q). The responses given to these questions in each of the two
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conditions are given by the two 2× 2 matrices P and Q in Table 1. In both matrices,

the first and second rows report the cases in which respondents responded “yes” and

“no” to question A (Clinton), respectively. The first and second columns show the cases

in which respondents responded “yes” and “no” to question B (Gore), respectively. For

example, P1,2 indicates the proportion of cases in which respondents responded “yes” to

question A, followed by response “no” to question B. Alternatively, Q1,2 indicates the

proportion of times respondents answered “no” to question B, followed by a “yes” to

question A.

The data reported in P and Q in Table 1 show that the marginal response

proportions differ between the two conditions: Clinton is more often considered to be

honest when question B (Gore) is asked first rather than second (58.8% versus 53.5%).

In contrast, Gore is less often considered to be honest when question A (Clinton) is

asked first (66.6% versus 76.1%). The order effects found in these data are made clear

when looking at the difference between P and Q, reported in the upper-right side of

Table 1. For example, the proportion of respondents who responded “yes” to both

questions diminishes when questioned about Clinton first. According to Moore (2002),

this kind of order effects are typically characterized as a byproduct of shifting

comparison standards: When questioned first about Bill Clinton’s honesty, respondents

compare him to some standard based on their background knowledge and memories.

But when Clinton’s honesty is questioned after Gore’s, then the proximity of the two

questions leads respondents to incorporate their previous assessment of Gore in their

comparison standard, potentially affecting their judgment. An analogous scenario is

expected to occur when the question about Gore is preceded by the question about

Clinton. The verbal account given by Moore is close to the way order effects occur in a

quantum probability account, where the response probabilities for the second question

are based on an updated belief state that is determined by the response given to the

first question.

One intriguing aspect in the differences found between P and Q is their mirror-like

pattern: The difference found between the cases in which people responded “yes” to
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both questions (-0.0726) is pretty much symmetrical to the difference found when both

responses were “no” (0.0756). A similar pattern is found in the order effects of the other

two response patterns (0.0192 versus -0.0224). Overall, this mirror-like pattern suggests

that order effects amount to a shift in probability across the response matrices’

diagonals (see the P - Q matrix in the lower-right part of Table 1). Wang et al. (2014)

argued that according to their quantum-probability model, the sums of the diagonals of

P-Q, which will be designated as QQ-values (Quantum Question values), are always

expected to be zero.1 This result, which is designated as QQ-equality, emerges from the

fact that the quantum model is constrained to produce shifts in probability mass across

the two diagonals of the P-Q matrix.2 According to the quantum-probability account,

when individuals do not have a clear opinion on both politicians, their measurements

are complementary: these measures cannot be obtained simultaneously and the order of

the measurements (questions) matter in the sense that the first provides a

contextualized state upon which the second will be framed. Wang and Busemeyer

(2015) argued that complementarity will depend on the individuals’ experience with the

subject being questioned and is also expected to be a function of factors such as

respondents’ age, level of cognitive development, among others. Complementarity is

then mostly expected when respondents are presented with uncommon or familiar pairs

of questions for which answers have to be produced on the fly.

Using a corpus of 72 datasets, 70 coming from representative US surveys (most

containing more than 1000 adult respondents) and two coming from their own

experimental studies, Wang et al. (2014) tested QQ-equality directly. The test relied on

a constrained parametrization of the two multinomial distributions associated with

matrices P and Q, a parametrization that is represented here by the tree model

illustrated in Figure 1. According to this model, which we will refer to as the QQ-test

model, probability mass can only shift between cells in the same diagonal, namely

between response pairs “yes”-“yes” and “no”-“no” (e.g., between P1,1 and P2,2), and

1Wang et al. (2014) showed that under more relaxed assumptions, their quantum model can at most
predict minute deviations from zero (see their Supplemental Information).

2A formal proof of this result given by Wang et al. (2014).
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between pairs “yes”-“no” and “no”-“yes” (e.g., between P1,2 and P2,1). Parameter θ1

determines how much probability mass is attributed to each diagonal of the matrices.

The shifts within the diagonals are captured by parameters θ2, θ3, θ4, and θ5.

Irrespective of the values taken by the model parameters, QQ-equality is bound to hold.

Besides QQ-equality, this model imposes no other constraints on the multinomial

distributions.

Goodness-of-fit tests showed that the QQ-test model was rejected in

approximately 5% of the datasets, in line with the nominal rejection rates expected

under the null hypothesis. Figure 2 depicts the observed distribution of QQ-values (Left

Panel), which is concentrated around zero, demonstrating an impressive consistency of

the data with QQ-equality. This result is reflected in the summed misfits (quantified by

the G2 statistic), which did not turn out to be statistically significant (summed

G2(72) = 75.91, p = .35).3 The right panel of Figure 2 further shows that there is no

obvious relationship between the magnitude of the QQ-values and the overall size of the

order effects. The goodness-of-fit tests conducted by Wang et al. (2014) assume that

responses are independent and identically distributed (i.i.d.) within each tree in Figure

1.4 Realistically, the i.i.d. assumption should not be expected to hold here given that

the data come from heterogeneous respondents that belong to groups associated with

quite distinct data-generating probability distributions (e.g., Conservatives, Liberals).

Fortunately, it can be easily shown that QQ-equality is bound to hold under

heterogeneity. This fact, together with QQ-test model’s lack of further constraints other

than QQ-equality dismiss any major concerns with Wang et al.’s testing of the latter

using aggregated data.

