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Using a large data corpus, Wang, Solloway, Shiffrin, and Busemeyer (2014) showed
that order effects in the responses given to pairs of related agree/disagree questions
presented in succession follow a specific pattern termed QQ-equality. The fact that
QQ-equality corresponds to a parameter-free prediction of a proposed quantum-
probability model, together with the failure of several alternative classic-probability
accounts, led Wang et al. to conclude that it constitutes strong evidence for the quantum
nature of human judgments and to issue a challenge for the development of suitable
classic-probability accounts. We respond to Wang et al.’s challenge by discussing a
class of repeat-choice models that is able to yield the QQ-equality as a parameter-free
prediction (or a very-likely prediction a priori) and provide an overall account of the
data that is comparable to the quantum model. The success of this class of models
establishes a plausible benchmark against which quantum accounts of order effects—
like the ones observed in this data corpus—can be compared. Finally, we argue that the
assumption of respondent homogeneity implied in Wang et al.’s use of aggregated data
is extremely problematic for some of the alternative models discussed here (but not
necessarily for the quantum account), leading to spurious rejections at non-negligible
rates. We also discuss how a move away from aggregated data could help resolve some

theoretical challenges that the quantum account of QQ-equality currently faces.
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In recent years, there has been a surge of
research developing models for psychological
data based on quantum probability models (for
introductions and reviews, see Busemeyer &
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Bruza, 2012; Pothos & Busemeyer, 2013). A
major motivation for developing models based
on quantum probability theory is that they pro-
vide an elegant characterization of sometimes-
problematic phenomena in human judgments,
such as order effects or violations of classic
logic and probability theory. For example, a
quantum account can seamlessly describe the
so-called “Linda effect” (Tversky & Kahneman,
1983), in which participants tend to perceive the
conjunction “Linda is active in the feminist
movement and a bank teller” as more likely than
the simple statement “Linda is a bank teller”
(Busemeyer, Pothos, Franco, & Trueblood,
2011; Busemeyer, Wang, Pothos, & Trueblood,
2015). Quantum accounts achieve this by rep-
resenting probabilities as arising from projec-
tions into a Hilbert space, where for example,
some basic operations are not commutative.
Due to its many departures from classic proba-
bility theory, the recent use of quantum theory
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in cognitive modeling has become a polarizing
but exciting topic among researchers (see the
numerous comments to Pothos & Busemeyer,
2013). Recently, Wang et al. (2014) tested a
critical prediction of their quantum-probability
model that holds independently of any particu-
lar model parametrization. This prediction,
which was considered by Busemeyer and col-
leagues to be “the strongest to date” (Buse-
meyer et al., 2015, p. 241), concerns the direc-
tion and magnitude of question-order effects in
polls and questionnaires (Moore, 2002). Con-
sider response matrices P and Q in the upper-
left and lower-left side of Table 1, both sum-
marizing “yes” and “no” responses to two
questions A and B:

Question A: “Do you generally think Bill Clinton is
honest and trustworthy?”

Question B: “Do you generally think Al Gore is honest
and trustworthy?”

In one question-order condition, Question A
was asked first, immediately followed by Ques-
tion B (Condition P), whereas in a second con-
dition the question order was reversed (Condi-
tion Q). The responses given to these questions
in each of the two conditions are given by the
two 2 X 2 matrices P and Q in Table 1. In both
matrices, the first and second rows report the
cases in which respondents responded “yes” and
“no” to Question A (Clinton), respectively. The
first and second columns show the cases in
which respondents responded “yes” and “no” to
Question B (Gore), respectively. For example,
P, , indicates the proportion of cases in which

respondents responded ‘“yes” to Question A,
followed by response “no” to Question B. Al-
ternatively, Q;, indicates the proportion of
times respondents answered “no” to Question
B, followed by a “yes” to Question A.

The data reported in P and Q in Table 1 show
that the marginal response proportions differ
between the two conditions: Clinton is more
often considered to be honest when Question B
(Gore) is asked first rather than second (58.8%
vs. 53.5%). In contrast, Gore is less often con-
sidered to be honest when Question A (Clinton)
is asked first (66.6% vs. 76.1%). The order
effects found in these data are made clear when
looking at the difference between P and Q,
reported in the upper-right side of Table 1. For
example, the proportion of respondents who
responded “yes” to both questions diminishes
when questioned about Clinton first. According
to Moore (2002), this kind of order effects are
typically characterized as a byproduct of shift-
ing comparison standards: When questioned
first about Bill Clinton’s honesty, respondents
compare him to some standard based on their
background knowledge and memories. But
when Clinton’s honesty is questioned after
Gore’s, then the proximity of the two questions
leads respondents to incorporate their previous
assessment of Gore in their comparison stan-
dard, potentially affecting their judgment. An
analogous scenario is expected to occur when
the question about Gore is preceded by the
question about Clinton. The verbal account
given by Moore is close to the way order effects
occur in a quantum probability account, where

Table 1
Order Effects and the QQ-Values

Data Differences
P P, (Gore “yes”) P, (Gore “no”) P-Q P,-Q, P,—-Q,
P, (Clinton “yes”) 4899 .0447 P, - Q,. —.0726 0192
P, (Clinton “no”) 1767 2886 P, —Q,. —.0224 .0756
Q Q-,] (Gore “yes”) Q-,z (Gore “no”) P-Q P-,] - Q-,] P, - Q-,2
Q, . (Clinton “yes”) 5625 .0255 P, —Q,.
Q... (Clinton “no”) 1991 2130 P, — Q,.

