Approximation of Kolmogorov Complexity for Short Strings via Algorithmic Probability

An Objective Measure of Randomness and Complexity Introducing the R package acss

Henrik Singmann
Nicolas Gauvrit
Fernando Soler-Toscano
Hector Zenil

Introductory Example

■ Two sequences of coin flips:
1 HTHTHTHT
2 HTHHTHTT

- What do we know about their difference?
- P. believe 2 more likely than 1 (e.g., Kahneman \& Tversky, 1972).
- Actual probability of occurence is identical $=(1 / 2)^{8}$
- Shannon entropy (i.e., $-\sum p_{i} \log _{2}\left(p_{i}\right)$) is identical $=1$
- Can we formalize intuition that 1 is more regular than 2 ?

Foundational Notion

A string is random if it is hard to describe.
A string is not random if it is easy to describe.

Introductory Example

■ Two sequences of coin flips:
1 HTHTHTHT
2 HTHHTHTT

■ What do we know about their difference?

- P. believe 2 more likely than 1 (e.g., Kahneman \& Tversky, 1972).
- Actual probability of occurence is identical $=(1 / 2)^{8}$

■ Shannon entropy (i.e., $-\sum p_{i} \log _{2}\left(p_{i}\right)$) is identical $=1$

- Can we formalize intuition that 1 is more regular than 2 ?

[^0]
Introductory Example

■ Two sequences of coin flips:
1 нтнтнтнт
2 HTHHTHTT

■ What do we know about their difference?

- P. believe 2 more likely than 1 (e.g., Kahneman \& Tversky, 1972).
- Actual probability of occurence is identical $=(1 / 2)^{8}$

■ Shannon entropy (i.e., $-\sum p_{i} \log _{2}\left(p_{i}\right)$) is identical $=1$

■ Can we formalize intuition that 1 is more regular than 2 ?

> Foundational Notion
> A string is random if it is hard to describe.
> A string is not random if it is easy to describe.

Introductory Example

■ Two sequences of coin flips:
1 нтнтнтнт
2 HTHHTHTT

■ What do we know about their difference?

- P. believe 2 more likely than 1 (e.g., Kahneman \& Tversky, 1972).
- Actual probability of occurence is identical $=(1 / 2)^{8}$
- Shannon entropy (i.e., $-\sum p_{i} \log _{2}\left(p_{i}\right)$) is identical $=1$

■ Can we formalize intuition that 1 is more regular than 2 ?

Foundational Notion

A string is random if it is hard to describe.
A string is not random if it is easy to describe.

Algorithmic Complexity

Definition

[Kolmogorov(1965), Chaitin(1966)]

$$
K_{U}(s)=\min \{|p|: U(p)=s\}
$$

- Algorithmic complexity $K_{U}(s)$ of a string s is length of shortest program p that produces s running on a universal Turing machine U.
- Two problems:
$11 K_{U}(s)$ is uncomputable, but can be approximated from above (i.e., upper semi-computable).
[$K_{U}(s)$ depends on choice of Turing machine U.
- Small impact of U for long strings, but strong impact for short strings.

Algorithmic Complexity

Definition

[Kolmogorov(1965), Chaitin(1966)]

$$
K_{U}(s)=\min \{|p|: U(p)=s\}
$$

- Algorithmic complexity $K_{U}(s)$ of a string s is length of shortest program p that produces s running on a universal Turing machine U.
- Two problems:
$11 K_{U}(s)$ is uncomputable, but can be approximated from above (i.e., upper semi-computable).
[$K_{U}(s)$ depends on choice of Turing machine U.
- Small impact of U for long strings, but strong impact for short strings.

Algorithmic Probability

A measure that describes the expected output of a random program running on a universal Turing machine U :

Definition

$$
m(s)=\sum_{p: U(p)=s} 1 / 2^{|p|}
$$

i.e., sum over all programs for which U with p outputs string s and halts (Levin, 1977).

■ probability that randomly selected deterministic program produces s.

- Algorithmic coding theorem (Levin, 1974) shows: $K(s)=-\log _{2} m(s)+O(1)$, with $O(1)$ independent of s.

Algorithmic Probability

A measure that describes the expected output of a random program running on a universal Turing machine U :

Definition

$$
m(s)=\sum_{p: U(p)=s} 1 / 2^{|p|}
$$

i.e., sum over all programs for which U with p outputs string s and halts (Levin, 1977).

