

Department of Psychology

Approximation of Kolmogorov Complexity for Short Strings via Algorithmic Probability

An Objective Measure of Randomness and Complexity – Introducing the R package acss

Henrik Singmann Nicolas Gauvrit Fernando Soler-Toscano Hector Zenil

Two sequences of coin flips:

- What do we know about their difference?
 - P. believe 2 more likely than 1 (e.g., Kahneman & Tversky, 1972).
 - Actual probability of occurrence is identical = $(1/2)^8$
 - Shannon entropy (i.e., $-\sum p_i \log_2(p_i)$) is identical = 1

Can we formalize intuition that 1 is more regular than 2?

Foundational Notion

- Two sequences of coin flips:
 - 1 HTHTHTHT
 - 2 HTHHTHTT
- What do we know about their difference?
 - P. believe 2 more likely than 1 (e.g., Kahneman & Tversky, 1972).
 - Actual probability of occurrence is identical = (1/2)⁸
 - Shannon entropy (i.e., $-\sum p_i \log_2(p_i)$) is identical = 1

Can we formalize intuition that 1 is more regular than 2?

Foundational Notion

- Two sequences of coin flips:
 - 1 HTHTHTHT
 - 2 HTHHTHTT
- What do we know about their difference?
 - P. believe 2 more likely than 1 (e.g., Kahneman & Tversky, 1972).
 - Actual probability of occurrence is identical = (1/2)⁸
 - Shannon entropy (i.e., $-\sum p_i \log_2(p_i)$) is identical = 1

■ Can we formalize intuition that 1 is more regular than 2?

Foundational Notion

- Two sequences of coin flips:
 - 1 HTHTHTHT
 - 2 HTHHTHTT
- What do we know about their difference?
 - P. believe 2 more likely than 1 (e.g., Kahneman & Tversky, 1972).
 - Actual probability of occurrence is identical = (1/2)⁸
 - Shannon entropy (i.e., $-\sum p_i \log_2(p_i)$) is identical = 1
- Can we formalize intuition that 1 is more regular than 2?

Foundational Notion

Algorithmic Complexity

Definition

[Kolmogorov(1965), Chaitin(1966)]

$$\mathcal{K}_U(s) = \min\{|p|: U(p) = s\}$$

■ Algorithmic complexity *K*_U(*s*) of a string *s* is length of shortest program *p* that produces *s* running on a universal Turing machine *U*.

Two problems:

- K_U(s) is uncomputable, but can be approximated from above (i.e., upper semi-computable).
- 2 $K_U(s)$ depends on choice of Turing machine U.

Small impact of *U* for long strings, but strong impact for short strings.

Algorithmic Complexity

Definition

[Kolmogorov(1965), Chaitin(1966)]

$$\mathcal{K}_U(s) = \min\{|p|: U(p) = s\}$$

■ Algorithmic complexity *K*_U(*s*) of a string *s* is length of shortest program *p* that produces *s* running on a universal Turing machine *U*.

Two problems:

- K_U(s) is uncomputable, but can be approximated from above (i.e., upper semi-computable).
- 2 $K_U(s)$ depends on choice of Turing machine U.
- Small impact of *U* for long strings, but strong impact for short strings.

Algorithmic Probability

A measure that describes the expected output of a random program running on a universal Turing machine *U*:

Definition

$$m(s) = \sum_{p:U(p)=s} 1/2^{|p|}$$

i.e., sum over all programs for which U with p outputs string s and halts (Levin, 1977).

■ probability that randomly selected deterministic program produces *s*.

Algorithmic coding theorem (Levin, 1974) shows: $K(s) = -\log_2 m(s) + O(1)$, with O(1) independent of *s*.

Algorithmic Probability

A measure that describes the expected output of a random program running on a universal Turing machine *U*:

Definition

$$m(s) = \sum_{p:U(p)=s} 1/2^{|p|}$$

i.e., sum over all programs for which U with p outputs string s and halts (Levin, 1977).

- probability that randomly selected deterministic program produces *s*.
- Algorithmic coding theorem (Levin, 1974) shows: $K(s) = -\log_2 m(s) + O(1)$, with O(1) independent of *s*.

