A Hierarchical Bayesian Signal Detection Model for Confidence Ratings Henrik Singmann (singmann@gmail.com) University of Zurich, Department of Psychology, Cognitive Psychology Unit | # | Source | | N | trials/N | |----|--|----------|-----|----------| | 1 | Dube & Rotello (2013, Exp. 1, Pictures) | | 27 | 400 | | 2 | Dube & Rotello (2013, Exp. 1, Words) | | 22 | 400 | | 3 | Heathcote et al. (2006, Exp. 1) | | 16 | 560 | | 4 | Heathcote et al. (2006, Exp. 2) | | 23 | 560 | | 5 | Jaeger et al. (2012, Exp. 1, no cue) | | 63 | 120 | | 6 | Jang et al. (2009) | | 33 | 140 | | 7 | Koen & Yonelinas (2010, pure study) | | 32 | 320 | | 8 | Koen & Yonelinas (2011) | | 20 | 600 | | 9 | Koen et al. (2013, Exp. 2, full attention) | | 48 | 200 | | 10 | Koen et al. (2013, Exp. 4, immediate test) | | 48 | 300 | | 11 | Pratte et al. (2010) | | 97 | 480 | | 12 | Smith & Duncan (2004, Exp. 2) | | 30 | 140 | | | | Total N: | 459 | | # **Signal Detection Model** - 7 parameter unequal variance signal detection (UVSD) model - $\mu^{\dot{N}} = 0, \sigma^{N} = 1, \mu^{0}, \sigma^{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$ $c_{k_m,m}^{[2]} = c_{k_m,m}^{[3]} - \exp(\log(\mu_{c^{[2]}}) + \delta_{k_m,m}^{P,[4]} + \delta_m^{E,[4]})$ $c_{k_m,m}^{[1]} = c_{k_m,m}^{[2]} - \exp(\log(\mu_{c^{[1]}}) + \delta_{k_m,m}^{P,[5]} + \delta_m^{E,[5]})$ $c_{k_m,m}^{[4]} = c_{k_m,m}^{[3]} + \exp(\log(\mu_{c^{[4]}}) + \delta_{k_m,m}^{P,[6]} + \delta_m^{E,[6]})$ $c_{k_{m-m}}^{[5]} = c_{k_{m-m}}^{[4]} + \exp(\log(\mu_{c^{[5]}}) + \delta_{k_{m-m}}^{P,[7]} + \delta_{m}^{E,[7]})$ #### **Model Fit** ## **UVSD** Hyperparameters | | | | | 4 7 | | |--|-------|-------|-------|--------------|-------------------------| | Param | Mean | 2.5% | 97.5% | | IA . | | μ^0 | 1.76 | 1.34 | 2.13 | ო - | | | σ^0 | 1.44 | 1.35 | 1.53 | sity | | | C ₁ | -0.45 | -0.70 | -0.23 | Density
2 | | | c_2 | 0.35 | 0.12 | 0.56 | | | | c_3 | 0.73 | 0.56 | 0.91 | ~ - | | | C_4 | 1.05 | 0.84 | 1.24 | | | | c ₅ | 1.54 | 1.32 | 1.80 | _ | | | Note: Criteria, <i>c</i> , are on absolute familiarity scale | | | | | -2 0 2 4
Familiarity | (i.e., no increments) ## Parameter Correlations of Participant Effect | | σ^0 | C ₁ | C ₂ | c ₃ | C ₄ | C ₅ | |----------------|------------|----------------|----------------|----------------|----------------|----------------| | μ^0 | .72 | | | .54 | | | | σ^0 | | 15 | 15 | .66 | 15 | 37 | | C ₁ | | | .46 | | .42 | .66 | | $\mathbf{c_2}$ | | | | | .83 | .48 | | C ₃ | | | | | | 15 | | C ₄ | | | | | | .61 | Notes: Correlations in bold (p < .05), other correlations (p < .1). Correlations with criteria, c, are with increments with respect to c_3 , c_2 , or c_4 #### Parameters and their Variability per Experiment 1 2 3 4 1.2 1.6 2.0 0.6 0.8 1.0 Parameter Value | | μ | σ | C ₁ | c ₂ | C ₃ | C ₄ | C ₅ | |----------------|---|---|--------------------|---|---|---|-----------------------| | Dube (P) | • | | - | • | - | - | -+ | | Dube (W) | - | | | | -+ | | • | | Heathcote (E1) | | | -+ | | 1 | | - | | Heathcote (E2) | - | | K | -K) 1 | | - K | K) | | Jaeger | Î | | - | - • - | | | (<u>•</u>) | | Jang | - | - • - | | - • >+ | - + • | køl - | -+ | | Koen (10) | - k⊕ + | <0 > - | 191 | - - | | € | +++ | | Koen (11) | -+ | ─ | - • | - K• 4- | | -1 | - | | Koen (13, E2) | K | ↓ | - | () | - | -19 1− | - | | Koen (13, E4) | | - | () | - | • | -1-1- | | | Pratte | | - k €}- | -191- | - lô l- | + • + | 101- | - - - | | Smith (E2) | | | -+ | - | | | - (0) | 0.5 1.0 1.5 0.0 0.2 0.4 0.5 1.0 1.50.5 1.5 0.2 0.4 0.6 0.51.01.52.0 0.5 1.0 1.5 Parameter Variability (SD Participant Effect) Note: Gray line shows mean of hyperparameter. Upper plots show hyperparameter plus experiment effect. Lower plots show SD of participants for given parameter. #### Summary - 459 participants from 12 experiments were jointly fitted with hierarchical Bayesian UVSD with random effects for participants and experiments. - Model employed latent-trait approach (Klauer, 2010) with full variancecovariance matrix for all 7 UVSD parameters and each random effect. - SD of participant effect was estimated individually for each study (with - normal distribution as hyperparameter), but constant correlation matrix. - Model provided good account and showed clear memory effect (μ^0 = 1.76). Studying increased variability of familiarity distribution by > 40% (σ^0 = 1.44), - clearly larger then previously reported value of 1.25 (Ratcliff et al., 1992). Central criterion, c_3 , located half-way between μ^N and μ^0 . - Outer criteria not symmetric: c_1 considerably further away from c_2 , than c_5 away from c_4 (distance of c_2 and c_4 from c_3 approximately equal). - On participant level, several robust correlations among parameters: - μ^0 positively with σ^0 and middle criteria c_3 (r > .5) - σ^0 positively with middle criteria c_3 (r = .66) and negatively with distances of other criteria ($r \le -.15$) - Positively among all criteria distances (r > .45), very high for inner criteria from middle criteria (r > .8). - Only study using pictures instead of words (Dube & Rotello, 2013, Exp. 1, Pictures) diverged most strongly from hyperparameters. - Within-experiment parameter variabilities were not associated with magnitude of experiment effect (with exception of μ^0).