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Introductory Example

m Two sequences of coin flips:

HTHTHTHT
HTHHTHTT
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Introductory Example

m Two sequences of coin flips:

HTHTHTHT
HTHHTHTT

m What do we know about their difference?

m P. believe 2 more likely than 1 (e.g., Kahneman & Tversky, 1972).
m Actual probability of occurence is identical = (12)8
m Shannon entropy (i.e., — > p;jlog,(p;)) is identical = 1
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Introductory Example

m Two sequences of coin flips:

HTHTHTHT
HTHHTHTT

m What do we know about their difference?

m P. believe 2 more likely than 1 (e.g., Kahneman & Tversky, 1972).
m Actual probability of occurence is identical = (12)8
m Shannon entropy (i.e., — > p;jlog,(p;)) is identical = 1

m Can we formalize intuition that 1 is more regular than 2?
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Introductory Example

m Two sequences of coin flips:

HTHTHTHT
HTHHTHTT

m What do we know about their difference?
m P. believe 2 more likely than 1 (e.g., Kahneman & Tversky, 1972).
m Actual probability of occurence is identical = (12)8
m Shannon entropy (i.e., — > p;jlog,(p;)) is identical = 1

m Can we formalize intuition that 1 is more regular than 2?

Foundational Notion

A string is random if it is hard to describe.
A string is not random if it is easy to describe.
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Algorithmic Complexity

Definition
[Kolmogorov(1965), Chaitin(1966)]
Ku(s) = min{|p| : U(p) = s}

m Algorithmic complexity Ky(s) of a string s is length of shortest
program p that produces s running on a universal Turing machine U.

m Two problems:

Kuy(s) is uncomputable, but can be approximated from above (i.e., upper
semi-computable).
Ku(s) depends on choice of Turing machine U.
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Algorithmic Complexity

Definition
[Kolmogorov(1965), Chaitin(1966)]
Ku(s) = min{|p| : U(p) = s}

m Algorithmic complexity Ky(s) of a string s is length of shortest
program p that produces s running on a universal Turing machine U.

m Two problems:

Kuy(s) is uncomputable, but can be approximated from above (i.e., upper
semi-computable).
Ku(s) depends on choice of Turing machine U.

m Small impact of U for long strings, but strong impact for short strings.

University of Zurich, Department of Psychology 14/07/2015 Approximation of Kolmogorov Complexity Page 3



Algorithmic Probability

A measure that describes the expected output of a random program
running on a universal Turing machine U:

Definition

m(s)= Y 1/2

p:U(p)=s

i.e., sum over all programs for which U with p outputs string s and halts
(Levin, 1977).

m probability that randomly selected deterministic program produces s.
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Algorithmic Probability

A measure that describes the expected output of a random program
running on a universal Turing machine U:

Definition

m(s)= Y 1/2

p:U(p)=s
i.e., sum over all programs for which U with p outputs string s and halts
(Levin, 1977).

m probability that randomly selected deterministic program produces s.

m Algorithmic coding theorem (Levin, 1974) shows:
K(s) = —log, m(s) + O(1), with O(1) independent of s.
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Algorithmic Complexity for Short Strings: ACSS

We approximated m(s) by running (huge samples of random) Turing
machines and saved the resulting strings.

Computations performed to approximate m(s)

(n,m) Steps Machines Runtime  Strings

(5,2) 500 9658153742336 (=all) 450days all [s] < 11
(4,4) 2000 3.34 x 10" 62 days all|s| < 11
(4,5) 2000 2.14 x 10" 44 days all |s| < 10
(4,6) 2000 1.8 x 10" 41days all|s| <10
(4,9) 4000 2 x 10" 75days all|s| < 10

n number of states in Turing machine
m number of symbols

Resulting distributions m(s) available via R package acss:
http://cran.r-project.org/package=acss

University of Zurich, Department of Psychology 14/07/2015 Approximation of Kolmogorov Complexity Page 5


http://cran.r-project.org/package=acss

Applying ACSS

S K2 K4 K5 Ke Kg
1: HTHTHTHT 19.84 22.76 23.93 25.08 28.08
2: HTHHTHTT 21.58 24.45 25.62 26.77 29.85
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Applying ACSS

S K2 K4 K5 KG Kg
1: HTHTHTHT 19.84 22.76 23.93 25.08 28.08
2: HTHHTHTT 21.58 24.45 25.62 26.77 29.85

Why do Participants judge 1 as less probable than 2?

m “presumably because the former appears less random” (Kahneman
& Tversky, 1972, p. 432).

m Probability of any string produced by random process P(s|R) = (1%)®
m Perhaps Participants judge converse: P(R|s)
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A Bayesian Approach

Bayes Theorem

P(s|R)P(R)
(sIR)P(R) + P(s|D)P(D)’

P(Rls) = 5
R: random process, D: deterministic process.
m P(s|R) is trivial (e.g., (2)? ).

m m(s) can be used to approximate P(s|D); normalize across all s with
same length.
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A Bayesian Approach

Bayes Theorem

P(s|R)P(R)
(sIR)P(R) + P(s|D)P(D)’

P(R|s) =
(Rls) = 5
R: random process, D: deterministic process.

m P(s|R) is trivial (e.g., (2)? ).

m m(s) can be used to approximate P(s|D); normalize across all s with
same length.