Note. Data from the Clinton (Question A) and Gore (Question B) poll showing order effects. Response matrix P concerns
question-order Clinton-Gore (A — B) whereas response matrix Q concerns question-order Gore-Clinton (B — A). The
order effect (i.e., the difference between both data tables) is shown on the difference matrix P — Q in the upper-right part.
The two QQ-values are given by summing the differences along the diagonals as displayed in the lower right table. As the
sum of all differences needs to be zero, the two QQ-values are the inverse of each other. For the data shown here the
QQ-values are —.0726 + .0756 = .0030 and .0192 — .0224 = —.0032. In the current article, we always use the values of

the main diagonal (i.e., .0030 in this example).
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the response probabilities for the second ques-
tion are based on an updated belief state that is
determined by the response given to the first
question.

One intriguing aspect in the differences
found between P and Q is their mirror-like
pattern: The difference found between the cases
in which people responded “yes” to both ques-
tions (—0.0726) is pretty much symmetrical to
the difference found when both responses were
“no” (0.0756). A similar pattern is found in the
order effects of the other two response patterns
(0.0192 vs. —0.0224). Overall, this mirror-like
pattern suggests that order effects amount to a
shift in probability across the response matrices’
diagonals (see the P — Q matrix in the lower-
right part of Table 1). Wang et al. (2014) argued
that according to their quantum-probability
model, the sums of the diagonals of P — Q,
which will be designated as QQ-values (Quan-
tum Question values), are always expected to be
zero." This result, which is designated as QQ-
equality, emerges from the fact that the quan-
tum model is constrained to produce shifts in
probability mass across the two diagonals of the
P — Q matrix.? According to the quantum-
probability account, when individuals do not
have a clear opinion on both politicians, their
measurements are complementary: these mea-
sures cannot be obtained simultaneously and the
order of the measurements (questions) matter in
the sense that the first provides a contextualized
state upon which the second will be framed.
Wang and Busemeyer (2015) argued that com-
plementarity will depend on the individuals’
experience with the subject being questioned
and is also expected to be a function of factors
such as respondents’ age, level of cognitive
development, among others. Complementarity
is then mostly expected when respondents are
presented with uncommon or familiar pairs of
questions for which answers have to be pro-
duced on the fly.

Using a corpus of 72 data sets, 70 coming
from representative U.S. surveys (most contain-
ing more than 1.000 adult respondents) and two
coming from their own experimental studies,
Wang et al. (2014) tested QQ-equality directly.
The test relied on a constrained parametrization
of the two multinomial distributions associated
with matrices P and Q, a parametrization that is
represented here by the tree model illustrated in
Figure 1. According to this model, which we

refer to as the QQ-test model, probability mass
can only shift between cells in the same diago-
nal, namely between response pairs “yes’—
“yes” and “no”-“no” (e.g., between P, and
P,,), and between pairs “yes”—“no” and “no”-
“yes” (e.g., between P, , and P, ,). Parameter 0,
determines how much probability mass is attrib-
uted to each diagonal of the matrices. The shifts
within the diagonals are captured by parameters
0,, 05, 0,, and 0. Irrespective of the values
taken by the model parameters, QQ-equality is
bound to hold. Besides QQ-equality, this model
imposes no other constraints on the multinomial
distributions.

Goodness-of-fit tests showed that the QQ-test
model was rejected in approximately 5% of the
data sets, in line with the nominal rejection rates
expected under the null hypothesis. Figure 2
depicts the observed distribution of QQ-values
(Left Panel), which is concentrated around zero,
demonstrating an impressive consistency of the
data with QQ-equality. This result is reflected in
the summed misfits (quantified by the G statis-
tic), which did not turn out to be statistically
significant (summed G*(72) = 75.91, p = .35).°
The right panel of Figure 2 further shows that
there is no obvious relationship between the
magnitude of the QQ-values and the overall size
of the order effects. The goodness-of-fit tests
conducted by Wang et al. (2014) assume that
responses are independent and identically dis-
tributed (i.i.d.) within each tree in Figure 1.*
Realistically, the i.i.d. assumption should not be
expected to hold here given that the data come
from heterogeneous respondents that belong to
groups associated with quite distinct data-
generating probability distributions (e.g., con-
servatives, liberals). Fortunately, it can be easily
shown that QQ-equality is bound to hold under
heterogeneity. This fact, together with QQ-test
model’s lack of further constraints other than
QQ-equality dismiss any major concerns with

! Wang et al. (2014) showed that under more relaxed as-
sumptions, their quantum model can at most predict minute
deviations from zero (see their supplemental information).

2 A formal proof of this result is given by Wang et al.
(2014).

3 Data and scripts using the MPTinR package (Singmann
& Kellen, 2013) are available at https://osf.io/n9q2m/

4 Under i.i.d., the goodness of fit of the QQ-test model (here
quantified by the G? statistic) is asymptotically distributed as a
x> distribution with one degree of freedom (the data in each
study provide a total of six degrees of freedom).
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Figure 1. QQ-test model. Subscripted parameters 6 at the nodes denote branch probabilities,
and terminal nodes denote the observed response categories.

Wang et al.’s testing of the latter using aggre-
gated data.

In addition to demonstrating the presence of
QQ-equality, Wang et al. (2014) checked
whether the data as a whole could be success-
fully described by some plausible cognitive
models based on classic probability theory (see
their Supplemental Information). It is important
to note that the QQ-test model and these alter-
native cognitive models operate at distinct lev-
els, given that the former does not postulate any
specific processes, whereas the latter do.” In this
sense they should not be seen as direct compet-
itors. However, the relative success of alterna-
tive models has the potential of informing us of
the suitability of the quantum-probability ac-
count. For instance, previous work demon-
strated the inability of classic Bayesian and
Markov models to account for this kind of order
effects, suggesting that the adoption of a quan-
tum-probability account may be necessary (e.g.,
Busemeyer, Wang, & Lambert-Mogiliansky,
2009). In the present case, Wang et al. showed
that two classic-probability models, a repeat-
choice model and an anchoring-adjustment
model, were rejected by the data as they failed
to accurately characterize the observed order
effects while assuming QQ-equality. Although
Wang et al. admitted that the development of
better classic-probability models is both possi-
ble and desirable, they also argued that these
models are likely to be overly flexible and pre-
dict QQ-equality only within limited ranges of
parameter values. Because the quantum ac-
count (instantiated by the QQ-test model illus-
trated in Figure 1) is bound to predict QQ-
equality irrespective of parameter values, the
data will always be more supportive of it. Over-
all, Wang et al. demonstrate that the observation
of QQ-equality in human judgments introduces
strong constraints on theories concerning order
effects.

