
a hierarchical bayesian implementation of PURELY BAYESIAN AND BAYESIAN MIXTURE models of conditional reasoning

Henrik Singmann

A girl had sexual intercourse.
How likely is it that the girl is pregnant?

A girl had sexual intercourse.
How likely is it that the girl is pregnant?

A girl is NOT pregnant.
How likely is it that the girl had NOT had sexual intercourse?

A girl had sexual intercourse.
How likely is it that the girl is pregnant?

A girl is pregnant.
How likely is it that the girl had sexual intercourse?

A girl had sexual intercourse.
How likely is it that the girl is pregnant?

A girl is pregnant.
How likely is it that the girl had sexual intercourse?

A girl is NOT pregnant.

How likely is it that the girl had NOT had sexual intercourse?

A girl had NOT had sexual intercourse.
How likely is it that the girl is NOT pregnant?

A girl had sexual intercourse.
How likely is it that the girl is pregnant?

A girl is pregnant.
How likely is it that the girl had sexual intercourse?


```
A girl is NOT pregnant.
```

How likely is it that the girl had NOT had sexual intercourse?

A girl had NOT had sexual intercourse.
How likely is it that the girl is NOT pregnant?

If a girl has sexual intercourse then she will be pregnant. A girl had sexual intercourse.
How likely is it that the girl is pregnant?

A girl had sexual intercourse.
How likely is it that the girl is pregnant?

A girl is pregnant.
How likely is it that the girl had sexual intercourse?

If a girl has sexual intercourse then she will be pregnant. A girl had sexual intercourse.
How likely is it that the girl is pregnant?


```
A girl is NOT pregnant.
```

How likely is it that the girl had NOT had sexual intercourse?

A girl had NOT had sexual intercourse.
How likely is it that the girl is NOT pregnant?

If a girl has sexual intercourse then she will be pregnant. A girl is NOT pregnant.
How likely is it that the girl had NOT had sexual intercourse?

A girl had sexual intercourse.
How likely is it that the girl is pregnant?

A girl is pregnant.

How likely is it that the girl had sexual intercourse?

```
\
```

If a girl has sexual intercourse then she will be pregnant. A girl had sexual intercourse.
How likely is it that the girl is pregnant?

If a girl has sexual intercourse then she will be pregnant. A girl is pregnant.
How likely is it that the girl had sexual intercourse?

A girl is NOT pregnant.
How likely is it that the girl had NOT had sexual intercourse?

A girl had NOT had sexual intercourse.
How likely is it that the girl is NOT pregnant?

If a girl has sexual intercourse then she will be pregnant. A girl is NOT pregnant.
How likely is it that the girl had NOT had sexual intercourse?

A girl had sexual intercourse.
How likely is it that the girl is pregnant?

A girl is pregnant.

How likely is it that the girl had sexual intercourse?

```
\
```

If a girl has sexual intercourse then she will be pregnant.
A girl had sexual intercourse.
How likely is it that the girl is pregnant?

If a girl has sexual intercourse then she will be pregnant. A girl is pregnant.
How likely is it that the girl had sexual intercourse?

A girl is NOT pregnant.
How likely is it that the girl had NOT had sexual intercourse?

A girl had NOT had sexual intercourse.
How likely is it that the girl is NOT pregnant?

If a girl has sexual intercourse then she will be pregnant. A girl is NOT pregnant.
How likely is it that the girl had NOT had sexual intercourse?

If a girl has sexual intercourse then she will be pregnant. A girl had NOT had sexual intercourse.
How likely is it that the girl is NOT pregnant?

A girl is pregnant. How likely is it that the

If a girl has sexual inte A girl had sexual interc How likely is it that the

Experimental paradigm:

- 1. Session: Reduced inferences (no conditional)

2. Session: Full conditional inferences

- 4 different conditionals (i.e., contents)
- Participants respond to all 4 inferences per session and content.
ill be pregnant.
sexual intercourse?
 $80 \% ~ 90 \% ~ 100 \%$

A girl is pregnant.
How likely is it that the girl had sexual intercourse?

If a girl has sexual intercourse then she will be pregnant. A girl had NOT had sexual intercourse.
How likely is it that the girl is NOT pregnant?

RESULTS

Balloon: If a balloon is pricked with a needle then it will pop.