In addition to demonstrating the presence of QQ-equality, Wang et al. (2014)

checked whether the data as a whole could be successfully described by some plausible

cognitive models based on classic probability theory (see their Supplemental

3Data and scripts using the MPTinR package (Singmann & Kellen, 2013) are made available at
https://osf.io/n9q2m/

4Under i.i.d., the goodness of fit of the QQ-test model (here quantified by the G2 statistic) is asymp-
totically distributed as a χ2 distribution with one degree of freedom (the data in each study provide a
total of six degrees of freedom)

https://osf.io/n9q2m/
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Information). It is important to note that the QQ-test model and these alternative

cognitive models operate at distinct levels, given that the former does not postulate any

specific processes, whereas the latter do.5 In this sense they should not be seen as direct

competitors. However, the relative success of alternative models has the potential of

informing us of the suitability of the quantum-probability account. For instance,

previous work demonstrated the inability of classic Bayesian and Markov models to

account for this kind of order effects, suggesting that the adoption of a

quantum-probability account may be necessary (e.g., Busemeyer, Wang, &

Lambert-Mogiliansky, 2009). In the present case, Wang et al. showed that two

classic-probability models, a repeat-choice model and an anchoring-adjustment model,

were rejected by the data as they failed to accurately characterize the observed order

effects while assuming QQ-equality. Although Wang et al. admitted that the

development of better classic-probability models is both possible and desirable, they

also argued that these models are likely to be overly flexible and predict QQ-equality

only within limited ranges of parameter values. Because the quantum account

(instantiated by the QQ-test model illustrated in Figure 1) is bound to predict

QQ-equality irrespective of parameter values, the data will always be more supportive

of it. Overall, Wang et al. demonstrate that the observation of QQ-equality in human

judgments introduces strong constraints on theories concerning order effects.

The goal of the remainder of the present manuscript is to provide a first response

to Wang et al.’s (2014) call for the development of classic-probability models that

predict QQ-equality. We will focus on the class of repeat-choices models, in which the

model originally discussed by Wang et al. can be included. As will be shown below,

some repeat-choice models are constrained to predict QQ-equality, whereas others

predict QQ-equality with high likelihood. Also, some of these models are able to fit the

data corpus as well as Wang et al.’s quantum account. Altogether, these theoretical and

empirical results indicate that the class of repeat-choice models provides a suitable

5This assertion deserves some clarification: Quantum theories of cognition do in fact postulate specific
processes (e.g., they postulate initial belief states that undergo a series of transformations or updates).
However, the QQ-test model used by Wang et al. (2014) does not explicitly characterize any of these
processes, only the QQ-equality prediction that emerges from them.
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alternative to the quantum account. Finally, we challenge the implicit assumption of

respondent homogeneity in Wang et al.’s tests and raise an important issue that so far

appears to have been overlooked in this line of research, namely the impact of

respondent heterogeneity in the testing and rejection of some of the candidate models.

Specifically, some of the simpler candidate models considered can be spuriously rejected

due to distortions introduced by the aggregation of heterogeneous respondents. The

problem is that although QQ-equality is always preserved in aggregated data, other

properties are not. This situation is extremely problematic when attempting to test

models that impose constraints above and beyond QQ-equality in a fair manner.

Varieties of Repeat-Choice Models

In order to facilitate the introduction and discussion of the class of repeat-choice

models, we will begin by introducing a general model, which we will refer to asM0. All

repeat-choice models discussed hereon are special cases ofM0. Figure 3 provides an

illustration of howM0 accounts for the cells of matrices P and Q. Figure 4 describes a

non-exhaustive hierarchy of submodels that can be derived fromM0. As shown in

Figure 3, the model assumes a set of four so-called preference states Si,j that

characterize the probabilities associated to a (sampled) respondent having a specific

prior belief or opinion regarding the two questions posed (where subscript 1 codes “yes”

and 2 codes “no”).6 These preference states are assumed to be unaffected by the order

of the questions.

When individuals provide a first response based on state Si,j there is a probability

aO,i,j that the subsequent response will be a function on the latter one. This possibility

simply reflects the fact that the response to the second question occurs with the

knowledge that a previous question was just asked. For example, if a respondent notices

that the two questions are related (e.g., she would keep in mind that Clinton and Gore

were part of the same US administration), she might tap into the same information

structures when producing her second response. If the second response happens to be a
6Note that we are using the term “preference” rather loosely. Moreover, note that because∑2

i=1
∑2

j=1 Si,j = 1, a completely unconstrained characterization of these probabilities can be achieved
via three non-redundant Si,j parameters.
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function of the first, then with probability rO,i,j the second response is exactly the same

as the previous one (i.e., there is an assimilation effect), and with probability 1− rO,i,j

the opposite response is produced (i.e., there is an contrast effect). With probability

1− aO,i,j the second response is entirely determined by Si,j, which means that no order

effect is expected. These probabilities a and r are dependent on the question order (O

= P or O = Q) as well as on the respondent’s preference state.

As it stands,M0 is not a very interesting nor useful model given that it can

account for any data that could observed in P and Q (e.g., all types of order effects as

well as their absence). To make matters worse, the number of free parameters it

postulates (nineteen) is much larger than the six degrees of freedom provided by the

data (i.e., the model is oversaturated; see Bamber & Van Santen, 2000). However, some

special cases ofM0 described in Figure 4 do impose testable constraints, including

QQ-equality. The special cases ofM0 described in Figure 4 and discussed below follow

two distinct assumptions: The subset ofM1 models assumes that the processes

underlying response dependencies are independent of question order, whereas the subset

ofM2 models assumes that such processes depend on the order in which questions are

posed.