The goal of the remainder of the present
manuscript is to provide a first response to
Wang et al.’s (2014) call for the development of
classic-probability models that predict QQ-
equality. We will focus on the class of repeat-
choices models, in which the model originally
discussed by Wang et al. can be included. As
will be shown below, some repeat-choice mod-
els are constrained to predict QQ-equality,
whereas others predict QQ-equality with high
likelihood. Also, some of these models are
able to fit the data corpus as well as Wang et
al.’s quantum account. Altogether, these the-
oretical and empirical results indicate that the
class of repeat-choice models provides a suit-
able alternative to the quantum account. Fi-
nally, we challenge the implicit assumption of
respondent homogeneity in Wang et al.’s tests
and raise an important issue that so far ap-
pears to have been overlooked in this line of
research, namely the impact of respondent
heterogeneity in the testing and rejection of
some of the candidate models. Specifically,
some of the simpler candidate models consid-
ered can be spuriously rejected due to distortions
introduced by the aggregation of heterogeneous
respondents. The problem is that although QQ-
equality is always preserved in aggregated data,
other properties are not. This situation is ex-
tremely problematic when attempting to test mod-
els that impose constraints above and beyond QQ-
equality in a fair manner.

S This assertion deserves some clarification: Quantum
theories of cognition do in fact postulate specific processes
(e.g., they postulate initial belief states that undergo a series
of transformations or updates). However, the QQ-test model
used by Wang et al. (2014) does not explicitly characterize
any of these processes, only the QQ-equality prediction that
emerges from them.
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Figure 2. Analysis of the 72 data sets reported by Wang et al. (2014). Left panel:
Distribution of QQ-values. Center panel: Distribution of p values for the QQ-test model. Right
panel: QQ-values against size of the order effect (in terms of chi-square effect size Cohen’s
w). The three outliers in terms of order effect size are (in decreasing order): the abortion
question, one of the two laboratory experiments, and the black-white Gallup poll (see Wang

et al., 2014, supporting information).

Varieties of Repeat-Choice Models

To facilitate the introduction and discussion of
the class of repeat-choice models, we begin by
introducing a general model, which we refer to as
M. All repeat-choice models discussed hereon
are special cases of M,. Figure 3 provides an
illustration of how M, accounts for the cells of
matrices P and Q. Figure 4 describes a nonex-
haustive hierarchy of submodels that can be de-
rived from M,,. As shown in Figure 3, the model
assumes a set of four so-called preference states
S;,; that characterize the probabilities associated to
a (sampled) respondent having a specific prior
belief or opinion regarding the two questions
posed (where subscript 1 codes “yes” and 2 codes
“no”).° These preference states are assumed to be
unaffected by the order of the questions.

When individuals provide a first response based
on state S;; there is a probability ag;; that the
subsequent response will be a function of the latter
one. This possibility simply reflects the fact that
the response to the second question occurs with
the knowledge that a previous question was just
asked. For example, if a respondent notices that
the two questions are related (e.g., she would keep
in mind that Clinton and Gore were part of the
same US administration), she might tap into the
same information structures when producing her
second response. If the second response happens
to be a function of the first, then with probability
ro.i; the second response is exactly the same as the
previous one (i.e., there is an assimilation effect),

and with probability 1 — rq;; the opposite re-
sponse is produced (i.e., there is a contrast effect).
With probability 1 — ag ;; the second response is
entirely determined by S; ;, which means that no
order effect is expected. These probabilities a and
r are dependent on the question order (O = P or
O = Q) as well as on the respondent’s preference
state.

As it stands, M, is not a very interesting nor
useful model given that it can account for any
data that could observed in P and Q (e.g., all
types of order effects as well as their absence).
To make matters worse, the number of free
parameters it postulates (nineteen) is much
larger than the six degrees of freedom provided
by the data (i.e., the model is oversaturated; see
Bamber & Van Santen, 2000). However, some
special cases of M, described in Figure 4 do
impose testable constraints, including QQ-
equality. The special cases of M, described in
Figure 4 and discussed below follow two dis-
tinct assumptions: The subset of M; models
assumes that the processes underlying response
dependencies are independent of question order,
whereas the subset of M, models assumes that
such processes depend on the order in which
questions are posed.

¢ Note that we are using the term “preference” rather loose-
ly. Moreover, note that because 21-2:1 f: 1S = 1, a com-
pletely unconstrained characterization of these probabilities
can be achieved via three nonredundant S; ; parameters.
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Figure 3. Model M,,. Subscripted parameters S, a, and r denote branch probabilities, and
terminal nodes denote the observed response categories.

