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Our representation of the physical world requires judg-
ments of magnitudes, such as loudness, distance, or
time. Interestingly, magnitude estimates are often not
veridical but subject to characteristic biases. These
biases are strikingly similar across different sensory
modalities, suggesting common processing mecha-
nisms that are shared by different sensory systems.

So far, however, attempts to model magnitude estima-
tion have often led to modality-specific or effect-specific
explanations [17]. By contrast, recently proposed Bayesian
accounts of magnitude estimation have the potential to
provide a more general explanation that covers a wide set
of behavioral characteristics and transcends any specific
modality [18-20]. This Bayesian framework suggests that

Cell

PRESS

Organizing probabilistic models of

perception

Wei Ji Ma

Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston TX 77030, USA

Probability has played a central role in models of per-
ception for more than a century, but a look at probabi-
listic concepts in the literature raises many questions. Is
being Bayesian the same as being optimal? Are recent
Bayesian models fundamentally different from classic
signal detection theory models? Do findings of near-
optimal inference provide evidence that neurons com-
pute with probability distributions? This review aims to
disentangle these concepts and to classify empirical
evidence accordingly.

Decision-making in an uncertain world
In order to survive and thrive, all animals must derive

above, over target presence, landing location, and life span.
Since this knowledge is based on sensory observations, the
probability distribution is a conditional distribution, which
can be denoted by g(world state | observations).
Knowledge is not sufficient for organisms; actions are
needed. The wildebeest might decide whether to stay put,
the badminton player whether to attempt a return, and the
actuary what premium to set. Cost or utility is associated
with each combination of true world state and action,
denoted by C(world state, action): if the badminton player
does not attempt to return the shuttle, energy is saved, but
at the cost of a point if the shuttle lands inside the court. For
the observer, the expected cost of an action is a weighted
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Recent debates in the psychological literature have raised questions about the assumptions that underpin
Bayesian models of cognition and what inferences they license about human cognition. In this paper we
revisit this topic, arguing that there are 2 gualitatively different ways in which a Bayesian model could
be constructed. The most common approach uses a Bayesian model as a normative standard upon which
to license a claim about optimality. In the alternative approach, a descriptive Bayesian model need not
correspond to any claim that the underlying cognition is optimal or rational, and is used solely as a tool
for instantiating a substantive psychological theory. We present 3 case studies in which these 2
perspectives lead to different computational models and license different conclusions about human

Approaches to cognitive modeling

Probabilistic models of cognition:
exploring representations and
inductive biases

Thomas L. Griffiths', Nick Chater?, Charles Kemp?, Amy Perfors* and
Joshua B. Tenenbaum®

cognition. We demonstrate how the deseriptive Bayesian approach can be used to answer different sorts

of questions than the optimal approach, especially when combined with principled tools for model
evaluation and model selection. More generally we argue for the importance of making a clear distinction

between the 2 perspectives. Considerable confusion results when descriptive models and optimal models

are conflated, and if Bayesians are to avoid contributing to this confusion it is important to avoid making
normative claims when none are intended

Keywords: Bayesian cognitive models, rational models, inductive reasoning, generalization, optimal

T Department of Psychology, University of California, Berkeley, 3210 Tolman Hall MC 1650, Berkeley CA 94720-1650, USA
?Division of Psychology and Language Sciences, University College London, Gower Street, London WC1E 6BT, UK
2Department of Psychology, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh PA 15213, USA

4School of Psychology, University of Adelaide, Level 4, Hughes Building, Adelaide, SA 5005, Australia

5Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Building 46-4015, 77 Massachusetts Avenue,
Cambridge, MA 02139, USA

nference provide evidence that neurons com- the badminton player whether to attempt a return, and the
probability distributions? This review aims to actuary what premium to set. Cost or utility is associated
gle these concepts and to classify empirical with each combination of true world state and action,
accordingly. denoted by C(world state, action): if the badminton player
does not attempt to return the shuttle, energy is saved, but

making in an uncertain world at the cost of a point if the shuttle lands inside the court. For
to survive and thrive, all animals must derive  the observer, the expected cost of an action is a weighted

Cognitive science aims to reverse-engineer the mind, and with abstract principles that allow agents to solve pro-
of the engineering challenges the mind faces blems posed by the world — the functions that minds
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Biases in Judgment

- Fintan Costello - Paul Watts
Bayesian explanations have swept through cognitive science over the past two University College Dublin National University of Ireland

decades, from intuitive physics and causal learning, to perception, motor con-

The systematic biases seen in people’s probability judgments are typically taken as evidence that people
do not use the rules of probability theory when reasoning about probability but instead use heuristics,
which sometimes yield reasonable judgments and sometimes yield systematic biases. This view has had
a major impact in economics, law, medicine, and other fields; indeed, the idea that people cannot reason
with probabilities has become a truism. We present a simple alternative to this view, where people reason
I _ T B 4 about probability according to probability theory but are subject to random variation or noise in the
2 Division of Psychology and Language Scier _ondon, Gower Street, London WC1E 6BT, UK reasoning process. Inql]ns ac.wunl the cl_[cci of noise is Calncclcd.iur some p‘robabﬂ]sllc. expressions.
3Department of Psychology, Carnegie Mellor | Ave, Pittsburgh PA 15213, USA Analyzing data from 2 experiments, we find that, for these expressions, people’s probability judgments
4School of Psychology, University of Adelai ing, Adelaide, SA 5005, Australia
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are strikingly close to those required by probability theory. For other expressions, this account produces
systematic deviations in probability estimates. These deviations explain 4 reliable biases in human
probabilistic reasoning (conservatism, subadditivity, conjunction, and disjunction fallacies). These results
suggest that people’s probability judgments embody the rules of probability theory and that biases in
< those judgments are due to the effects of random noise.

Cognitive science aims to reverse-engineer the mind, and  with abstract principles that allow agents to : Keywords: probability, rationality, random variation, heuristics, biases
many of the engineering challenges the mind faces blems posed by the world — the functions that n
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cold — cloudy

cold — sunny

rainy — windy

= 42 independent data points per participant
Costello & Watts (2014)



cold — cloudy

cold — sunny

MODELING

19 for joint probability distributions
1 mixture weight

1 noise parameter :
1 number of samples rainy — windy

= 42 independent data points per participant
Costello & Watts (2014)