The simplest member of the class of repeat-choice model discussed here, model

M1ar,S/M2ar,S, only assumes four parameters. This restricted model assumes that the

preference states are conditionally independent such that the four possible preference

states Si,j are defined by independent response probabilities for each of the questions,

with S1,1 = S1·S·1, S1,2 = S1·(1− S·1), S2,1 = (1− S1·)S·1, and S2,2 = (1− S1·)(1− S·1).

This model also assumes that the probability of the second response being dependent

on the first, as well as the probability of the previous response being repeated, is the

same across different preference states and question orders (i.e., the model assumes

single a and r parameters). Although this simple model always predicts QQ-equality, it

grossly fails to characterize the data corpus. But as discussed in detail below, such

failure is ultimately non-informative with respect to the adequacy of the model as it is

expected to fail when fitting aggregated data coming from heterogeneous respondents.
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Submodel Assuming Question-Order Independence

First, let us consider a submodelM1 in which the a and r parameters are

independent of the order in which the questions are posed (i.e., aP,i,j = aQ,i,j and

rP,i,j = rQ,i,j, so we drop the question-order subscript O). This implies that the

probability of the second response being dependent on the first is independent of the

order the questions. In a way, one could argue that this restriction reflects the notion

that some individuals (in particular those without any strong or clear opinions about

both questions) might simply produce a second response that repeats the previous one

or generates the opposite response, without really expressing their preference state.

However, one does not necessarily have to commit to this specific interpretation, as

these parameter restrictions could simply reflect the notion that respondents are aware

of their preferences for both questions but sometimes decide to express a second

response as a function of their first, in a way that is independent of the question order.

SubmodelM1 yields the following equations for P and Q:

P1,1 = S1,1a1,1r1,1 + S1,1(1− a1,1) + S1,2a1,2r1,2,

P1,2 = S1,1a1,1(1− r1,1) + S1,2a1,2(1− r1,2) + S1,2(1− a1,2),

P2,1 = S2,1a2,1(1− r2,1) + S2,1(1− a2,1) + S2,2a2,2(1− r2,2),

P2,2 = S2,1a2,1r2,1 + S2,2a2,2r2,2 + S2,2(1− a2,2),

Q1,1 = S1,1a1,1r1,1 + S1,1(1− a1,1) + S2,1a2,1r2,1,

Q1,2 = S1,2a1,2(1− r1,2) + S1,2(1− a1,2) + S2,2a2,2(1− r2,2),

Q2,1 = S1,1a1,1(1− r1,1) + S2,1a2,1(1− r2,1) + S2,1(1− a2,1),

Q2,2 = S1,2a1,2r1,2 + S2,2a2,2r2,2 + S2,2(1− a2,2).

AlthoughM1 has a total of eleven parameters, still outnumbering by far the six

degrees of freedom provided by the data, it still imposes testable constraints.
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Specifically,M1 predicts QQ-equality, irrespective of the values taken by its parameters:

P1,1 −Q1,1 + P2,2 −Q2,2 = S1,2a1,2r1,2 − S2,1a2,1r2,1 + S2,1a2,1r2,1 − S1,2a1,2r1,2

= P1,2 −Q1,2 + P2,1 −Q2,1

= S1,1a1,1(1− r1,1)− S2,2a2,2(1− r2,2)

+ S2,2a2,2(1− r2,2)− S1,1a1,1(1− r1,1) = 0

When fitted to the 72 datasets analyzed by Wang et al. (2014),M1 produced the

exact same G2 values as the QQ-test model (summed G2 = 75.91). Also, the p-values

forM1 were obtained with a semi-parametric bootstrap procedure (van de Schoot,

Hoijtink, & Deković, 2010) and, and aside from the variability coming from the

bootstrap sampling, were pretty much identical to the p-values of the QQ-test model

(see Figure 5, Left Panel). Furthermore, the rate of significant misfits (i.e., p < .05) is

at the nominal level of α = .05 (4 out of 72 data sets are significant which corresponds

to .056). These results simply reflect the fact that that the QQ-test model andM1

occupy the same prediction space, in which probability mass can only shift across the

matrices’ diagonals (without the imposition of any further constraints).

Submodel Assuming That Question Order Matters

In the previous subsection, we showed that imposing the constraint that the a and

r parameters were independent of question order (i.e.,aP,i,j = aQ,i,j and rP,i,j = rQ,i,j)

led to the prediction of QQ-equality with a model that is equivalent to the QQ-test

model. However, this imposed constraint can be seen as not quite representative of the

way many individuals would base their second response on the first one: Consider a

respondent that finds Clinton to be dishonest but believes that Gore is honest (i.e.,

S2,1). According toM1, in the case of question order P (i.e., Clinton - Gore), when

confronted with the second (Gore) question, the respondent will notice the similarity

between the two questions and repeat his previous “no” response to Clinton with
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probability a2,1r2,1. In the case of Q (i.e., Gore - Clinton), the same respondent would

respond “yes” to both questions with the same probability. Intuitively, one would expect

that these probabilities would differ as a function of the match/mismatch between the

two preferences, as well as a function of the specific preference manifested in the first

response. Because of this discrepancy between our intuition and the behavior of

submodelM1, we will introduce an alternative submodel ofM0.