The simplest member of the class of repeat-choice
models discussed here, model M, /M., s, only
assumes four parameters. This restricted model
assumes that the preference states are condition-
ally independent such that the four possible
preference states S, ; are defined by independent
response probabilities for each of the questions,
with Sl,l = Sl-S-I’ S1,2 = Sl(l - S-l)’ SZ,I =
(1 - Sl-)S-l’ and 52’2 = (1 - Sl)(l - Sl) This
model also assumes that the probability of the

second response being dependent on the first, as
well as the probability of the previous response
being repeated, is the same across different
preference states and question orders (i.e., the
model assumes single a and r parameters). Al-
though this simple model always predicts QQ-
equality, it grossly fails to characterize the data
corpus. But as discussed in detail below, such
failure is ultimately noninformative with re-
spect to the adequacy of the model as it is

a and r parameters are M 0 a and r parameters depend on
order independent Wmcwmismat‘:h

M 1 M 2 a and r parameters depend on
Single a p::‘glg]‘}:t; . Single a preference (yes or no)
parameter parameter
Single r
arameter g
’ M 2yn
M la 1r M 2a M 2
Single a .
i Singls
parameter Single r Single a ng etr
arameter parameter parameter
Single r P Single a e s
parameter parameter reference states
are conditionally
independent
M lar / M 2ar ’
MZyn,a MQyn,S MQyn,r

Preference states S
are conditionally
independent

M 1ar,S/M2ar,S

Figure 4. A non-exhaustive hierarchy of repeat-choice models. Parameter subscripts are

omitted for purposes of clarity.
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expected to fail when fitting aggregated data
coming from heterogeneous respondents.

Submodel Assuming Question-Order
Independence

First, let us consider a submodel M, in
which the a and r parameters are independent of
the order in which the questions are posed (i.e.,
ap;; = aq;; and rp;; = rq,;; so we drop the
question-order subscript Q). This implies that
the probability of the second response being
dependent on the first is independent of the
order the questions. In a way, one could argue
that this restriction reflects the notion that some
individuals (in particular those without any
strong or clear opinions about both questions)
might simply produce a second response that
repeats the previous one or generates the oppo-
site response, without really expressing their
preference state. However, one does not neces-
sarily have to commit to this specific interpre-
tation, as these parameter restrictions could sim-
ply reflect the notion that respondents are aware
of their preferences for both questions but
sometimes decide to express a second response
as a function of their first, in a way that is
independent of the question order. Submodel
M, yields the following equations for P and Q:

Py =8ar + S0l —apy) + S5a10r2,
Pio=Spa1 (1 —ry )+ S0a15(1 = r )
+ 8121 —app),
Py =810y (1 = rp ) +8(1 —ayy)
+ 82005 5(1 = 1r22),
Pyo = 8y1a5 10,1 F S20a25r25 + S20(1 = ay),
Qi =Sanry Sl —ay ) + S1a1r2,
Qi = Si0a15(1 =15 + 81,1 —ay)
+ 82005 5(1 = 1r22),
Qui = Sa (1 =) + 831a0,(1 =y )
+851(1 —ay ),
Q22 = S10a10r12 + S20a2012
+ 822(1 = azy).

Although M, has a total of 11 parameters,
still outnumbering by far the six degrees of
freedom provided by the data, it still imposes
testable constraints. Specifically, M predicts

QQ-equality, irrespective of the values taken by
its parameters:

P i —Qu i +P—Qy
= Sl,zal,z"l,z - 52,102,1’”2,1 + 52,1a2,1"2,1

= 812010812
=P = Q2 t Py —Qy
=Spa (1= ry) = Sa05(1 —1r30)
+ Sz,zaz,z(l - "2,2) - Sl,lal,l(l - "1,1) =0

When fitted to the 72 data sets analyzed by
Wang et al. (2014), M, produced the exact
same G values as the QQ-test model (summed
G* = 75.91). Also, the p values for M, were
obtained with a semiparametric bootstrap pro-
cedure (van de Schoot, Hoijtink, & Dekovic,
2010) and, and aside from the variability com-
ing from the bootstrap sampling, were pretty
much identical to the p values of the QQ-test
model (see Figure 5, Left Panel). Furthermore,
the rate of significant misfits (i.e., p < .05) is at
the nominal level of « = .05 (4 out of 72 data
sets are significant which corresponds to .056).
These results simply reflect the fact that that the
QQ-test model and M, occupy the same pre-
diction space, in which probability mass can
only shift across the matrices’ diagonals (with-
out the imposition of any further constraints).

Submodel Assuming That Question
Order Matters

In the previous subsection, we showed that
imposing the constraint that the @ and r param-
eters were independent of question order (i.e.,
ap,;; = aqg,,; and rp,;; = rq;) led to the pre-
diction of QQ-equality with a model that is
equivalent to the QQ-test model. However, this
imposed constraint can be seen as not quite
representative of the way many individuals
would base their second response on the first
one: Consider a respondent that finds Clinton to
be dishonest but believes that Gore is honest
(i.e., S, ). According to M, in the case of
question order P (i.e., Clinton—Gore), when
confronted with the second (Gore) question, the
respondent will notice the similarity between
the two questions and repeat his previous “no”
response to Clinton with probability a, ;75 ;. In
the case of Q (i.e., Gore—Clinton), the same
respondent would respond “yes” to both ques-
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Figure 5. Comparison of repeat-choice models M, and M, fitted to the 72 data sets of
Wang et al. (2014). Left panel: (bootstrap-based) p value distribution of M, (which enforces
QQ-equality and is equivalent to the QQ-test model). Center panel: (bootstrap-based) p value
distribution of M, (which does not enforce QQ-equality). Right panel: direct comparison of

G? fit statistics for both models.

tions with the same probability. Intuitively, one
would expect that these probabilities would dif-
fer as a function of the match/mismatch be-
tween the two preferences, as well as a function
of the specific preference manifested in the first
response. Because of this discrepancy between
our intuition and the behavior of submodel M,,
we introduce an alternative submodel of M,,.

