Testing the Bayesian Brain:
 A Statistical Model for Sampling-Based

Probability Estimates

Henrik Singmann

University of Zurichlfon October unuersity of war wick

David Kellen
Syracuse unversity
(@)http://singmann.org
(*) @HenrikSingmann

Resurgence of Bayesian Models since ca. 2000

Review

A Bayesian perspective on magnitude estimation

Frederike H. Petzschner ${ }^{1}$, Stefan Glasauer ${ }^{2,3,4}$, and Klaas E. Stephan ${ }^{1,5}$

Organizing probabilistic models of
 perception

Our representation of the physical world requires judgOur representation of the physical world requires judg-
ments of magnitudes, such as loudness, distance, or time. Interestingly, magnitude estimates are often not veridical but subject to characteristic biases. These biases are strikingly similar across different sensory modaitites, suggesting common processing mecha-
nisms that are shared by different sensory systems. However. the search for universal neurobiolocical nrin.

So far, however, attempts to model magnitude estim explanations [17]. By contrast, recently proposed Bayesian accounts of magnitude estimation have the potential t provide a more general explanation that covers a wide se modality [18-20]. This Bayesian framework suggests that

Wei Ji Ma
Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston TX 77030, USA

Probability has played a central role in models of per ception for more than a century, but a look at probabi listic concepts in the literature raises many questions. Is being Bayesian the same as being optimal? Are recent Bayesian models fundamentally different from classic signal detection theory models? Do findings of near optimal inference provide evidence that neurons com pute with probability distributions? This review aims to disentangle these concepts and to classify empirical evidence accordingly
Decision-making in an uncertain world In order to survive and thrive, all animals must derive
above, over target presence, landing location, and life span. since this knowledge is based on sensory observations, the probability distribution is a conditional distribution, which can be denoted by q (world state observations)
Knowledge is not sufficient for organisms; actions are needed. The wildebeest might decide whether to stay put, the badminton player whether to attempt a return, and the actuary what premium to set. Cost or utility is associated with each combination of true world state and action, denoted by C(world state, action): if the badminton player does not attempt to return the shuttle, energy is saved, but the cost of a point if the shuttle lands inside the court. For he observer, the expected cost of an action is a weighted

Resurgence of Bayesian Models since ca. 2000

Revem
A Bayesian perspective on magnitude
estimation

Bayesian Models of Cognition Revisited: Setting Optimality Aside and
A Bayesian perspective on magnitude estimation

Recent debates in the psychological tieraure have raised questions about he assumptions that underpin Bayesian models of cognition and what inferences they license about human cognition. In this paper we evisit this topic, arguing that there are 2 qualitatively different ways in which a Bayesian model could to license a claim about optimality. In the alternative approach, a descriptive Bayesian model need not correspond to any claim that the underlying cognition is optimal or rational, and is used solely as a tool or instantiating a substantive psychological theory. We present 3 case studies in which these 2 perspectives lead to different computational models and license different conclusions about human cogntion. We demonstrate how he descriptive Bayesian approach can be used to answer different sors of questions than the optimal approach, especially when combined with principled tools for model
evaluation and model selection. More generally we argue for the importance of making a clear distinction between the 2 perspectives. Considerable confusion results when descriptive models and optimal models are conflated, and if Bayesians are to avoid contribuing to this confusion it is important to avoid making rmative claims when none are intended

inference provide evidence that neurons comh probability distributions? This review aims to gle these concepts and to classify empirical accordingly. blems posed by the world - the functions that minds per-
the badminton player whether to attempt a return, and the actuary what premium to set. Cost or utility is associated with each combination of true world state and action, denoted by C (world state, action): if the badminton player does not attempt to return the shuttle, energy is saved, but at the cost of a point if the shuttle lands inside the court. For the observer, the expected cost of an action is a weighted

Resurgence of Bayesian Models since ca. 2000

Bayesian Models of Cognition Revisited: Setting Optimality Aside and Letting Data Drive Psychological Theory