Let us then consider another submodel, which we will refer to asM2, that

incorporates the above-described desiderata. M2 assumes that the response

probabilities associated to P and Q correspond to:

P1,1 = S1,1a1,1r1,1 + S1,1(1− a1,1) + S1,2a1,2r1,2,

P1,2 = S1,1a1,1(1− r1,1) + S1,2a1,2(1− r1,2) + S1,2(1− a1,2),

P2,1 = S2,1a2,1(1− r2,1) + S2,1(1− a2,1) + S2,2a2,2(1− r2,2),

P2,2 = S2,1a2,1r2,1 + S2,2a2,2r2,2 + S2,2(1− a2,2),

Q1,1 = S1,1a1,1r1,1 + S1,1(1− a1,1) + S2,1a1,2r1,2,

Q1,2 = S1,2a2,1(1− r2,1) + S1,2(1− a2,1) + S2,2a2,2(1− r2,2),

Q2,1 = S1,1a1,1(1− r1,1) + S2,1a1,2(1− r1,2) + S2,1(1− a1,2),

Q2,2 = S1,2a2,1r2,1 + S2,2a2,2r2,2 + S2,2(1− a2,2).

LikeM1, this model has eleven free parameters. According toM2, in cases where

the preferences in the two questions disagree (S1,2 and S2,1), the postulated a and r

parameters depend on the question order and the first question asked. Specifically,M2

restrictsM0 such that aP,i,j = aQ,j,i and rP,i,j = rQ,j,i. For instance, in the case of

condition P, a respondent in state S2,1 would respond “no” to the Gore question with

probability a2,1r2,1, whereas in condition Q, she would respond “yes” to both questions

with probability a1,2r1,2. When the preferences in the two questions agree (S1,1 and

S2,2),M2’s predictions are equivalent toM1 in the sense that the same a and r

parameters apply to both P and Q. Based on these predictions, it is easy to see that
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M2 does not necessarily predict QQ-equality. For example:

P1,1 −Q1,1 + P2,2 −Q2,2 = (S1,2 − S2,1)a1,2r1,2 + (S2,1 − S1,2)a2,1r2,1.

Given the robust observation of QQ-equality, the lack of such a constraint can be

perceived as a shortcoming or even as a disqualifying feature. However, when

comparing models based on the constraints they impose on data, it is important to keep

in mind the distinction between likelihood-function-based and parameter-based

constraints. So-called likelihood-function-based constraints are part of the model’s

functional form and do not depend on parameter values. In contrast, parameter-based

constraints focus on the plausibility and/or admissibility of certain parameter values.

This distinction is often made when comparing Bayesian and non-Bayesian methods of

hypothesis testing and model selection (for a discussion, see Lee, 2016).

In the present case, the possibility of deviations from QQ-equality raises questions

regarding its likelihood and expected magnitude. Such questions can be answered via

an evaluation ofM2’s prior predictive distribution (e.g., Lee, 2016). This distribution is

a Bayesian construct that gives the distribution of data that is expected under a model

a priori. We obtained a prior predictive distribution for QQ-values by computing them

over a large number of parameter values that were sampled from non-informative prior

distributions. These non-informative priors simply reflect our present ignorance

regarding the parameters. As can be seen in the left panel of Figure 6, the

prior-predictive distribution of QQ-values obtained with non-informative priors is highly

peaked at 0, with 95% of values between -0.22 and 0.22. This result indicates that

QQ-equality is extremely likely. It is important to note that the spread of the prior

predictive distribution is a function of the upper bound of the a parameters. Because

the priors used were non-informative, a parameters could take on any value between 0

and 1. However, if one incorporates the plausible notion that the probability of the

second response being dependent on the first one is rather low (i.e., a is between 0 and

.50), then the resulting (zero-centered) prior predictive distribution has 95% of its

values between -0.11 and 0.11 (see the right panel of Figure 6). The latter range of
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values is somewhat close to the actual data, whose minimal and maximal values were

-0.09 and 0.09.

When fitted to the 72 datasets analyzed by Wang et al. (2014),M2 produced a

summed G2 of 79.04, which is marginally worse than the summed misfits ofM1 and the

QQ-test model (∆G2 = 3.13). Despite this marginal difference at the level of summed

misfits, we found considerable differences when comparing them at the level of single

datasets. Specifically, the majority ofM2’s misfits, with a summed G2 of 50.99, can be

attributed to ten (14%) datasets for which the model was rejected (p < .05). Out of the

remaining datasets, thirty-two (44%)M2 were perfectly accounted for (G2 = 0;

compared to 5 or 7% forM1), and the remaining thirty (42%) led to small,

non-significant misfits.7 The distribution of p-values forM2 is provided in the center

panel of Figure 5, and looks distinct from the roughly uniform distribution that is found

for the QQ-test model orM1 (see the left panel of Figure 5) and what is typically

expected in the fits from model that corresponds to the data-generating processes.

However, this distribution of p-values does not necessarily indicate that the model is

unsuitable. For example, this kind of p-value distributions are found in models whose

prediction space corresponds to a convex polytope (for a review, see Davis-Stober,

2009).8 The right panel of Figure 5 directly compares the misfits ofM2 andM1 (and

the QQ-test model) and shows that for many data sets for whichM2 provides a perfect

accountM1 shows some misfit while the same does not seem to hold the other way

round. Overall, nothing besides the slightly larger rejection rate (14%) speaks against

the suitability of this model.