Let us then consider another submodel,
which we refer to as M,, that incorporates the
above-described desiderata. M, assumes that
the response probabilities associated to P and Q
correspond to:

Py =Sa g+ Sl —ayy) + Sipa0r0,
Pio=8 a1, (1 —r )+ Sima(l —rp)

+ 8121 —ay),
Py =810y (1 = rp ) +85,1(1 —ayy)

+ 820a55(1 = 1ry0),

Py =8y 1ay1m2,1 + Sa0a25r25 + S25(1 = azy),
Qi =Sar S —ayy) + 8545712,
Qi =810a01(1 = ryp) +812(1 —ay)

+ 820a55(1 = 1r25),
Q1 = S1a1(1 = ry) + 8341001 —r2)

+81(1 —ay ),
Q2 = 81001121+ S20a20125 + S5(1 — a3 ).

Like M, this model has 11 free parameters.
According to M,, in cases where the prefer-

ences in the two questions disagree (S;, and
S5.1), the postulated a and r parameters depend
on the question order and the first question
asked. Specifically, M, restricts M, such that
ap,; = aq;; and rp;; = rq;,; For instance, in
the case of condition P, a respondent in state
S, would respond “no” to the Gore question
with probability a, ; 7, ;, whereas in condition
Q, she would respond “yes” to both questions
with probability a, , r; ,. When the preferences
in the two questions agree (S, ; and S, ,), M,’s
predictions are equivalent to M, in the sense
that the same a and r parameters apply to both
P and Q. Based on these predictions, it is easy
to see that M, does not necessarily predict
QQ-equality. For example:

P],] - Q],] + P2,2 - Q2,2 =(S12 = S20)a10712
+ (82,1 — S10)ax 112,

Given the robust observation of QQ-equality,
the lack of such a constraint can be perceived as
a shortcoming or even as a disqualifying fea-
ture. However, when comparing models based
on the constraints they impose on data, it is
important to keep in mind the distinction be-
tween likelihood-function-based and parame-
ter-based constraints. So-called likelihood-
function-based constraints are part of the
model’s functional form and do not depend on
parameter values. In contrast, parameter-based
constraints focus on the plausibility and/or ad-
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missibility of certain parameter values. This dis-
tinction is often made when comparing Bayes-
ian and non-Bayesian methods of hypothesis
testing and model selection (for a discussion,
see Lee, 2016).

In the present case, the possibility of devia-
tions from QQ-equality raises questions regard-
ing its likelihood and expected magnitude. Such
questions can be answered via an evaluation of
M,’s prior predictive distribution (e.g., Lee,
2016). This distribution is a Bayesian construct
that gives the distribution of data that is ex-
pected under a model a priori. We obtained a
prior predictive distribution for QQ-values by
computing them over a large number of param-
eter values that were sampled from noninforma-
tive prior distributions. These noninformative
priors simply reflect our present ignorance re-
garding the parameters. As can be seen in the
left panel of Figure 6, the prior-predictive dis-
tribution of QQ-values obtained with noninfor-
mative priors is highly peaked at 0, with 95% of
values between —0.22 and 0.22. This result
indicates that QQ-equality is extremely likely. It
is important to note that the spread of the prior
predictive distribution is a function of the upper
bound of the a parameters. Because the priors
used were noninformative, a parameters could
take on any value between 0 and 1. However, if
one incorporates the plausible notion that the
probability of the second response being depen-
dent on the first one is rather low (i.e., a is
between 0 and .50), then the resulting (zero-
centered) prior predictive distribution has 95%
of its values between —0.11 and 0.11 (see the
right panel of Figure 6). The latter range of
values is somewhat close to the actual data,
whose minimal and maximal values were
—0.09 and 0.09.

When fitted to the 72 data sets analyzed by
Wang et al. (2014), M, produced a summed G*
of 79.04, which is marginally worse than the
summed misfits of M, and the QQ-test model
(AG* = 3.13). Despite this marginal difference
at the level of summed misfits, we found con-
siderable differences when comparing them at
the level of single data sets. Specifically, the
majority of M, s misfits, with a summed G~ of
50.99, can be attributed to 10 (14%) data sets
for which the model was rejected (p < .05). Out
of the remaining data sets, 32 (44%) M, were
perfectly accounted for (G* = 0; compared with

5 or 7% for M), and the remaining 30 (42%)
led to small, nonsignificant misfits.” The distri-
bution of p values for M, is provided in the
center panel of Figure 5, and looks distinct from
the roughly uniform distribution that is found
for the QQ-test model or M (see the left panel
of Figure 5) and what is typically expected in
the fits from model that corresponds to the data-
generating processes. However, this distribution
of p values does not necessarily indicate that the
model is unsuitable. For example, this kind of p
value distributions are found in models whose
prediction space corresponds to a convex poly-
tope (for a review, see Davis-Stober, 2009).8
The right panel of Figure 5 directly compares
the misfits of M, and M, (and the QQ-test
model) and shows that for many data sets for
which M, provides a perfect account M,
shows some misfit while the same does not
seem to hold the other way round. Overall,
nothing besides the slightly larger rejection
rate (14%) speaks against the suitability of
this model.

Testing Additional Parameter Constraints

Given that M, and M, have 11 free param-
eters to describe the six independent data points
provided by the two question orders, it is inter-
esting to check whether further restricted ver-
sions can account for the data and whether they
yield identifiable parameters. The restricted
models considered here are described in Figure
4 and their relative goodness-of-fit performance
(quantified via the G? statistic) is reported in

7 We entertained the possibility that that the data sets for
which M, provided significant misfit were outliers in some
sense, but we did not find any evidence for this idea. The 10
data sets with significant misfit were (in order of decreasing
misfit): 1 Pew study, the abortion question pair, and 8 more
Pew studies (66 of the 72 data sets were Pew studies on
various topics). Furthermore, G* values obtained with M,
were not related to any characteristic of the data set with the
exception of the magnitude of the order effect w, r(70) =
0.31, p = .008. Such a correlation was also observed for
M, and the QQ-test model, r(70) = 0.42, p = .0002.