Opinion

Bayesian Brains without Probabilities

Surprisingly Rational: Probability Theory Plus Noise Explains Biases in Judgment
Adam N. Sanborn ${ }^{1, \star}$ and Nick Chater ${ }^{2}$
Bayesian explanations have swept through cognitive science over the past two decades, from intuitive physics and causal learning, to perception, motor con-
${ }^{2}$ Division of Psychology and Language Scie
${ }^{3}$ Department of Psychology, Carnegie Mello
${ }_{5}^{5}$ School of Psychology, University of Adelai
${ }^{5}$ Brain and Cognitive Sciences Department,
Cambridge, MA 02139, USA
ondon, Gower Street, London WC1E 6BT, UK Ave, Pittsburgh PA 15213, USA
ing, Adelaide, SA 5005, Australia
Technology, Building 46-4015, 77 Massachuset

Paul Watts
National University of Ireland

The systematic biases seen in people's probability judgments are typically taken as evidence that people do not use the rules of probability theory when reasoning about probability but instead use heuristics, which sometimes yield reasonable judgments and sometimes yield systematic biases. This view has had a major impact in economics, law, medicine, and other fields; indeed, the idea that people cannot reason bout probability according to probability theory but are subject to random variation or noise in the about probability according to probability theory but are subject to random variation or noise in the
reasoning process. In this account the effect of noise is canceled for some probabilistic expressions. reasoning process. In this account the effect of noise is canceled for some probabilistic expressions. Analyzing data from 2 experiments, we find that, for these expressions, people's probability judgments are strikingly close to those required by probability theory. For other expressions, this account produces probabilistic reasoning (conservatism, subadditivity, conjunction, and disiunction fallacies). These results suggest that people's probability judgments embody the rules of probability theory and that biases in those judgments are due to the effects of random noise.

Keywords: probability, rationality, random variation, heuristics, biases

©
 The Mind is a
 Bayesian Sampler

Trends in Cognitive Sciences
2016

Opinion
Bayesian Brains without Probabilities
Adam N. Sanborn ${ }^{1, *}$ and Nick Chater ${ }^{2}$

Surprisingly rational: Probability theory plus noise explains biases in judgment.

Costello, Fintan,Watts, Paul
Psychological Review, Vol 121(3), Jul 2014, 463-480

Brain does not represent probability distributions

The Mind is a
 Bayesian Sampler

Trends in Cognitive Sciences
2016

Opinion
Bayesian Brains without Probabilities
Adam N. Sanborn ${ }^{1, *}$ and Nick Chater ${ }^{2}$

Surprisingly rational: Probability theory plus noise explains biases in judgment.

Costello, Fintan, Watts, Paul
Psychological Review, Vol 121(3), Jul 2014, 463-480

Brain does not represent probability distributions

Probability distributions approximated via sampling from memory

The Mind is a
 Bayesian Sampler

Surprisingly rational: Probability theory plus noise explains biases in judgment.

Costello, Fintan, Watts, Paul
Psychological Review, Vol 121(3), Jul 2014, 463-480

The Mind is a Bayesian Sampler

Brain does not represent probability distributions

Probability distributions approximated via sampling from memory

Test Bayesian brain:
Can sampling based
Bayesian model describe participants' behavior?

Surprisingly rational: Probability theory plus noise explains biases in judgment.

Costello, Fintan,Watts, Paul
Psychological Review, Vol 121(3), Jul 2014, 463-480

The Mind is a Bayesian Sampler

Trends in Cognitive Sciences 2016

Opinion
Bayesian Brains without Probabilities
Adam N. Sanborn ${ }^{1, *}$ and Nick Chater ${ }^{2}$

Brain does not represent probability distributions

Probability distributions approximated via sampling from memory

Test Bayesian brain:
Can sampling based
Bayesian model describe participants' behavior?

Noisy sampler:
Model for probability estimation, combines

- Bayesian brain
- Sampling
- Noise

Surprisingly rational: Probability theory plus noise explains biases in judgment.