7We entertained the possibility that that the data sets for whichM2 provided significant misfit were
outliers in some sense, but we did not find any evidence for this idea. The ten data sets with significant
misfit were (in order of decreasing misfit): 1 Pew study, the abortion question pair, and 8 more Pew
studies (66 of the 72 data sets were Pew studies on various topics). Furthermore, G2 values obtained
with M2 were not related to any characteristic of the data set with the exception of the magnitude of
the order effect w, r(70) = .31, p = .008. Such a correlation was also observed forM1 and the QQ-test
model, r(70) = .42, p = .0002.

8For example, consider the hypothesis H0 : θ ≤ .50 regarding the rate parameter of a binomial
distribution. The sampling distribution of the G2 statistic of this hypothesis follows a mixture of χ2

distributions, specifically 1
2χ

2
df=0 + 1

2χ
2
df=1. The distribution of p-values coming from this mixture is not

uniform, as it places half of the probability mass on p = 1 and the other half on p-values between .50
and 0.
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Testing Additional Parameter Constraints

Given thatM1 andM2 have eleven free parameters to describe the six

independent data points provided by the two question orders, it is interesting to check

whether further restricted versions can account for the data and whether they yield

identifiable parameters. The restricted models considered here are described in Figure 4

and their relative goodness-of-fit performance (quantified via the G2 statistic) is

reported in Table 2. As previously mentioned, these tests imply that the data come

from homogeneous respondents, which is very unlikely to hold here. The presence of

respondent heterogeneity can be problematic for some of the models included here, an

issue that we will discuss in greater detail in the following section. But in the present

analyses we simply follow Wang et al. (2014)’s approach and assume that relying on

aggregate data is appropriate for the purposes of model comparison.

The goodness-of-fit results reported in Table 2 show that most constraints lead to

relatively small increases in misfit relative to the QQ-test model, with the exception of

modelM2yn,a (∆G2 = 57.84), models enforcing all a and r parameters to take on the

same value (∆G2 = 260.82), and models imposing conditional independence on the

preference states Si,j (∆G2 = 1102.30 and ∆G2 = 1360.79). Among the simpler models,

the best-performing one it terms of goodness of fit wasM2yn,r.9 Given that this model

yields identifiable parameters, it is interesting to see what kind of characterization of

the data it provides. Figure 7 (right panel) shows the distribution of parameters for

M2yn,r: First, the estimates of the Si,j states indicate that S1,1 and S2,2 are more

frequent than the incongruent states S1,2 and S2,1. Moreover, both a parameters seem

to have very similar distributions, with medians around .20 and .30, respectively. These

small values are in line with the notion that only a limited portion of second responses

is based on the first response (reflecting the small magnitude of the order effects). With

regards to the r parameter, both its mean and median are around .50 suggesting that

9We directly compared the performances of the QQ-test model and submodelM2yn,r using the Fisher
Information Approximation (FIA; Kellen, Klauer, & Bröder, 2013). FIA is a model-selection statistic that
penalizes models according to the flexibility that results from their functional form. Although M2yn,r

has one free parameter more than the QQ-test model, it was considered to be the most parsimonious of
the two, outperforming the QQ-test model in 92% of the data sets.
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across all data sets assimilation or contrast effects are about equally likely to appear.

The latter result is not at all implausible given the large variety of questions considered

in the data corpus.

The Problem of Aggregating Heterogeneous Data

When researchers aggregate data across items and/or respondents, they are

(almost invariably) illegitimately assuming that these observations are all independent

and identically distributed. The risks associated with aggregating heterogeneous sources

of data have become well-known since Estes (1956), and continuous efforts have been

made in order to develop methods that detect (e.g., Smith & Batchelder, 2008) and

accommodate heterogeneity (e.g., Klauer, 2006; Lee & Wagenmakers, 2013). However,

they are still often overlooked, which sometimes leads to controversial findings (e.g.,

Davis-Stober, Park, Brown & Regenwetter, 2016; Wulff & van den Bos, in press). In the

present case, one could raise the concern that the presence of heterogeneity among

respondents, which is virtually certain according to previous work on the modeling of

survey data, is likely to affect the modeling of QQ-equality. Given that Wang et al.’s

(2014) data corpus consists almost entirely of aggregate data obtained from

previously-published surveys across a wide range of topics, we are unable to implement

direct statistical tests on respondent heterogeneity.

The fact that the models were fitted to aggregate data, with each individual

respondent only contributing with a single data point (one observation in one of the

cells of matrix P or Q), raises important concerns regarding the interpretation of the

parameter estimates. Specifically, it seems unlikely that the probabilities estimated in

the QQ-test model or the different repeat-choice models accurately capture the

stochastic nature of individuals’ responses but rather the relative proportions of

different types of individuals. Assuming otherwise, that inter-individual variability is

equivalent to the intra-individual variation, amounts to an assumption known as

ergodicity. The problems this assumption can generate have been well documented in

the literature (e.g., Molenaar, 2004).
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One important way in which individuals differ is that their response patterns tend

to be consistent with one among several qualitatively-distinct subgroups, which in turn

implies that matrices P and Q emerge from mixtures of probability distributions. For

example, it is expected that political views (e.g., whether one is a supporter of the

American Republican or Democratic party) lead to distinct response patterns for the

Clinton and Gore questions. Indeed, it is well established in social-survey research that

questions involving politics as well as many other matters of opinion have

sub-populations with distinct response patterns. When data are aggregated, the

differences between these sub-populations can produce spurious violations of the

conditional independence of responses (e.g., Duch, Palmer, & Anderson, 2000).