8 For example, consider the hypothesis H,:0 = .50
regarding the rate parameter of a binomial distribution. The
sampling distribution of the G? statistic of this hypothesis
follows a mixture of x> distributions, specifically
%Xflf:() + %Xf}f:]. The distribution of p values coming from
this mixture 1s not uniform, as it places half of the proba-
bility mass on p = 1 and the other half on p values between
.50 and 0.
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Figure 6. Distribution of 10,000 simulated QQ-values from the M, model. Left panel:
using flat priors on all parameters; Right panel: @ is drawn uniformly from [0, 0.5], flat priors

on all other parameters.

Table 2. As previously mentioned, these tests
imply that the data come from homogeneous
respondents, which is very unlikely to hold
here. The presence of respondent heterogeneity
can be problematic for some of the models
included here, an issue that we discuss in
greater detail in the following section. But in the
present analyses we simply follow Wang et al.
(2014)’s approach and assume that relying on
aggregate data is appropriate for the purposes of
model comparison.

The goodness-of-fit results reported in Table
2 show that most constraints lead to relatively
small increases in misfit relative to the QQ-test
model, with the exception of model M,,, ,

Table 2
Goodness of Fit of Repeat-Choice Models

Model Parameters Summed G>  AG?

M, 19 0 ~75.91
M/QQ-test model” 11 75.91 0

T 8 75.91 0

1 8 76.20 29
M, 11 79.04 3.13
M,, 8 79.04 3.13
M,, 8 85.72 9.82
My, 7 85.72 9.82
Moy 6 133.75 57.84

o 6 88.30 12.39
Mays 6 1,17821  1,102.30
Mo M, 5 336.73 260.82
M Miars 4 1,436.70  1,360.78

Note. Models with an asterisk (*) enforce QQ-equality as
a parameter-free prediction. Summed G* Summed G” of
the model fitted to the 72 datasets reported by Wang et al.
(2014). AG*: Difference between the summed G of a
model and the M ,/QQ-test model.

(AG? = 57.84), models enforcing all a and r
parameters to take on the same value (AG* =
260.82), and models imposing conditional inde-
pendence on the preference states S, ; (AG* =
1102.30 and AG* = 1360.79). Among the sim-
pler models, the best-performing one in terms of
goodness of fit was ./\/lzy,,',.9 Given that this
model yields identifiable parameters, it is inter-
esting to see what kind of characterization of the
data it provides. Figure 7 (right panel) shows
the distribution of parameters for M,,,, : First,
the estimates of the S, ; states indicate that S,
and S, , are more frequent than the incongruent
states S, , and S, ;. Moreover, both a parameters
seem to have very similar distributions, with
medians around .20 and .30, respectively. These
small values are in line with the notion that only
a limited portion of second responses is based
on the first response (reflecting the small mag-
nitude of the order effects). With regards to the
r parameter, both its mean and median are
around .50 suggesting that across all data sets
assimilation or contrast effects are about equally
likely to appear. The latter result is not at all
implausible given the large variety of questions
considered in the data corpus.

? We directly compared the performances of the QQ-test
model and submodel M., , using the Fisher information
approximation (FIA; Kellen, Klauer, & Broder, 2013). FIA
is a model-selection statistic that penalizes models accord-
ing to the flexibility that results from their functional form.
Although M, , . has one free parameter more than the
QQ-test model, it was considered to be the most parsimo-
nious of the two, outperforming the QQ-test model in 92%
of the data sets.
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well as the median, the “x” shows the mean.

The Problem of Aggregating
Heterogeneous Data

When researchers aggregate data across items
and/or respondents, they are (almost invariably)
illegitimately assuming that these observations
are all independent and identically distributed.
The risks associated with aggregating heteroge-
neous sources of data have become well-known
since Estes (1956), and continuous efforts have
been made to develop methods that detect (e.g.,
Smith & Batchelder, 2008) and accommodate
heterogeneity (e.g., Klauer, 2006; Lee &
Wagenmakers, 2013). However, they are still
often overlooked, which sometimes leads to
controversial findings (e.g., Davis-Stober, Park,
Brown, & Regenwetter, 2016; Wulff & van den
Bos, in press). In the present case, one could
raise the concern that the presence of heteroge-
neity among respondents, which is virtually cer-
tain according to previous work on the model-
ing of survey data, is likely to affect the
modeling of QQ-equality. Given that Wang et
al.’s (2014) data corpus consists almost entirely
of aggregate data obtained from previously pub-
lished surveys across a wide range of topics, we
are unable to implement direct statistical tests
on respondent heterogeneity.

The fact that the models were fitted to aggre-
gate data, with each individual respondent only
contributing with a single data point (one ob-
servation in one of the cells of matrix P or Q),
raises important concerns regarding the inter-
pretation of the parameter estimates. Specifi-

cally, it seems unlikely that the probabilities
estimated in the QQ-test model or the different
repeat-choice models accurately capture the sto-
chastic nature of individuals’ responses but
rather the relative proportions of different types
of individuals. Assuming otherwise, that inter-
individual variability is equivalent to the intra-
individual variation, amounts to an assumption
known as ergodicity. The problems this as-
sumption can generate have been well docu-
mented in the literature (e.g., Molenaar, 2004).

One important way in which individuals dif-
fer is that their response patterns tend to be
consistent with one among several qualitatively
distinct subgroups, which in turn implies that
matrices P and Q emerge from mixtures of
probability distributions. For example, it is ex-
pected that political views (e.g., whether one is
a supporter of the American Republican or
Democratic party) lead to distinct response pat-
terns for the Clinton and Gore questions. In-
deed, it is well established in social-survey re-
search that questions involving politics as well
as many other matters of opinion have subpopu-
lations with distinct response patterns. When
data are aggregated, the differences between
these subpopulations can produce spurious vio-
lations of the conditional independence of re-
sponses (e.g., Duch, Palmer, & Anderson,
2000).