Costello, Fintan,Watts, Paul
Psychological Review, Vol 121(3), Jul 2014, 463-480

The Mind is a
 Bayesian Sampler

Trends in Cognitive Sciences 2016

Opinion
Bayesian Brains without Probabilities
Adam N. Sanborn ${ }^{1, *}$ and Nick Chater ${ }^{2}$

Brain does not represent probability distributions

Probability distributions approximated via sampling from memory

Test Bayesian brain:
Can sampling based
Bayesian model describe participants' behavior?

Noisy sampler:
Model for probability estimation, combines

- Bayesian brain
- Sampling
- Noise

Kind of.

©
 The Mind is a
 Bayesian Sampler

Trends in Cognitive Sciences
2016

Opinion
Bayesian Brains without Probabilities
Adam N. Sanborn ${ }^{1, *}$ and Nick Chater ${ }^{2}$

Surprisingly rational: Probability theory plus noise explains biases in judgment.
Costello, Fintan, Watts, Paul
Psychological Review, Vol 121(3), Jul 2014, 463-480

What is the probability that the weather will be cloudy on a randomly selected day in Ireland?

The Mind is a
 Bayesian Sampler

Trends in Cognitive Sciences
 2016
 Opinion
 Bayesian Brains without Probabilities

[^0]Surprisingly rational: Probability theory plus noise explains biases in judgment.

Costello, Fintan, Watts, Paul
Psychological Review, Vol 121 (3), Jul 2014, 463-480

OO
 The Mind is a
 Bayesian Sampler

Trends in Cognitive Sciences

2016

Opinion
Bayesian Brains without Probabilities

What is the probability that the weather will be cloudy on a randomly selected day in Ireland?

[^1]Surprisingly rational: Probability theory plus noise explains biases in judgment.

Costello, Fintan, Watts, Paul
Psychological Review, Vol 121(3), Jul 2014, 463-480

What is the probability that the weather will be cloudy on a randomly selected day in Ireland?

Trends in Cognitive Sciences
2016
Opinion
Bayesian Brains without Probabilities

Adam N. Sanborn ${ }^{1, *}$ and Nick Chater ${ }^{2}$

Surprisingly rational: Probability theory plus noise explains biases in judgment.

Costello, Fintan, Watts, Paul
Psychological Review, Vol 121(3), Jul 2014, 463-480

What is the probability that the weather will be cloudy on a randomly selected day in Ireland?

Trends in Cognitive Sciences
2016
Opinion
Bayesian Brains without Probabilities

The Mind is a
 Bayesian Sampler

Adam N. Sanborn ${ }^{1, *}$ and Nick Chater ${ }^{2}$

What is the probability that the weather will be ... on a randomly selected day in Ireland?

01 cloudy?

What is the probability that the weather will be ... on a randomly selected day in Ireland?

$01 \mid$ cloudy? $02 \mid$ cold?

What is the probability that the weather will be ... on a randomly selected day in Ireland?

$01 \mid$ cloudy? $02 \mid$ cold? $\quad 03 \left\lvert\, \begin{aligned} & \text { cloudy or } \\ & \text { cold? }\end{aligned}\right.$

What is the probability that the weather will be ... on a randomly selected day in Ireland?

$01 \mid$ cloudy? $02 \mid$ cold? $\quad 03 \left\lvert\, \begin{aligned} & \text { cloudy or } \\ & \text { cold? }\end{aligned}\right.$
$04 \left\lvert\, \begin{aligned} & \text { cloudy and } \\ & \text { cold? }\end{aligned}\right.$

What is the probability that the weather will be ... on a randomly selected day in Ireland?

$01 \mid$ cloudy? $02 \mid$ cold? $\quad 03 \left\lvert\, \begin{aligned} & \text { cloudy or } \\ & \text { cold? }\end{aligned}\right.$
$04\left|\begin{array}{l}\text { cloudy and } \\ \text { cold? }\end{array} 05\right| \begin{aligned} & \text { cloudy and } \\ & \text { not cold? }\end{aligned}$

What is the probability that the weather will be ... on a randomly selected day in Ireland?