- few disablers, many alternatives

Coke: If a person drinks a lot of coke then the person will gain weight. " many disablers, many alternatives

Girl: If a girl has sexual intercourse then she will be pregnant.
" many disablers, few alternatives
Predator: If a predator is hungry then it will search for prey.
" few disablers, few alternatives

A girl had sexual intercourse.

How likely is it that the girl is pregnant?

A girl is NOT pregnant.
How likely is it that the girl had NOT had sexual intercourse?

A girl is pregnant.

How likely is it that the girl had sexual intercourse?

A girl had NOT had sexual intercourse.
How likely is it that the girl is NOT pregnant?

Joint probability distribution $\boldsymbol{F}_{p, q}$		
	q	$\neg q$
p	$P(p \wedge q)$	$P(p \wedge \neg q)$
$\neg p$	$P(\neg p \wedge q)$	$P(\neg p \wedge \neg q)$

3 free parameters

Provides conditional probabilities/predictions:

- $P(M P)=P(q \mid p)=P(p \wedge q) / P(p)$
$=P(M T)=P(\neg p \mid \neg q)=P(\neg p \wedge \neg q) / P(\neg q)$
- $P(A C)=P(p \mid q)=P(p \wedge q) / P(q)$
- $P(D A)=P(\neg q \mid \neg p)=P(\neg p \wedge \neg q) / P(\neg p)$

Oaksford, Chater, \& Larkin (2000)
Oaksford \& Chater (2007)

HIERARCHICAL MODELING

2 classical approaches for dealing with individual differences:
" complete pooling: ignores individual variability
" no pooling: ignores similarity across participants (e.g., Oaksford, Chater, \& Larkin, 2000; Klauer, Beller, \& Hütter, 2010; Singmann, Klauer, \& Beller, 2016)

Partial pooling principled alternative:

- Individual level parameters are drawn from group-level distributions
" Provides higher precision for parameter estimates (even on the individual level)

BAYESIAN STATISTICS

Requires likelihood (i.e., no least squares).

Information (uncertainty) regarding parameters expressed via (continuous) probability distributions.

1. Prior distributions capture ignorance before data is collected.
2. Prior distributions updated in light of data using Bayes' theorem.
3. Posterior distributions reflect new state of knowledge.

BETA REGRESSION

Allows to model data in unit interval $(0,1)$ using beta distribution.

Instead of shape parameters α and β, uses mean μ and precision ϕ :

- $\alpha=\mu \phi$
- $\beta=(1-\mu) \phi$

Naturally addresses
heteroscedasticity: More variation in mid ranges than at the upper and lower end.

HYPERDISTRIBUTION FOR PROBABILITY DISTRIBUTION

Predictions of Bayesian model result from probability distribution $\boldsymbol{F}_{p, q}$.
Oaksford and Chater parameterize $\boldsymbol{F}_{p, q}$ using three parameters:

```
"a=P(p)
-b=P(q)
"e=P(not-q|p) = 1- P(q|p)
```

Not all values of a, b, and e result in proper probability distribution:
" e is bound: $\left[\max \left(\frac{a-b}{a}, 0\right), \min \left(\frac{1-b}{a}, 1\right)\right]$
The joint distribution of a, b, and e cannot be a proper hyper/prior distribution for $F_{p, q}$.

Alternative provided by Dirichlet distribution, which usually has 2 parameters:
" $K \geq 2$, number of categories (integer)

- $\alpha_{1}, \ldots, \alpha_{K}$, concentration parameter

Support over K-dimensional vectors that sum to 1 (i.e., ($K-1$)-dimensional simplex).

Parameterization as in beta-regression possible (e.g., Kemp, Perfors, \& Tenenbaum, 2007):
" γ : mean of hyperparameter

- ψ : precision of hyperparameter

HIERARCHICAL BAYESIAN BAYESIAN MODEL

(simple model)
Data: $E_{\text {red }, i j k} \sim \operatorname{Beta}\left(\alpha_{\text {red }, i j k}, \beta_{\text {red }, i j k}\right)$

Group-level distribution:

$$
\boldsymbol{F}_{\boldsymbol{p}, \boldsymbol{q}, j k} \sim \operatorname{Dirichlet}\left(\gamma_{j} \times \psi_{j}\right)
$$

$$
\begin{aligned}
\gamma_{j} & \sim \text { Dirichlet }^{(1)} \\
\psi_{j} & \sim \text { Cauchy }^{+}(1,25) \\
\phi & \sim \text { Cauchy }^{+}(2,25) \\
\beta_{\phi} & \sim \text { Cauchy }^{+}(0,25)
\end{aligned}
$$

$$
\alpha=\mu \times\left(\phi+\beta_{\phi} w\right)
$$

Beta regression:

$$
\beta=(1-\mu) \times\left(\phi+\beta_{\phi} w\right)
$$

Simple model:

Black error bars: Range of individual level predictions from simple model

Balloon: If a balloon is pricked with a needle then it will pop.