Concerning QQ-equality per se, it seems ex-
tremely unlikely that across several data sets on
distinct topics, such a result could emerge from



adly.

is not to be disser

)
2]
=]
>

gical Association or one of its allied publishers.

ghted by the American Psycholo

ly for the personal use of the

This document is copyri

This article is ir

12 KELLEN, SINGMANN, AND BATCHELDER

mixtures of subgroups for which QQ-equality
does not hold. Moreover, QQ-equality cannot be
spuriously violated due to aggregation of hetero-
geneous data, if QQ-equality holds for all sub-
groups. To see this, consider two subgroups A and
B, with their respective proportions in the data
being m and 1—m, respectively. If QQ-equality
holds for both subgroups, then

QQ-value = ‘rrP’?y1 + (1 - ‘l'r)P'El
-mQ, — (1-mQf,
+aPy, + (1 — mP5,
- mQ), — (1 - mMQ3,
= TF(P?J - Q?,] + Pg,z - Qgi,z)
+(1=m®, - Qf, + P}, - Q)
=0.

This fortunate situation for QQ-equality does
not hold for other properties in the data, how-
ever. For instance, conditional independence of
the two preferences (e.g., opinion on Gore does
not depend on the opinion on Clinton and vice
versa) can be violated at the aggregate level,
even when each subgroup shows conditionally
independent preferences. These violations are
well known and are in fact the basis of many
prominent data-analytic methods, such as La-
tent Class Analysis (Clogg, 1995; Lazarsfeld &
Henry, 1968). Latent Class Analysis is a widely
used model family in the social sciences de-
signed to interpret the dependencies between
responses in contingency tables defined by sev-
eral questions. The responses are then described
in terms of a mixture of distributions satisfying
conditional independence. In these models, it is
precisely the lack of i.i.d. responses that pro-
vides the signal that is being modeled. Unfor-
tunately, the experimental design underlying the

present data corpus do not provide sufficient
degrees of freedom to implement the methods
used in Latent Class Analysis.

The fact that certain properties in the data do
not hold under heterogeneity can be extremely
problematic for models that impose constraints
above and beyond QQ-equality, as this implies
that they can be spuriously rejected. To demon-
strate the impact that data heterogeneity can
have on model selection, let us consider sub-
model M, /M, s, which grossly misfitted
the data (see Figure 4 and Table 2). As previ-
ously mentioned, this model assumes condi-
tional independence on preference states S; ; and
imposes restrictions on both a and r parameters.
We generated artificial data from M, ,, o/M,,, ¢
using four different sets of parameter values
representing distinct subgroups. For example,
let us assume that these data come from a Clin-
ton-Gore poll and that the four groups differ in
both their attitudes toward Clinton and Gore and
their repeat-choice probabilities: 1) “pure”
Democrats (i.e., large probability of responding
with “yes” to both questions) with a strong
assimilation tendency; 2) Democrats who were
put off by Clinton’s extramarital affairs, with
moderate contrast tendency, 3) “pure” Republi-
cans in strong opposition to the Democrats and
with a strong contrast tendency; 4) Republicans
who liked Clinton but did not trust Gore, with
moderate contrast tendency. Table 3 gives an
overview of proportions and the exact parameters
of each group comprising the mixture. We ran-
domly generated one-thousand P and Q matrices
with 200 respondents per matrix (i.e., 400 in total
per simulated dataset) using the mixture proba-
bilities  given in Table 3 and fitted them with
both M, Mo, s and M, IM,,,. As shown
in Figure 8, model fits produced highly skewed

Table 3
Hypothetical Parameters of the Restricted Repeat-Choice Model M, ¢
“Pure” “Put off” “Pure” “Clinton”

Parameter Democrats Democrats Republicans Republicans

S, .90 .50 .10 .90

S, .90 .90 .10 .60

a .70 .30 .60 .35

r .80 .30 .90 .20

T 25 25 45 .05

Note. In each step, we simulated 200 individual respondents per matrix with the given
parameter values (i.e., total N = 400 per simulated dataset), m = mixture weight.
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p value distributions, with statistically signifi-
cant misfits (p < .05) occurring in 40% of the
data sets for M,,, /M,,, s (Left Panel) and
39% for M,,/M,,, (Center Panel). As ex-
pected, the average QQ-value was 0 (Right
Panel) and the QQ-test model was rejected in
approximately 5% of the data sets, in line
with the nominal rejection rate. These simu-
lation results show that the presence of indi-
vidual heterogeneity in the data can lead to an
apparent failure of a model, despite the fact
that all the responses were generated by pro-
cesses in line with the assumptions of that
model. This situation suggests that the present
rejection of constrained models such as
M 5iMs,,.sand M, /M, should be seen
with skepticism.

It would be unwise to interpret the vulnera-
bility of some repeat-choice models to respon-
dent heterogeneity as a shortcoming or as a
disadvantage relative to the QQ-test model. Ul-
timately, we should strive for models to succeed
or fail according to their ability to capture the-
oretically meaningful information in the data,
not distortions introduced by the researchers
when incorrectly assuming that there is no in-
dividual heterogeneity.