P(Rls) _ P(s|R) P(R)

m Given subjectivity of priors, P(D) and P(R): 5515 = Fsip) % #(p)

HTHTHTHT: .036
HTHHTHTT: .124
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Applications I: Restricted Human Randomness

m 34 participants asked to produce a series of 10 symbols using “A”,
“B”, “C”, and “D” that would

m “look as random as possible, so that if someone else saw the
sequence, she would believe it to be a truly random one”

all
|
o
-]
8
8

human
|

24 26 28 30 32 34
K

m 0.5% (= 220) more random strings exist; e.g., ABCDCBBDAC
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Applications II: Local Complexity

m Hahn (2014) suggested that
due to working memory
limitations longer sequences
are evaluated piecewise.

m Consider “aaabcbad”
(8-characters, 4-symbols), local
complexity with span = 6 will
return Ks(aaabcb), Ky(aabcba),
and Ki(abcbad), which equals
(18.6,19.4,19.7).

m Matthews (2013, Experiment 1)
asked participants to rate binary
strings of length 21 on 6-point
scale ranging from “definitely
random” to “definitely not
random”.

Separate linear models
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Applications Ill: Conspiracy Theories (CT)
“Nothing happens by accident”

m Dieguez, Wagner-Egger, &
Gauvrit (in press, Psych. Sci.)
tested if belief in CT correlates v
with decreased perception of "1 | =
randomness. | */*/ "

m In each of 3 experiments -
(N =~ 500) different measures of 1 |
CT correlated with each other. H e

m Ratings of randomness for
binary strings correlated = |
strongly with actual randomness
(r = .5, .8]) but not with CT. *

m Belief in CT is not associated
with a low-level sensory deficit.

e
N\,

ti
\\
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Summary

m We provide an approximation to algorithmic probability m(s)

m m(s) approximates the objective measure of complexity and
randomness for short strings: K(s)

Future Plans:

m Extend the supported length using Block Decomposition Method.

m Extend the support to two dimensional strings (e.g., Kempe, Gauvrit,
& Forsyth, 2015, Cognition):

o R e e .-u“s; - .J 4 4 r
LR B S N O T N R R P
Children (5 — 6 years):

BIET e WY e 2 F
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Thank you for your attention.
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Validity |

m Statistical evidence that extending or reducing Turing machine
sample space does not impact order (Zenil et al., 2012;
Soler-Toscano et al., 2013, 2014)

m Correlation in output distribution using very different computational
formalisms, e.g. cellular automata and Post tag systems (Zenil and
Delahaye, 2010).

m —log,(m(s)) produces results compatible with compression methods
to K(s) and strongly correlates to direct K(s) calculation (i.e., length
of first shortest Turing machine found producing s; Soler-Toscano et
al., 2013, PLOS ONE)
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Validity Il

k2/1 098 0.97 0.97 0.97

(0.97,0.98) (0.97,0.98) (0.97,0.97) (0.97,0.97)

/ J/\l.OO 1.00 1.00

(1.00,1.00) (1.00,1.00) (1.00,1.00)

/ / J/\l.OO 1.00

(1.00,1.00)  (1.00,1.00)

/ / / J\l.OO

(1.00,1.00)

////_9

(all 2047 binary strings)
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Matthews 2013: Individual Differences
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Algorithmic Complexity

Definition
[Kolmogorov(1965), Chaitin(1966)]
Ku(s) = min{|p| : U(p) = s}

m Algorithmic complexity K(s) of a string s is length of shortest
program p that produces s running on a universal Turing machine U.

m The formula conveys: a string with low algorithmic complexity is
highly compressible, the information it contains can be encoded in a
program much shorter in length than the length of the string itself.
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Algorithmic Complexity

[Kolmogorov(1965), Chaitin(1966)]
Ku(s) = min{|p| : U(p) = s}

m Algorithmic complexity K(s) of a string s is length of shortest
program p that produces s running on a universal Turing machine U.

m The formula conveys: a string with low algorithmic complexity is
highly compressible, the information it contains can be encoded in a
program much shorter in length than the length of the string itself.

m Although Ky(s) is uncomputable, it is upper semi-computable. It can
be approximated from above.

m For long strings K(s) can be approximated via lossless compression
and impact of U is small (invariance theorem).

m For short strings (e.g., length < 100), impact of U is considerable
(e.g., Kyr(s1) < Kyr(s2) whereas Ky (s1) > Ky (s2)) and lossless
compression no option.
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