01 cloudy?
02 cold?
$03 \left\lvert\, \begin{aligned} & \text { cloudy or } \\ & \text { cold? }\end{aligned}\right.$
$04 \left\lvert\, \begin{aligned} & \text { cloudy and } \\ & \text { cold? }\end{aligned}\right.$ an $\left.05 \begin{aligned} & \text { cloudy and } \\ & \text { not cold? }\end{aligned} \quad 06 \right\rvert\, \begin{aligned} & \text { cold and } \\ & \text { not cloudy? }\end{aligned}$

What is the probability that the weather will be ... on a randomly selected day in Ireland?

01 cloudy? 02 cold?

$\left.04\left|\begin{array}{l}\text { cloudy and } \\ \text { cold? }\end{array}, 05\right| \begin{aligned} & \text { cloudy and } \\ & \text { not cold? }\end{aligned} \quad 06 \right\rvert\, \begin{aligned} & \text { cold and } \\ & \text { not cloudy? }\end{aligned}$

What is the probability that the weather will be ... on a randomly selected day in Ireland?

What is the probability that the weather will be ... on a randomly selected day in Ireland?

Noisy Sampler Generative Model for Probability Estimation

Noisy Sampler

Discrete Probability Distribution on

Mixture Model

Joint Probability Distribution
Provides "true" probability
Noisy Sampler Generative Model for Probability Estimation

(e.g., Oakford \& Chater, 2014)

Bayesian Sampling
Probabilistic transformation of
"true" probability

Memory \& Response Noise
Sometimes sampling is erroneous
(Costello \& Watts, 2014) and

sometimes response is noisy

Derive distribution of deviance under null hypothesis (H_{0})

Noisy Sampler Generative Model for Probability Estimation

Derive distribution of deviance under null hypothesis $\left(H_{0}\right)$

Noisy Sampler Generative Model for Probability Estimation

Generate synthetic data from best fitting parameter estimates

Derive distribution of deviance under null hypothesis $\left(H_{0}\right)$

Noisy Sampler Generative Model for Probability Estimation

Generate synthetic data from best fitting parameter estimates

Fit noisy sampler to synthetic data

Derive distribution of deviance under null hypothesis (H_{0})

Noisy Sampler Generative Model for Probability Estimation

Generate synthetic data from best fitting parameter estimates

Fit noisy sampler to synthetic data

Record deviance of fit to synthetic data

Derive distribution of deviance under null hypothesis (H_{0})

Noisy Sampler Generative Model for Probability Estimation

Derive distribution of deviance under null hypothesis (H_{0})

Noisy Sampler
Generative Model for Probability Estimation

Derive distribution of deviance under null hypothesis (H_{0})

Derive distribution of deviance under null hypothesis (H_{0})

Costello \& Watts (2014)

Does sampling save the Bayesian brain?

THANK YOU FOR YOUR ATTENTION!

Questions?

$$
\begin{aligned}
& \text { cold - cloudy } \\
& \text { cold - sunny } \\
& \text { windy - cold } \\
& \text { cloudy - rainy } \\
& \text { cloudy - icy } \\
& \text { sunny - icy } \\
& \text { sunny - rainy } \\
& \text { icy - windy } \\
& \text { rainy - windy }
\end{aligned}
$$

= 42 independent data points per participant

$$
1 \text { noise parameter }
$$

$$
1 \text { number of samples }
$$

$$
\begin{aligned}
& \text { cold - cloudy } \\
& \text { cold - sunny } \\
& \text { windy - cold } \\
& \text { cloudy - rainy } \\
& \text { cloudy - icy } \\
& \text { sunny - icy } \\
& \text { sunny - rainy } \\
& \text { icy } \\
& \text { ice windy } \\
& \text { rainy - windy }
\end{aligned}
$$

= 42 independent data points per participant

[^0]: Adam N. Sanborn ${ }^{1, *}$ and Nick Chater ${ }^{2}$

[^1]: Adam N. Sanborn ${ }^{1, *}$ and Nick Chater ${ }^{2}$