Algorithmic Complexity for Short Strings: ACSS

We approximated m(s) by running (huge samples of random) Turing machines and saved the resulting strings.

Computations performed to approximate <i>m</i> (<i>s</i>)									
(<i>n</i> , <i>m</i>)	Steps	Machines	Runtime	Strings					
(5,2)	500	9 658 153 742 336 (= all)	450 days	all <i>s</i> ≤ 11					
(4,4)	2000	$3.34 imes10^{11}$	62 days	all <i>s</i> ≤ 11					
(4,5)	2000	$2.14 imes 10^{11}$	44 days	all <i>s</i> ≤ 10					
(4,6)	2000	$1.8 imes 10^{11}$	41 days	all <i>s</i> ≤ 10					
(4,9)	4000	2×10^{11}	75 days	all $ s \leq 10$					
n number of states in Turing machine									

m number of symbols

Resulting distributions *m*(*s*) available via R package acss: http://cran.r-project.org/package=acss

Applying ACSS

S	K ₂	K_4	<i>K</i> 5	K_6	K ₉
1: HTHTHTHT	19.84	22.76	23.93	25.08	28.08
2 : HTHHTHTT	21.58	24.45	25.62	26.77	29.85

Why do Participants judge 1 as less probable than 2?

- "presumably because the former appears less random" (Kahneman & Tversky, 1972, p. 432).
- Probability of *any* string produced by random process $P(s|R) = (\frac{1}{2})^8$
- Perhaps Participants judge converse: P(R|s)

Applying ACSS

S	K ₂	K_4	<i>K</i> 5	K_6	K ₉
1: HTHTHTHT	19.84	22.76	23.93	25.08	28.08
2 : HTHHTHTT	21.58	24.45	25.62	26.77	29.85

Why do Participants judge 1 as less probable than 2?

- "presumably because the former appears less random" (Kahneman & Tversky, 1972, p. 432).
- Probability of *any* string produced by random process $P(s|R) = (\frac{1}{2})^8$
- Perhaps Participants judge converse: P(R|s)

A Bayesian Approach

Bayes Theorem

$${m P}({m R}|{m s}) = rac{{m P}({m s}|{m R}){m P}({m R})}{{m P}({m s}){m P}({m R})+{m P}({m s}|{m D}){m P}({m D})},$$

R: random process, *D*: deterministic process.

- P(s|R) is trivial (e.g., $(\frac{1}{2})^8$).
- *m*(*s*) can be used to approximate *P*(*s*|*D*); normalize across all *s* with same length.
- Given subjectivity of priors, P(D) and P(R): $\frac{P(R|s)}{P(D|s)} = \frac{P(s|R)}{P(s|D)} \times \frac{P(R)}{P(D)}$

A Bayesian Approach

Bayes Theorem

$${m P}({m R}|{m s}) = rac{{m P}({m s}|{m R}){m P}({m R})}{{m P}({m s}){m P}({m R})+{m P}({m s}|{m D}){m P}({m D})},$$

R: random process, *D*: deterministic process.

- P(s|R) is trivial (e.g., $(\frac{1}{2})^8$).
- m(s) can be used to approximate P(s|D); normalize across all s with same length.

Given subjectivity of priors, P(D) and P(R): $\frac{P(R|s)}{P(D|s)} = \frac{P(s|R)}{P(s|D)} \times \frac{P(R)}{P(D)}$

1 HTHTHTHTHT: .036 2 HTHHTHTT: .124

Applications I: Restricted Human Randomness

- 34 participants asked to produce a series of 10 symbols using "A", "B", "C", and "D" that would
- "look as random as possible, so that if someone else saw the sequence, she would believe it to be a truly random one"

■ 0.5% (= 220) more random strings exist; e.g., ABCDCBBDAC

Applications II: Local Complexity

- Hahn (2014) suggested that due to working memory limitations longer sequences are evaluated piecewise.
- Consider "aaabcbad" (8-characters, 4-symbols), *local complexity* with span = 6 will return K_4 (aaabcb), K_4 (aabcba), and K_4 (abcbad), which equals (18.6, 19.4, 19.7).
- Matthews (2013, Experiment 1) asked participants to rate binary strings of length 21 on 6-point scale ranging from "definitely random" to "definitely not random".