- few disablers, many alternatives

Coke: If a person drinks a lot of coke then the person will gain weight.
" many disablers, many alternatives
Girl: If a girl has sexual intercourse then she will be pregnant.
" many disablers, few alternatives
Predator: If a predator is hungry then it will search for prey.
" few disablers, few alternatives

EXPERIMENTAL PARADIGM

EXPERIMENTAL PARADIGM

Klauer, Beller, \& Hütter (2010) Singmann, Klaver, \& Beller (2016)

EXPERIMENTAL PARADIGM

Klauer, Beller, \& Hütter (2010) Singmann, Klaver, \& Beller (2016)

BAYESIAN UPDATING

Reduced Inferences (Week 1)

A girl had sexual intercourse.
How likely is it that the girl is pregnant?

Full Inferences (Week 2)

If a girl had sexual intercourse, then she is pregnant.
A girl had sexual intercourse.
How likely is it that the girl is pregnant?

Joint probability distribution: $\boldsymbol{F}_{p, q}$		
	q	$\neg \mathrm{q}$
p	$\mathrm{P}(\mathrm{p} \wedge q)$	$\mathrm{P}(\mathrm{p} \wedge \neg \mathrm{q})$
$\neg p$	$\mathrm{P}(\neg \mathrm{p} \wedge q)$	$\mathrm{P}(\neg \mathrm{p} \wedge \neg \mathrm{q})$

Updated joint probability distribution: $\boldsymbol{F}_{p, q^{\prime}}$			
	q^{\prime}	$\neg \mathrm{q}^{\prime}$	
p^{\prime}	$\mathrm{P}\left(\mathrm{p}^{\prime} \wedge \mathrm{q}^{\prime}\right)$	$\mathrm{P}\left(p^{\prime} \wedge \neg q^{\prime}\right)$	
$\neg p^{\prime}$	$P\left(\neg p^{\prime} \wedge q^{\prime}\right)$	$\mathrm{P}\left(\neg \mathrm{p}^{\prime} \wedge \neg \mathrm{q}^{\prime}\right)$	

BAYESIAN UPDATING

Reduced Inferences (Week 1)
A girl had sexual intercourse.
How likely is it that the girl is pregnant?
$\underset{0 \%}{\vdash}{ }_{10 \%}^{1}$

Full Inferences (Week 2)

If a girl had sexual intercourse, then she is pregnant.
A girl had sexual intercourse.
How likely is it that the girl is pregnant?

Joint probability distribution: $\boldsymbol{F}_{p, \boldsymbol{q}}$		
	q	$\neg q$
p	$P(p \wedge q)$	$P(p \wedge \neg q)$
$\neg p$	$P(\neg p \wedge q)$	$P(\neg p \wedge \neg q)$

Updated joint probability distribution: $\boldsymbol{F}_{p, q^{\prime}}$		
	q^{\prime}	$\neg q^{\prime}$
p^{\prime}	$P\left(p^{\prime} \wedge q^{\prime}\right)$	$P\left(p^{\prime} \wedge \neg q^{\prime}\right)$
$\neg p^{\prime}$	$P\left(\neg p^{\prime} \wedge q^{\prime}\right)$	$P\left(\neg p^{\prime} \wedge \neg q^{\prime}\right)$

BAYESIAN UPDATING

Reduced Inferences (Week 1)

Full Inferences (Week 2)

If a girl had sexual intercourse, then she

Role of conditional in Bayesian models:

- PROB: increases probability of conditional, $P(q \mid p)$ (Oaksford et al., 2000): $e^{\prime}<e$
- EX-PROB: increases probability of conditional $P_{\text {MP }}(q \mid p)>P_{\text {other }}(q \mid p)$ (Oaksford \& Chater, 2007)
- KL: increases $P(q \mid p)$ \& Kullback-Leibler distance between $F_{p, q}$ and $F_{p, q}$ ' is minimal (Hartmann \& Rafiee Rad, 2012)

Consequence of updating: Effect is content specific.