■ probability that randomly selected deterministic program produces s.
■ Algorithmic coding theorem (Levin, 1974) shows: $K(s)=-\log _{2} m(s)+O(1)$, with $O(1)$ independent of s.

Algorithmic Complexity for Short Strings: ACSS

We approximated $m(s)$ by running (huge samples of random) Turing machines and saved the resulting strings.

Computations performed to approximate $m(s)$

(n, m)	Steps	Machines	Runtime	Strings
$(5,2)$	500	$9658153742336(=$ all $)$	450 days	all $\|s\| \leq 11$
$(4,4)$	2000	3.34×10^{11}	62 days	all $\|s\| \leq 11$
$(4,5)$	2000	2.14×10^{11}	44 days	all $\|s\| \leq 10$
$(4,6)$	2000	1.8×10^{11}	41 days	all $\|s\| \leq 10$
$(4,9)$	4000	2×10^{11}	75 days	all $\|s\| \leq 10$

n number of states in Turing machine m number of symbols

Resulting distributions $m(s)$ available via R package acss:
http://cran.r-project.org/package=acss

Applying ACSS

s	K_{2}	K_{4}	K_{5}	K_{6}	K_{9}
1: нTHTHTHT	19.84	22.76	23.93	25.08	28.08
2: нTHHTHTT	21.58	24.45	25.62	26.77	29.85

Why do Participants judge 1 as less probable than 2?
■ "presumably because the former appears less random" (Kahneman \& Tversky, 1972, p. 432).

- Probability of any string produced by random process $P(s \mid R)=(1 / 2)^{8}$

■ Perhaps Participants judge converse: $P(R \mid s)$

Applying ACSS

s	K_{2}	K_{4}	K_{5}	K_{6}	K_{9}
1: HTHTHTHT	19.84	22.76	23.93	25.08	28.08
2: HTHHTHTT	21.58	24.45	25.62	26.77	29.85

Why do Participants judge 1 as less probable than 2?

- "presumably because the former appears less random" (Kahneman \& Tversky, 1972, p. 432).
- Probability of any string produced by random process $P(s \mid R)=(1 / 2)^{8}$
- Perhaps Participants judge converse: $P(R \mid s)$

A Bayesian Approach

Bayes Theorem

$$
P(R \mid s)=\frac{P(s \mid R) P(R)}{P(s \mid R) P(R)+P(s \mid D) P(D)},
$$

R : random process, D : deterministic process.

- $P(s \mid R)$ is trivial (e.g., $\left.(1 / 2)^{8}\right)$.
- $m(s)$ can be used to approximate $P(s \mid D)$; normalize across all s with same length.
- Given subjectivity of priors, $P(D)$ and $P(R): \frac{P(R \mid s)}{P(D \mid s)}=\frac{P(s \mid R)}{P(s \mid D)} \times \frac{P(R)}{P(D)}$

A Bayesian Approach

Bayes Theorem

$$
P(R \mid s)=\frac{P(s \mid R) P(R)}{P(s \mid R) P(R)+P(s \mid D) P(D)},
$$

R : random process, D : deterministic process.

- $P(s \mid R)$ is trivial (e.g., $\left.(1 / 2)^{8}\right)$.
- $m(s)$ can be used to approximate $P(s \mid D)$; normalize across all s with same length.
- Given subjectivity of priors, $P(D)$ and $P(R): \frac{P(R \mid s)}{P(D \mid s)}=\frac{P(s \mid R)}{P(s \mid D)} \times \frac{P(R)}{P(D)}$

1 нтнтнтнт: . 036
(2) нтннтнтT: 124

Applications I: Restricted Human Randomness

■ 34 participants asked to produce a series of 10 symbols using " A ", "B", "C", and "D" that would

■ "look as random as possible, so that if someone else saw the sequence, she would believe it to be a truly random one"

■ 0.5\% (= 220) more random strings exist; e.g., ABCDCBBDAC

Applications II: Local Complexity

■ Hahn (2014) suggested that due to working memory limitations longer sequences are evaluated piecewise.
■ Consider "aaabcbad" (8-characters, 4-symbols), local complexity with span $=6$ will return K_{4} (aaabcb), K_{4} (aabcba), and $K_{4}($ abcbad $)$, which equals (18.6, 19.4, 19.7).