Concerning QQ-equality per se, it seems extremely unlikely that across several

datasets on distinct topics, such a result could emerge from mixtures of subgroups for

which QQ-equality does not hold. Moreover, QQ-equality cannot be spuriously violated

due to aggregation of heterogeneous data, if QQ-equality holds for all subgroups. In

order to see this, consider two subgroups A and B, with their respective proportions in

the data being π and 1− π, respectively. If QQ-equality holds for both subgroups, then

QQ-value = πPA
1,1 + (1− π)PB

1,1 − πQA
1,1 − (1− π)QB

1,1

+ πPA
2,2 + (1− π)PB

2,2 − πQA
2,2 − (1− π)QB

2,2

= π(PA
1,1 −QA

1,1 + PA
2,2 −QA

2,2) + (1− π)(PB
1,1 −QB

1,1 + PB
2,2 −QB

2,2)

= 0.

This fortunate situation for QQ-equality does not hold for other properties in the data,

however. For instance, conditional independence of the two preferences (e.g., opinion on

Gore does not depend on the opinion on Clinton and vice versa) can be violated at the

aggregate level, even when each subgroup shows conditionally-independent preferences.

These violations are well known and are in fact the basis of many prominent

data-analytic methods, such as Latent Class Analysis (Clogg, 1995; Lazarsfeld & Henry,

1968). Latent Class Analysis is a widely-used model family in the social sciences
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designed to interpret the dependencies between responses in contingency tables defined

by several questions. The responses are then described in terms of a mixture of

distributions satisfying conditional independence. In these models, it is precisely the

lack of i.i.d. responses that provides the signal that is being modeled. Unfortunately,

the experimental design underlying the present data corpus do not provide sufficient

degrees of freedom to implement the methods used in Latent Class Analysis.

The fact that certain properties in the data do not hold under heterogeneity can

be extremely problematic for models that impose constraints above and beyond

QQ-equality, as this implies that they can be spuriously rejected. In order to

demonstrate the impact that data heterogeneity can have on model selection, let us

consider submodelM1ar,S/M2ar,S, which grossly misfitted the data (see Figure 4 and

Table 2). As previously mentioned, this model assumes conditional independence on

preference states Si,j and imposes restrictions on both a and r parameters. We

generated artificial data fromM1ar,S/M2ar,S using four different sets of parameter

values representing distinct subgroups. For example, let us assume that these data come

from a Clinton-Gore poll and that the four groups differ in both their attitudes towards

Clinton and Gore and their repeat-choice probabilities: 1) “pure” Democrats (i.e., large

probability of responding with “yes” to both questions) with a strong assimilation

tendency; 2) Democrats who were put off by Clinton’s extramarital affairs, with

moderate contrast tendency, 3) “pure” Republicans in strong opposition to the

Democrats and with a strong contrast tendency; 4) Republicans who liked Clinton but

did not trust Gore, with moderate contrast tendency. Table 3 gives an overview of

proportions and the exact parameters of each group comprising the mixture. We

randomly generated one-thousand P and Q matrices with 200 respondents per matrix

(i.e., 400 in total per simulated dataset) using the mixture probabilities π given in Table

3 and fitted them with bothM1ar,S/M2ar,S andM1ar/M2ar. As shown in Figure 8,

model fits produced highly-skewed p-value distributions, with statistically-significant

misfits (p < .05) occurring in 40% of the datasets forM1ar,S/M2ar,S (Left Panel) and

39% forM1ar/M2ar (Center Panel). As expected, the average QQ-value was 0 (Right
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Panel) and the QQ-test model was rejected in approximately 5% of the data sets, in line

with the nominal rejection rate. These simulation results show that the presence of

individual heterogeneity in the data can lead to an apparent failure of a model, despite

the fact that all the responses were generated by processes in line with the assumptions

of that model. This situation suggests that the present rejection of constrained models

such asM1ar,S/M2ar,S andM1ar/M2ar should be seen with skepticism.

It would be unwise to interpret the vulnerability of some repeat-choice models to

respondent heterogeneity as a shortcoming or as a disadvantage relative to the QQ-test

model. Ultimately, we should strive for models to succeed or fail according to their

ability to capture theoretically-meaningful information in the data, not distortions

introduced by the researchers when incorrectly assuming that there is no individual

heterogeneity.

Discussion

The importance of the test of the QQ-equality reported by Wang et al (2014)

comes from the expectation that such an a priori constraint would fail when tested with

such a large and diverse data corpus. Wang et al.’s result became even more impressive

when showing that plausible classic-probability candidates that relied on response

repetition and anchoring effects failed to account for such data (see also Busemeyer et

al., 2009). The failure of these alternative models indicates that the development of

such models is far from being a trivial endeavour. The difficulty here is not necessarily

the development of a model that can fit the data corpus, as that can be achieved by

specifying an overly flexible model with little or no constraints. Instead, the challenge

lies in the development of a model – based on reasonable assumptions – that expects the

presence of QQ-equality. Upon presenting their results, Wang et al. (2014) urged

researchers to develop alternative approaches based on classic probability theory.