p	$P(p \wedge q)$	$\mathrm{P}(\mathrm{p} \wedge \neg \mathrm{q})$		p^{\prime}	$P\left(p^{\prime} \wedge q^{\prime}\right)$	$\mathrm{P}\left(\mathrm{p}^{\prime} \wedge \neg \mathrm{q}^{\prime}\right)$
$\neg p$	$P(\neg p \wedge q)$	$\mathrm{P}(\neg \mathrm{p} \wedge \neg \mathrm{q})$		$\neg p$	$P\left(\neg p^{\prime} \wedge q^{\prime}\right)$	$P\left(\neg p^{\prime} \wedge \neg q^{\prime}\right)$

BAYESIAN UPDATING

Reduced Inferences (Week 1)

Full Inferences (Week 2)

If a girl had sexual intercourse, then she

Role of conditional in Bayesian models:

- PROB: increases probability of conditional, P(q|p) (Oaksford et al., 2000): é <e
- EX-PROB: increases probability of conditional $P_{\text {MP }}(q \mid p)>P_{\text {other }}(q \mid p)$ (Oaksford \& Chater, 2007)
- KL: increases $P(q \mid p)$ \& Kullback-Leibler distance between $F_{p, q}$ and $F_{p, q}$ ' is minimal (Hartmann \& Rafiee Rad, 2012)

Consequence of updating: Effect is content specific.

p	$P(p \wedge q)$	$\mathrm{P}(\mathrm{p} \wedge \neg \mathrm{q})$	-	p^{\prime}	$P\left(p^{\prime} \wedge q^{\prime}\right)$	$\mathrm{P}\left(p^{\prime} \wedge \neg \mathrm{q}^{\prime}\right)$
$\neg p$	$P(\neg p \wedge q)$	$\mathrm{P}(\neg \mathrm{p} \wedge \neg \mathrm{q})$		$\neg p^{\prime}$	$P\left(\neg p^{\prime} \wedge q^{\prime}\right)$	$\mathrm{P}\left(\neg \mathrm{p}^{\prime} \wedge \neg \mathrm{q}^{\prime}\right)$

$$
\begin{aligned}
& E_{\text {red }, i j k} \sim \operatorname{Beta}\left(\alpha_{\text {red }, i j k}, \beta_{\text {red }, i j k}\right) \\
& E_{\text {full }, i j k} \sim \operatorname{Beta}\left(\alpha_{\text {full }, i j k}, \beta_{\text {full }, i j k}\right)
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{F}_{\boldsymbol{p}, \boldsymbol{q}, j k} & \sim \operatorname{Dirichlet}\left(\boldsymbol{\gamma}_{j} \times \psi_{j}\right) \\
\boldsymbol{\delta}_{e} & \sim \operatorname{MvNormal}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\boldsymbol{e}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{\Sigma}_{e} & =\boldsymbol{\sigma}_{e} \boldsymbol{\Omega}_{e} \\
\boldsymbol{\Omega}_{e} & \sim \operatorname{LKJ}(1) \\
\sigma_{e, k} & \sim \operatorname{Cauchy}^{+}(0,4) \\
\bar{e}_{j}^{\prime} & \sim \operatorname{Normal}(0,1)
\end{aligned}
$$

$$
l_{i j}=\max \left(\frac{a_{i j}-b_{i j}}{a_{i j}}, 0\right)
$$

$$
e_{i j}^{\prime}=e_{i j}-\left(\left(e_{i j}-l_{i j}\right) \times \Phi\left(\bar{e}_{j}^{\prime}+\delta_{e, j k}\right)\right)
$$

Inference
Black error bars: Range of individual level predictions

Balloon: If a balloon is pricked with a needle then it will pop.

- few disablers, many alternatives

Coke: If a person drinks a lot of coke then the person will gain weight.
" many disablers, many alternatives
Girl: If a girl has sexual intercourse then she will be pregnant.