■ Matthews (2013, Experiment 1) asked participants to rate binary strings of length 21 on 6-point scale ranging from "definitely random" to "definitely not random".

Applications III: Conspiracy Theories (CT) "Nothing happens by accident"

■ Dieguez, Wagner-Egger, \& Gauvrit (in press, Psych. Sci.) tested if belief in CT correlates with decreased perception of randomness.

- In each of 3 experiments ($N \approx 500$) different measures of CT correlated with each other.
- Ratings of randomness for binary strings correlated strongly with actual randomness ($r=[.5, .8]$) but not with CT.
- Belief in CT is not associated
 with a low-level sensory deficit.

Summary

■ We provide an approximation to algorithmic probability $m(s)$
■ $m(s)$ approximates the objective measure of complexity and randomness for short strings: $K(s)$

Future Plans:
■ Extend the supported length using Block Decomposition Method.
■ Extend the support to two dimensional strings (e.g., Kempe, Gauvrit, \& Forsyth, 2015, Cognition):

Thank you for your attention.

Nicolas Gauvrit (Université de Paris)

Fernando Soler-Toscano (Universidad de Sevilla)

Hector Zenil (Karolinska Institute, Stockholm)

I thank my collaborators in the Algorithmic Nature Group.

Gauvrit, N., Singmann, H., Soler-Toscano, F., \& Zenil, H. (in press). Algorithmic complexity for psychology: a user-friendly implementation of the coding theorem method. Behavior Research Methods.
http://algorithmicnature.org/
http://singmann.org/

Validity I

■ Statistical evidence that extending or reducing Turing machine sample space does not impact order (Zenil et al., 2012; Soler-Toscano et al., 2013, 2014)

- Correlation in output distribution using very different computational formalisms, e.g. cellular automata and Post tag systems (Zenil and Delahaye, 2010).
■ - $\log _{2}(m(s))$ produces results compatible with compression methods to $K(s)$ and strongly correlates to direct $K(s)$ calculation (i.e., length of first shortest Turing machine found producing s; Soler-Toscano et al., 2013, PLOS ONE)

Validity II

(all 2047 binary strings)

Matthews 2013: Individual Differences

Algorithmic Complexity

Definition

[Kolmogorov(1965), Chaitin(1966)]

$$
K_{U}(s)=\min \{|p|: U(p)=s\}
$$

■ Algorithmic complexity $K(s)$ of a string s is length of shortest program p that produces s running on a universal Turing machine U.
■ The formula conveys: a string with low algorithmic complexity is highly compressible, the information it contains can be encoded in a program much shorter in length than the length of the string itself.

- Although $K_{u}(s)$ is uncomputable, it is upper semi-computable. It can be approximated from above
- For long strings $K(s)$ can be approximated via lossless compression and impact of U is small (invariance theorem)
- For short strings (e.g., length <100), impact of U is considerable (e.g., $K_{U^{\prime}}\left(s_{1}\right)<K_{U^{\prime}}\left(s_{2}\right)$ whereas $K_{U^{\prime \prime}}\left(s_{1}\right)>K_{U^{\prime \prime}}\left(s_{2}\right)$) and lossless compression no option.

Algorithmic Complexity

Definition

[Kolmogorov(1965), Chaitin(1966)]

$$
K_{U}(s)=\min \{|p|: U(p)=s\}
$$

- Algorithmic complexity $K(s)$ of a string s is length of shortest program p that produces s running on a universal Turing machine U.
- The formula conveys: a string with low algorithmic complexity is highly compressible, the information it contains can be encoded in a program much shorter in length than the length of the string itself.
- Although $K_{U}(s)$ is uncomputable, it is upper semi-computable. It can be approximated from above.
- For long strings $K(s)$ can be approximated via lossless compression and impact of U is small (invariance theorem).
- For short strings (e.g., length < 100), impact of U is considerable (e.g., $\mathrm{K}_{u^{\prime}}\left(\mathrm{s}_{1}\right)<\mathrm{K}_{u^{\prime \prime}}\left(\mathrm{s}_{2}\right)$ whereas $\mathrm{K}_{u^{\prime \prime}}\left(\mathrm{s}_{1}\right)>\mathrm{K}_{u^{\prime \prime}}\left(\mathrm{s}_{2}\right)$) and lossless compression no option.

[^0]: Foundational Notion
 A string is random if it is hard to describe.
 A string is not random if it is easy to describe.