The present work answers Wang et al.’s call for alternative models by showing

that the QQ-equality constraint also emerges under a classic-probability framework

when assuming specific mechanisms that introduce response dependencies. Specifically,
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we showed that some repeat-choice models assuming that respondents can change their

second response based on a detected similarity between the two questions also predicts

QQ-equality as a parameter-free prediction. This prediction holds when the

similarity-based dependencies are independent of question order but determined by the

respondents’ latent preferences (M1 and its respective special cases). Furthermore, we

also showed that repeat-choice models assuming that response dependencies are

moderated by question order and the agreement/disagreement of the latent preferences

concerning the two questions (M2 and its respective special cases) do not impose

QQ-equality but establish it as a highly-likely event and provide an at least as good

account as the QQ-test model. The success of such models does not represent a

detriment of Wang et al.’s quantum-model account; instead, their success helps to

delineate some of the conditions under which an alternative classic-probability account

can succeed, and allows for the development of models based on both approaches to

occur in tandem. Similar work has been done in the study of superposition effects in

memory, where quantum and classic-probability accounts have been proposed

(Brainerd, Wang, & Reyna, 2013; Kellen, Singmann, & Klauer, 2014).

In addition to the development of alternative models, we discussed the challenge

that the (unaccounted) presence of individual heterogeneity represents for the modeling

of this kind of choice data, as some of the simpler models can be spuriously rejected at

high rates. Given the possibility of such spurious rejections, it seems critical to first and

foremost develop tests that focus on individual data and enable us to characterize the

cognitive processes underlying individuals’ responses (e.g., estimate individual choice

probabilities). For instance, individual-level data would allow us to have a better

estimate of how many individuals manifest order effects and whether these effects imply

QQ-equality.10

The use of aggregated data leads to somewhat ambiguous interpretations of

10It worth noting that an extension of the model to three questions (something already suggested
by Newell, Ravenzwaiij, & Donkin, 2013) provides additional degrees of freedom (a simple extension to
three questions would result in 42 degrees of freedom) that would allow for certain mixtures to be tested
(see Clogg, 1995; Lazarsfeld & Henry, 1968). However, this is still far from a full account of individual
differences.
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parameters. As previously mentioned, the fact that each person only provided two

responses indicates that the probabilities described by the repeat-model parameters are

more likely to represent proportions in the sample (e.g., parameter a indicates the

proportion of respondents that based their second response on the first one) rather than

stochastic processes that occur on an individual level. This ambiguity coming from the

use of aggregated data glosses over fundamental issues that were recently discussed by

Khrennikov, Basieva, Dzhafarov, and Busemeyer (2014): Khrennikov et al. distinguish

between tasks or questions in which responses are expected to be replicated by the same

respondent with some probability, and responses that are expected to replicated with

virtual certainty (i.e., probability 1). For example, consider the response to the question

“do you like chocolate?”, which is expected to be stable for each respondent across

replications. Now, contrast it with the responses individuals provide in a psychophysical

task, when attempting to judge whether an auditory signal was just presented, which

are expected to differ across replications. This distinction is critical when establishing

predictions for a three-question sequence A-B-A: As shown by Khrennikov et al., when

respondents are expected to produce the same response to both A questions, the

quantum-probability model does not expect order effects to be observed. Such effects

are only expected when responses to question A are expected to vary across replications

with non-negligible probability. This difference does not hold for the repeat-choice

models given that response dependencies only occur at the level of the second question

as a way to reconcile or differentiate views given the first response given. It would make

little sense to assume that any individual respondent engages in some process of

differentiation/reconciliation when producing a second response, only to immediately

afterwards change the first response based upon which such

differentiation/reconciliation processes were conducted.

The issue of response replicability and the differential predictions coming from it

highlight an important theoretical challenge for the quantum-probability model.

Specifically, one could argue that the model should not predict order effects in the type

questions addressed in the data corpus used by Wang et al. (2014). Khrennikov et al.’s
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(2014) discuss different solutions to these problems, but overlooked the issue of data

aggregation and individual differences. Note that according to Wang and Busemeyer

(2015), the measurement complementarity that results in order effects with QQ-equality

is expected to be present when respondents do not have clear preferences and have to

construct them on the fly. This means that the QQ-equality-constrained order effects

observed in the aggregate data can be entirely due to a proportion of the respondent

sample that does not possess stable preferences regarding the domains of the questions

being posed (e.g., individuals that do not care much about politics might not have

stable preferences concerning Clinton and Gore). One interesting question then is

whether we can observe order effects of differing magnitudes in the same sample of

respondents, and whether the magnitude of these order effects is related with their

familiarity and/or engagement with the questions’ topics.

The reliance on aggregated data therefore represents “a plague on both our

houses”, although with different symptoms. In the case of classic-probability models, it

produces spurious rejections at high rates. In the case of the quantum-probability model

it places it in a position of apparent self-contradiction in the sense that the order-effects

used to support it occur with questions in which it would be more reasonable for the

model to predict no order effects at all. In order to overcome these problems, future

work needs to focus on establishing the basic effects on an individual level. One way to

achieve this would be to move away from questions like the ones included in the basic

data corpus, and instead rely on responses to perceptual categorization tasks that allow

for replications to occur under reasonable conditions, and for the similarity between the

different stimuli to be carefully controlled for (e.g., Busemeyer et al., 2009).
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Table 1
Order effects and the QQ-values

Data Differences
P P·,1 (Gore “yes”) P·,2 (Gore “no”) P - Q P·,1 - Q·,1 P·,2 - Q·,2
P1,· (Clinton “yes”) .4899 .0447 P1,· - Q1,· -.0726 .0192
P2,· (Clinton “no”) .1767 .2886 P2,· - Q2,· -.0224 .0756