- many disablers, few alternatives

Predator: If a predator is hungry then it will search for prey.
" few disablers, few alternatives

Balloon: If a balloon is pricked with a needle then it will pop.
" few disablers, many alternatives
Coke: If a person drinks a lot of coke then the person will gain weight.
" many disablers, many alternatives
Girl: If a girl has sexual intercourse then she will be pregnant.
" many disablers, few alternatives
Predator: If a predator is hungry then it will search for prey.
" few disablers, few alternatives

BAYESIAN UPDATING

Reduced Inferences (Week 1)

Full Inferences (Week 2)

If a girl had sexual intercourse, then she
Role of conditional in Bayesian models:

- PROB:-inereases probetbility-of-cenditionel, P(a|p) (Oaksford et ell, 2000):- e'<e
- EX PROB:-increases probability-of conditionel PAAP(q|p) > Pethertalp) (Oaksferel\& Chater, 2007)
- KL: increases $P(q \mid p)$ \& Kullback-Leibler distance between $F_{p, q}$ and $F_{p, q}{ }^{\text {' is minimal }}$ (Hartmann \& Rafiee Rad, 201 2)

Consequence of updating: Effect is content specific.

P	$P(p \wedge q)$	$\mathrm{P}(\mathrm{p} \wedge \neg \mathrm{q})$	-	p^{\prime}	$P\left(p^{\prime} \wedge q^{\prime}\right)$	$\mathrm{P}\left(p^{\prime} \wedge \neg \mathrm{q}^{\prime}\right)$
$\neg p$	$\mathrm{P}(\neg \mathrm{p} \wedge q)$	$\mathrm{P}(\neg \mathrm{p} \wedge \neg \mathrm{q})$		$\neg p^{\prime}$	$P\left(\neg p^{\prime} \wedge q^{\prime}\right)$	$P\left(\neg p^{\prime} \wedge \neg q^{\prime}\right)$

Kullback-Leibler (KL) Modell

Hartmann \& Rafiee Rad (2012)
Singmann, Klauer, \& Beller (2016, Exp. 1 \& 3)
Parameterization of $\boldsymbol{F}_{p, q}: \quad$ For $\boldsymbol{F}_{p, q}$:
" $h=P(q)$

- $\alpha^{\prime}>\alpha$
- $\alpha=P(q \mid p)$
- $\beta=P(q \mid \neg p)$
- Kullback-Leibler divergence between $F_{p, q}$ and $\boldsymbol{F}_{p, q}$ ' minimal.

$$
\begin{aligned}
& E_{\text {red }, i j k} \sim \operatorname{Beta}\left(\alpha_{\text {red }, i j k}, \beta_{\text {red }, i j k}\right) \\
& E_{\text {full }, i j k} \sim \operatorname{Beta}\left(\alpha_{\text {full }, i j k}, \beta_{\text {full }, i j k}\right)
\end{aligned}
$$

$$
\boldsymbol{F}_{\boldsymbol{p}, \boldsymbol{q}, j k} \sim \operatorname{Dirichlet}\left(\boldsymbol{\gamma}_{j} \times \psi_{j}\right)
$$

$$
\boldsymbol{\delta}_{\alpha} \sim \operatorname{MvNormal}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\boldsymbol{\alpha}}\right)
$$

$$
\boldsymbol{\Sigma}_{\alpha}=\boldsymbol{\sigma}_{\alpha} \boldsymbol{\Omega}_{\alpha}
$$

$$
\boldsymbol{\Omega}_{\alpha} \sim \operatorname{LKJ}(1)
$$

$$
\sigma_{\alpha, k} \sim \text { Cauchy }^{+}(0,4)
$$

$$
{ }_{j}^{+} \sim \operatorname{Normal}(0,1)
$$

$$
\left.\alpha_{i j}^{\prime}=\alpha_{i j}+\left(1-\alpha_{i j}\right) \times \Phi\left(\bar{\alpha}_{j}^{\prime}+\delta_{\alpha, j k}\right)\right)
$$

i inferences (MP, MT, AC, DA)

DUAL-SOURCE MODEL (DSM)

Par. Interpretation

$\lambda \quad$ Relative weight given to form-based versus knowledge-based evidence
$\tau \quad$ Degree to which an inference is seen as logically warranted
$\xi \quad$ Knowledge-based response proposal

Klauer, Beller, \& Hütter (2010, Exp. 1)
Singmann, Klauer, \& Beller (2016, Exp. 1 \& 3)