Discussion

The importance of the test of the QQ-equality
reported by Wang et al. (2014) comes from the

expectation that such an a priori constraint
would fail when tested with such a large and
diverse data corpus. Wang et al.’s result became
even more impressive when showing that plau-
sible classic-probability candidates that relied
on response repetition and anchoring effects
failed to account for such data (see also Buse-
meyer et al., 2009). The failure of these alter-
native models indicates that the development of
such models is far from being a trivial endeavor.
The difficulty here is not necessarily the devel-
opment of a model that can fit the data corpus,
as that can be achieved by specifying an overly
flexible model with little or no constraints. In-
stead, the challenge lies in the development of a
model—based on reasonable assumptions—
that expects the presence of QQ-equality. Upon
presenting their results, Wang et al. (2014)
urged researchers to develop alternative ap-
proaches based on classic probability theory.
The present work answers Wang et al.’s call
for alternative models by showing that the QQ-
equality constraint also emerges under a classic-
probability framework when assuming specific
mechanisms that introduce response dependen-
cies. Specifically, we showed that some repeat-
choice models assuming that respondents can
change their second response based on a de-
tected similarity between the two questions also
predicts QQ-equality as a parameter-free pre-
diction. This prediction holds when the similar-
ity-based dependencies are independent of
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question order but determined by the respon-
dents’ latent preferences (M, and its respective
special cases). Furthermore, we also showed
that repeat-choice models assuming that re-
sponse dependencies are moderated by question
order and the agreement/disagreement of the
latent preferences concerning the two questions
(M, and its respective special cases) do not
impose QQ-equality but establish it as a highly
likely event and provide an at least as good
account as the QQ-test model. The success of
such models does not represent a detriment of
Wang et al.’s quantum-model account; instead,
their success helps to delineate some of the
conditions under which an alternative classic-
probability account can succeed, and allows for
the development of models based on both ap-
proaches to occur in tandem. Similar work has
been done in the study of superposition effects
in memory, where quantum and classic-
probability accounts have been proposed
(Brainerd, Wang, & Reyna, 2013; Kellen, Sing-
mann, & Klauer, 2014).

In addition to the development of alternative
models, we discussed the challenge that the
(unaccounted) presence of individual heteroge-
neity represents for the modeling of this kind of
choice data, as some of the simpler models can
be spuriously rejected at high rates. Given the
possibility of such spurious rejections, it seems
critical to first and foremost develop tests that
focus on individual data and enable us to char-
acterize the cognitive processes underlying in-
dividuals® responses (e.g., estimate individual
choice probabilities). For instance, individual-
level data would allow us to have a better esti-
mate of how many individuals manifest order
effects and whether these effects imply QQ-
equality.'”

The use of aggregated data leads to somewhat
ambiguous interpretations of parameters. As
previously mentioned, the fact that each person
only provided two responses indicates that the
probabilities described by the repeat-model pa-
rameters are more likely to represent propor-
tions in the sample (e.g., parameter a indicates
the proportion of respondents that based their
second response on the first one) rather than
stochastic processes that occur on an individual
level. This ambiguity coming from the use of
aggregated data glosses over fundamental is-
sues that were recently discussed by Khren-

nikov, Basieva, Dzhafarov, and Busemeyer
(2014): Khrennikov et al. distinguish between
tasks or questions in which responses are ex-
pected to be replicated by the same respondent
with some probability, and responses that are
expected to replicated with virtual certainty
(i.e., probability 1). For example, consider the
response to the question “do you like choco-
late?”, which is expected to be stable for each
respondent across replications. Now, contrast it
with the responses individuals provide in a psy-
chophysical task, when attempting to judge
whether an auditory signal was just presented,
which are expected to differ across replications.
This distinction is critical when establishing
predictions for a three-question sequence
A-B-A: As shown by Khrennikov et al., when
respondents are expected to produce the same
response to both A questions, the quantum-
probability model does not expect order effects
to be observed. Such effects are only expected
when responses to Question A are expected to
vary across replications with non-negligible
probability. This difference does not hold for
the repeat-choice models given that response
dependencies only occur at the level of the
second question as a way to reconcile or differ-
entiate views given the first response given. It
would make little sense to assume that any
individual respondent engages in some process
of differentiation/reconciliation when produc-
ing a second response, only to immediately af-
terward change the first response based upon
which such differentiation/reconciliation pro-
cesses were conducted.

The issue of response replicability and the
differential predictions coming from it highlight
an important theoretical challenge for the quan-
tum-probability model. Specifically, one could
argue that the model should not predict order
effects in the type of questions addressed in the
data corpus used by Wang et al. (2014). Khren-
nikov et al.’s (2014) discuss different solutions
to these problems, but overlooked the issue of

197t worth noting that an extension of the model to three
questions (something already suggested by Newell, van
Ravenzwaiij, & Donkin, 2013) provides additional degrees
of freedom (a simple extension to three questions would
result in 42 degrees of freedom) that would allow for certain
mixtures to be tested (see Clogg, 1995; Lazarsfeld & Henry,
1968). However, this is still far from a full account of
individual differences.
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data aggregation and individual differences.
Note that according to Wang and Busemeyer
(2015), the measurement complementarity that
results in order effects with QQ-equality is ex-
pected to be present when respondents do not
have clear preferences and have to construct
them on the fly. This means that the QQ-
equality-constrained order effects observed in
the aggregate data can be entirely due to a
proportion of the respondent sample that does
not possess stable preferences regarding the
domains of the questions being posed (e.g.,
individuals that do not care much about pol-
itics might not have stable preferences con-
cerning Clinton and Gore). One interesting
question then is whether we can observe order
effects of differing magnitudes in the same
sample of respondents, and whether the mag-
nitude of these order effects is related with
their familiarity and/or engagement with the
questions’ topics.

The reliance on aggregated data therefore
represents “a plague on both our houses”, al-
though with different symptoms. In the case of
classic-probability models, it produces spurious
rejections at high rates. In the case of the quan-
tum-probability model it places it in a position
of apparent self-contradiction in the sense that
the order-effects used to support it occur with
questions in which it would be more reasonable
for the model to predict no order effects at all.
To overcome these problems, future work needs
to focus on establishing the basic effects on an
individual level. One way to achieve this would
be to move away from questions like the ones
included in the basic data corpus, and instead
rely on responses to perceptual categorization
tasks that allow for replications to occur under
reasonable conditions, and for the similarity be-
tween the different stimuli to be carefully con-
trolled for (e.g., Busemeyer et al., 2009).
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