Q Q·,1 (Gore “yes”) Q·,2 (Gore “no”) P - Q P·,1 - Q·,1 P·,2 - Q·,2
Q1,· (Clinton “yes”) .5625 .0255 P1,· - Q1,·
Q2,· (Clinton “no”) .1991 .2130 P2,· - Q2,·

Note. Data from the Clinton (Question A) and Gore (Question B) poll showing order effects.
Response matrix P concerns question-order Clinton-Gore (A → B) whereas respone matrix Q
concerns question-order Gore-Clinton (B → A). The order effect (i.e., the difference between both
data tables) is shown on the difference matrix P - Q in the upper-right part. The two QQ-values are
given by summing the differences along the diagonals as displayed in the lower right table. As the
sum of all differences needs to be zero, the two QQ-values are the inverse of each other. For the data
shown here the QQ-values are −.0726 + .0756 = .0030 and .0192− .0224 = −.0032. In the current
manuscript we always use the values of the main diagonal (i.e., .0030 in this example).
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Table 2
Goodness of Fit of Repeat-Choice Models

Model Parameters Summed G2 ∆G2

M0 19 0 -75.91
M1*/QQ-test model* 11 75.91 0

M1a* 8 75.91 0
M1r* 8 76.20 0.29
M2 11 79.04 3.13
M2a 8 79.04 3.13
M2r 8 85.72 9.82
M2yn 7 85.72 9.82
M2yn,a 6 133.75 57.84
M2yn,r 6 88.30 12.39
M2yn,S 6 1178.21 1102.30

M1ar*/M2ar* 5 336.73 260.82
M1ar,S*/M2ar,S* 4 1436.70 1360.78

Note. Models with an asterisk (*) enforce QQ-equality as a
parameter-free prediction.
Summed G2: Summed G2 of the model fitted to the 72
datasets reported by Wang et al. (2014). ∆G2: Difference
between the summed G2 of a model and theM1/QQ-test
model.
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Table 3
Hypothetical Parameters of the Restricted Repeat-Choice ModelM1ar,S

Parameter
“Pure”

Democrats
“Put off”
Democrats

“Pure”
Republicans

“Clinton”
Republicans

S1· .90 .50 .10 .90
S·1 .90 .90 .10 .60
a .70 .30 .60 .35
r .80 .30 .90 .20
π .25 .25 .45 .05

Note. In each step we simulated 200 individual respondents per
matrix with the given parameter values (i.e., total N = 400 per
simulated dataset), π = mixture weight.
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Matrix
P

θ1
θ2 P1,2

1-θ2 P2,1

1-θ1
θ3 P1,1

1-θ3 P2,2

Matrix
Q

θ1
θ4 Q1,2

1-θ4 Q2,1

1-θ1
θ5 Q1,1

1-θ5 Q2,2

Figure 1 . QQ-Test Model. Subscripted parameters θ at the nodes denote branch probabilities, and
terminal nodes denote the observed response categories.
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Figure 2 . Analysis of the 72 datasets reported by Wang et al. (2014). Left panel: Distribution of
QQ-values. Center panel: Distribution of p-values for the QQ-test model. Right panel: QQ-values
against size of the order effect (in terms of χ2 effect size Cohen’s w). The three outliers in terms of

order effect size are (in decreasing order): the abortion question, one of the two laboratory
experiments, and the black-white Gallup poll (see Wang et al., 2014, supporting information).
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Figure 3 . ModelM0. Subscripted parameters S, a, and r denote branch probabilities, and terminal
nodes denote the observed response categories.

a and r parameters are 
order independent

a and r parameters depend on 
preference match/mismatch

Single a
parameter

Single r
parameter

Single a
parameter

Single r
parameter

a and r parameters depend on 
preference (yes or no)

Single a
parameter

Single r
parameter

Single r
parameter

Single a
parameter

Single a
parameter

Single r
parameter

Preference states S
are conditionally 

independent

Preference states S
are conditionally 

independent

Figure 4 . A Non-Exhaustive Hierarchy of Repeat-Choice Models. Parameter subscripts are omitted for
purposes of clarity.
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Figure 5 . Comparison of repeat-choice modelsM1 andM2 fitted to the 72 datasets of Wang et al.
(2014). Left panel: (bootstrap-based) p-value distribution ofM1 (which enforces QQ-equality and is
equivalent to the QQ-test model). Center panel: (bootstrap-based) p-value distribution ofM2 (which
does not enforce QQ-equality). Right panel: direct comparison of G2 fit statistics for both models.
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Figure 6 . Distribution of 10,000 simulated QQ-values from theM2 model. Left panel: using flat priors
on all parameters; Right panel: a is drawn uniformly from [0, 0.5], flat priors on all other parameters.
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Figure 7 . Identifiable submodelM2yn,r in which repeat-choice probability a are a function of the first
response (“yes” versus “no”). Left panel: (bootstrap-based) p-value distribution. Right panel:

Parameter estimates. Individual parameter estimates are plotted in the background with horizontal
jitter and 50% transparency. The boxplots show the upper and lower quartiles as well as the median,

the × shows the mean.
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Figure 8 . Results obtained with artificial data from mixture distribution (see Table 3). Left panel:
Distribution of p-values for the repeat-choice submodel with restricted S, a, and r parameters
(M1ar,S/M2ar,S). Center panel: Distribution of p-values for the repeat-choice submodel with

restricted a and r parameters (M1ar/M2ar). Right panel: Distribution of QQ-values.
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