Disentangling supression effects with the dual-source model of probabilistic conditional reasoning

Henrik Singmann, Sieghard Beller, and Christoph Klauer Paper presented at the Workshop "Rationality frameworks for conditionals", Munich, 2012

Introduction

- According to the probabilistic model of conditional reasoning (Oaksford, Chater & Larkin, 2000), responses to conditional inferences are based on *background knowledge* and reflect the subjective conditional probability of the conclusion given the minor premise (e.g., For rule "If *p*, then *q*", MP should be P(*q*|*p*)).
- Given findings that the presence or absence of the rule influences responses to conditional problems, the question arises: What is the effect of the rule?
- Several results (Klauer, Beller, & Hütter, 2010; Liu, 2003) indicate that the presence of the rule increases endorsement to conditional inferences, especially for MP and MT inferences.
- Klauer, Beller and Hütter (2010) assume that the effect of the rule is to provide information in addition to background knowledge: *form-based evidence* (i.e., the subjective probability to which an inference is seen as logically warranted)
- The dual-source model is a mathematical measurement model describing probabilistic conditional reasoning with three parameters:
 - ξ (xsi): quantifies the knowledge-based component (formalized as in Oaksford et al.'s, 2000, model)
 - о т (tau): form-based evidence
 - λ (lambda): weighting factor

Experimental Design

- Participants work on conditional reasoning tasks with different contents on two sessions:
 - 1. Session: Problems without conditional rule
 - 2. Session: Problems with conditional rule
- Four contents cross disablers and alternatives:
 - If a *predator* is hungry, then it will search for prey. (few disablers, few alternatives)
 - If a *balloon* is pricked with a needle, then it will quickly lose air. (few disablers, many alternatives)
 - If a *girl* has sexual intercourse, then she will be pregnant. (many disablers, few alternatives)
 - If a person drinks a lot of *coke*, then the person will gain weight. (many disablers, many alternatives)
- In both sessions participants work on all 4 contents and all four conditional inferences (MP, MT, AC, DA)
- To obtain better estimates of the perceived probability with which a conclusion holds, participants work on two versions of each inference, the original conclusion and the converse conclusion:
 - MP (Original): $p \rightarrow q$; p : q
 - o MP' (Converse): $p \rightarrow q$; p: $\neg q$
- Dependent Variable: How likely does the conclusion hold given minor premise (Session 1) or given conditional rule and minor premise (Session 2)? Response on scale from 0% to 100%.

Disentangling supression effects with the dual-source model of probabilistic conditional reasoning

Henrik Singmann, Sieghard Beller, and Christoph Klauer Paper presented at the Workshop "Rationality frameworks for conditionals", Munich, 2012

Parameter Validation (Klauer et al. 2010, Experiments 1 & 3)

- The parameters of the dual-source model are estimated by fitting individual data from both sessions to one set of parameters.
- The knowledge parameter ξ reflects the pattern of responses in the knowledge phase (i.e., session without rule).
- Changing the rule from "If p, then q" to "p only if q" only affects the form parameter τ and not the weighting parameter λ.

Research Question and Procedure

- Which type of information (background knowledge or perceived validity) is affected by suppression effects (Byrne, 1989)?
- Participants work on original and converse conditional inferences (same 4 contents) in two phases:
 - 1. Session (knowledge phase): without conditional rule
 - 2. Session (rule phase): with conditional rule (e.g., "If a predator is hungry, then it will search for prey.")
- Three experimental conditions:
 - o baseline (no explicit counterexamples), n = 29
 - disablers (three additional disablers), n = 31 (e.g., "A predator will only search for prey, if it is physically fit.")
 - alternatives (three additional alternatives), n = 31 (e.g., "A predator will also search for prey, if it needs to feed its offspring.")

Results

- The dual-source model shows a dissociation for different suppression effects (results replicate from a prestudy).
- Explicit disabling conditions:
 - \circ undermine the credibility of the rule: lower λ
 - undermine the perceived form-based evidence for the valid conditional inferences: lower t(MP) and t(MT)
 - o slight effects on knowledge parameter for MP: lower ξ (predator, MP) and ξ (balloon, MP)
- Explicit alternative conditions
 - undermine the perceived form-based evidence for the invalid conditional problems: lower τ(AC) and τ(DA)
 - o undermine the perceived knowledge-based evidence for all contents on the invalid inferences: lower $\xi(C, AC)$ and $\xi(C, DA)$

Disentangling supression effects with the dual-source model of probabilistic conditional reasoning

Henrik Singmann, Sieghard Beller, and Christoph Klauer Paper presented at the Workshop "Rationality frameworks for conditionals", Munich, 2012

Note that the p-values below the plots compare the baseline with the disablers condition, p(d), and with the alternatives condition, p(a).

Summary

- Modeling suppression effects with the dual-source model shows that both disabling conditions and alternative conditions suppress the subjective probability with which the relevant inferences seem warranted by the logical form of the inference (i.e., lower τ parameters).
- Disabling conditions suppress the credibility of the conditional rule (i.e., lower λ parameters).
- Alternative antecedents suppress the subjective certainty that an inference seems warranted by background knowledge (i.e., lower ξ parameters).

References

- Byrne, R. M. J. (1989). Suppressing valid inferences with conditionals. *Cognition,* 31(1), 61-83. doi:10.1016/0010-0277(89)90018-8
- Klauer, K. C., Beller, S., & Hütter, M. (2010). Conditional reasoning in context: A dual-source model of probabilistic inference. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 36(2), 298-323. doi:10.1037/a0018705
- Liu, I. (2003). Conditional reasoning and conditionalization. *Journal of Experimental Psychology: Learning, Memory, and Cognition,* 29(4), 694-709. doi:10.1037/0278-7393.29.4.694
- Oaksford, M., Chater, N., & Larkin, J. (2000). Probabilities and polarity biases in conditional inference. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(4), 883–899. doi:10.1037/0278-7393.26.4.883