Applications III: Conspiracy Theories (CT) "Nothing happens by accident"

- Dieguez, Wagner-Egger, & Gauvrit (in press, Psych. Sci.) tested if belief in CT correlates with decreased perception of randomness.
- In each of 3 experiments (N ≈ 500) different measures of CT correlated with each other.
- Ratings of randomness for binary strings correlated strongly with actual randomness (r = [.5, .8]) but not with CT.
- Belief in CT is not associated with a low-level sensory deficit.

Summary

• We provide an approximation to algorithmic probability m(s)

■ *m*(*s*) approximates *the* objective measure of complexity and randomness for short strings: *K*(*s*)

Future Plans:

- Extend the supported length using *Block Decomposition Method*.
- Extend the support to two dimensional strings (e.g., Kempe, Gauvrit, & Forsyth, 2015, Cognition):

Thank you for your attention.

Nicolas Gauvrit (Université de Paris)

Fernando Soler-Toscano (Universidad de Sevilla)

Hector Zenil (Karolinska Institute, Stockholm)

I thank my collaborators in the Algorithmic Nature Group.

Gauvrit, N., Singmann, H., Soler-Toscano, F., & Zenil, H. (in press). Algorithmic complexity for psychology: a user-friendly implementation of the coding theorem method. *Behavior Research Methods*.

http://algorithmicnature.org/ http://singmann.org/

Validity I

- Statistical evidence that extending or reducing Turing machine sample space does not impact order (Zenil et al., 2012; Soler-Toscano et al., 2013, 2014)
- Correlation in output distribution using very different computational formalisms, e.g. cellular automata and Post tag systems (Zenil and Delahaye, 2010).
- -log₂(m(s)) produces results compatible with compression methods to K(s) and strongly correlates to direct K(s) calculation (i.e., length of first shortest Turing machine found producing s; Soler-Toscano et al., 2013, PLOS ONE)

Validity II

(all 2047 binary strings)

University of Zurich, Department of Psychology 14/07/2015 Approximation of Kolmogorov Complexity

Matthews 2013: Individual Differences

Algorithmic Complexity

Definition

[Kolmogorov(1965), Chaitin(1966)]

```
K_U(s) = \min\{|p|: U(p) = s\}
```

- Algorithmic complexity K(s) of a string s is length of shortest program p that produces s running on a universal Turing machine U.
- The formula conveys: a string with low algorithmic complexity is highly compressible, the information it contains can be encoded in a program much shorter in length than the length of the string itself.
- Although $K_U(s)$ is uncomputable, it is upper semi-computable. It can be approximated from above.
- For long strings *K*(*s*) can be approximated via lossless compression and impact of *U* is small (*invariance theorem*).
- For short strings (e.g., length < 100), impact of U is considerable (e.g., K_{U'}(s₁) < K_{U'}(s₂) whereas K_{U''}(s₁) > K_{U''}(s₂)) and lossless compression no option.

Algorithmic Complexity

Definition

[Kolmogorov(1965), Chaitin(1966)]

```
K_U(s) = \min\{|p|: U(p) = s\}
```

- Algorithmic complexity K(s) of a string s is length of shortest program p that produces s running on a universal Turing machine U.
- The formula conveys: a string with low algorithmic complexity is highly compressible, the information it contains can be encoded in a program much shorter in length than the length of the string itself.
- Although $K_U(s)$ is *uncomputable*, it is *upper semi-computable*. It can be approximated from above.
- For long strings *K*(*s*) can be approximated via lossless compression and impact of *U* is small (*invariance theorem*).
- For short strings (e.g., length < 100), impact of U is considerable (e.g., K_{U'}(s₁) < K_{U'}(s₂) whereas K_{U''}(s₁) > K_{U''}(s₂)) and lossless compression no option.