Par.	Interpretation	Influencing Factors
λ	Relative weight given to form-based versus knowledge-based evidence	E.g., speaker expertise, instructional emphasis on rule
τ	Degree to which an inference ξ	E.g., inference (MP, MT, AC, DA), is seen as logically warranted Knowledge-based response proposal

knowledge-based
$\tau(x)+(1-\tau(x)) \times \xi(C, x)$
$\times \boldsymbol{\lambda}$

form-based
C = content (one for each p and q)
$x=$ inference (MP, MT, AC, \& DA)

$$
\begin{aligned}
E_{\mathrm{red}, i j k} & \sim \operatorname{Beta}\left(\alpha_{\mathrm{red}, i j k}, \beta_{\mathrm{red}, i j k}\right) \\
E_{\mathrm{full}, i j k} & \sim \operatorname{Beta}\left(\alpha_{\mathrm{full}, i j k}, \beta_{\mathrm{full}, i j k}\right) \\
\boldsymbol{\tau} \boldsymbol{\lambda}_{\boldsymbol{k}} & \sim \operatorname{Beta}\left(\boldsymbol{\alpha}_{\tau \lambda}, \boldsymbol{\beta}_{\tau \lambda}\right) \\
\boldsymbol{\mu}_{\tau \lambda} & \sim \operatorname{Uniform}(0,1) \\
\phi_{\tau \lambda} & \sim \operatorname{Cauchy}^{+}(0,5) \\
\lambda_{k} & =\max \left(\boldsymbol{\tau} \boldsymbol{\lambda}_{k}\right) \\
\boldsymbol{\tau}_{k} & =\frac{\boldsymbol{\tau} \boldsymbol{\lambda}_{k}}{\lambda_{k}}
\end{aligned}
$$

KL Model:

DSM:

SUMMARY: HIERARCHICAL BAYESIAN IMPLEMENTATION OF BAYESIAN MODELS OF REASONING

Bayesian statistics offer:

- Principled approach to model individual differences
- Allows investigation of individual level and group-level parameters
- Provides additional information (e.g., precision of probability distribution estimates, correltaion among individual parameters)

For inferences without conditional (i.e., purely knowledge) a simple Bayesian model provides good account.

Learning a conditional can be modeled with:

- Bayesian model that assumes unconsrained updating of $P(q \mid p)$ and KL minimization (Hartmann \& Rafiee Rad, 201 2).
" Dual-Source Model (Klauer et al., 2010; Singmann et al., 2016), which assumes individuals combine background knowledge with the subjective probability with which they see a specific inference as logically warranted.

THAT WAS ALL

$\boldsymbol{F}_{p, q}$: If a balloon is pricked with a needle then it will pop.			$\boldsymbol{F}_{p, q}$: If a person drinks a lot of coke then the person will gain weight.		
$\psi_{j}: 15$ [27]	9	$\neg \mathrm{q}$	$\psi_{j}: 58[250]$	9	$\neg \mathrm{q}$
p	. 36	. 06	p	. 29	. 17
$\neg \mathrm{p}$. 16	. 42	$\neg \mathrm{p}$. 23	. 31

$F_{p, q}:$ If a girl has sexual intercourse then she will be		
pregnant.		

$\boldsymbol{F}_{p, q}:$ If a predator is hungry then it will search for prey.		
$\psi_{j}: 46[130]$	q	$\neg \mathrm{q}$
p	.51	.06
$\neg p$.07	.36

$F_{p, q}$: If a balloon is pricked with a needle then it will pop.			$\boldsymbol{F}_{p, q}$: If a person drinks a lot of coke then the person will gain weight.		
$\psi_{j}: 15$ [27]	9	$\neg \mathrm{q}$	$\psi_{j}: 58$ [250]	9	$\neg \mathrm{q}$
p	. 36	. 06	p	. 29	. 17
$\neg \mathrm{p}$. 16	. 42	$\neg p$. 23	. 31
Precision of group-level parameter for $F_{p, q}\left(\psi_{j}\right)$, initial model:$\quad 10.5[8.2,13.2]$$\quad 19.3[13.8,27.3]$			27.1 [20.3, 37.0]		
			27.3 [20.1, 36.9]		
$\boldsymbol{F}_{p, q}$: If a girl has sexual intercourse then she will be pregnant.			$F_{p, q}$: If a predator is hungry then it will search for prey.		
$\psi_{j}: 33[21]$	9	$\neg \mathrm{q}$	$\psi_{j}: 46$ [130]	q	$\neg \mathrm{q}$
p	. 24 [.35]	. 41 [.21]	p	. 51	. 06
$\neg \mathrm{p}$. 03 [.07]	. 31 [.37]	$\neg \mathrm{p}$. 07	.36

Black error bars: Range of individual level predictions from simple model

Black error bars: Range of individual level predictions from simple model

