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Abstract

Recent research on syllogistic reasoning suggests that the logical status (valid vs. invalid) of even difficult syllogisms can be
intuitively detected via differences in conceptual fluency between logically valid and invalid syllogisms when participants
are asked to rate how much they like a conclusion following from a syllogism (Morsanyi & Handley, 2012). These claims of an
intuitive logic are at odds with most theories on syllogistic reasoning which posit that detecting the logical status of difficult
syllogisms requires effortful and deliberate cognitive processes. We present new data replicating the effects reported by
Morsanyi and Handley, but show that this effect is eliminated when controlling for a possible confound in terms of
conclusion content. Additionally, we reanalyze three studies (n~287) without this confound with a Bayesian mixed model
meta-analysis (i.e., controlling for participant and item effects) which provides evidence for the null-hypothesis and against
Morsanyi and Handley’s claim.
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Introduction

Decades of research have come to a relatively unanimous

conclusion on the role of formal logic in human reasoning: Naive

reasoners (i.e., reasoners untrained in formal logic) make many

errors when asked to respond to reasoning problems in accordance

with the norms of formal logic. Furthermore, other factors such as

the content and context may prompt what is known as a heuristic

response [1–4]. Naive reasoners’ deviations from formal logic have

played a major role in some of the most successful research

programs within cognitive psychology [5] and have led to a variety

of new paradigms which abandon classical bivalent logic as their

normative yardstick [6–8].

One prominent finding demonstrating people’s limited ability to

act in accordance with formal logic is the belief bias effect in

syllogistic reasoning [9,10]. Syllogisms are arguments consisting of

two premises and one conclusion such as the following two

examples (which contain a non-word as the middle term):

Example 1:

No ice creams are vons.

Some vons are hot.

Therefore, some ice creams are not hot.

Example 2:

No expensive things are mets.

Some mets are diamonds.

Therefore, some diamonds are inexpensive.

When asked to evaluate whether or not the conclusion follows

with logical necessity, individuals usually show the following

response pattern [9]: they are more likely to accept a believable

but invalid conclusion (Example 1) than a valid but unbelievable

conclusion (Example 2). Resisting the temptation to give the

heuristic response (i.e., responding in line with a conclusion’s

believability) is correlated with people’s general cognitive ability

[11]. Furthermore, when asked to generate a valid conclusion

from premises of the form in the examples (with abstract material),

only 13% of participants are able to do so correctly ([12],

Syllogism IE2, Table 7). Taken together, these and other findings

converge on the conclusion that evaluating the validity of such

syllogisms is a resource-demanding and effortful cognitive process

that requires goal-directed manipulation and coordination of

multiple mental representations (see [12] for an overview of the

relevant theories).

According to the view sketched above, formal logic is not deeply

entrenched in individuals’ cognitive systems. In contrast, recent

theoretical developments revive the idea of classical logic as part of

the human cognitive system and postulate that individuals possess

logical intuition. In particular, de Neys [13] and Morsanyi and

Handley [14] propose that even when giving the formally

incorrect response (e.g., accepting the conclusion in Example 1)

individuals intuitively detect the conflict between the normatively

correct solution and the heuristic response. This conflict detection

is thought to be ‘‘automatic’’ and ‘‘implicit’’ ([13], p. 30) and ‘‘does

not seem to be conscious’’ ([14], p. 597). Proponents of logical

intuitions argue that such intuitions are revealed by indirect means

such as physiological measures, response times or indirect tasks

(e.g., longer response times for trials in which the normative and

heuristic responses are in conflict with each other [15]).

In this paper we focus on the recent work by Morsanyi and

Handley [14] (henceforth referred to as MH). Their hypothesis of

a fluency mediated intuitive logic starts from the notion sketched above
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that, when reading syllogisms like Examples 1 and 2, individuals

can intuitively detect the true logical status of the syllogisms. In

order to measure this intuitive sense of logicality, MH adapt ideas

and methods from the literature on fluency effects [16–19]. Their

hypothesis can be broken down into two steps.

First, MH assume that when reading the premises of a

(sequentially presented) syllogism, individuals construct a (initial

and implicit) mental model of the syllogism. When finally the

conclusion is presented this can have two different consequences: a

valid conclusion is processed with higher conceptual fluency as it

matches the initial model, whereas an invalid conclusion is

processed with comparatively low fluency as it need not match the

initial model. MH’s intuitive logic rests on this difference in

perceived processing or conceptual fluency in an argument that is

constructed in analogy to arguments for sequentially presented

word triads (where a coherent word triad, e.g., salty - deep - foam,

elicits higher fluency than an incoherent triad, e.g., dream - ball -

book [16]).

The second part of MH’s argument is based on the hedonic-marker

hypothesis [18] according to which higher fluency triggers positive

affect. Consequently, MH expected valid syllogisms to elicit more

positive affect than invalid syllogisms. They tested this hypothesis

in a straightforward manner by presenting syllogisms and asking

participants to judge the likability of the conclusion on a 5-point

scale ranging from ‘‘Don’t like it at all’’ to ‘‘Like it very much’’. In

four experiments MH found evidence for their hypothesis (i.e.,

higher liking ratings for valid than for invalid syllogisms) using

different syllogisms and experimental manipulations.

As the idea of intuitive logic is a relatively new theoretical

development that stands in contrast with more established theories

on human reasoning, Klauer and Singmann [20] (henceforth

referred to as KS) tested alternative accounts for MH’s findings

based on certain characteristics of MH’s experimental design. In

particular, KS noted that MH did not randomly assign the validity

of the syllogisms to the different conclusions used in their study.

For example, the conclusion of Example 1 (‘‘Therefore, some ice

creams are not hot’’) was only presented as part of the invalid

syllogism given in Example 1 and not in a valid syllogism such as

the following ([12], Syllogism IE4, Table 7):

Example 3:

No hot things are vons.

Some vons are ice creams.

Therefore, some ice creams are not hot.

The fact that each conclusion was not randomly assigned to

valid and invalid syllogisms but had a fixed validity status opens

the possibility that the findings of MH are solely due to the

affective connotations of the conclusions and not related to the

validity of the syllogism. In a series of experiments KS found that

when experimentally controlling for this possible confound by

randomly assigning the different contents (i.e., conclusions of the

syllogisms) to valid and invalid syllogisms, the supposed effects of

validity on liking ratings disappeared. In a first step they only

presented the conclusions of the conditionals without the premises

(participants were simply asked to indicate how much they liked,

e.g., ‘‘Some ice creams are not hot’’ or ‘‘Some diamonds are

inexpensive’’) and found the exact same pattern of responses as

obtained with the full syllogisms including the original (non-

randomized) premises (see Experiment 2 by KS). This strongly

suggested that the effect obtained by MH was mainly driven by the

specific content of the conclusions and their affective connotations.

In two further experiments, KS presented participants with

syllogisms in which the conclusions remained fixed but the validity

of the syllogisms was randomly assigned by altering the form of the

premises (e.g., one participant saw Example 1 whereas another

participant saw Example 3). When conclusions were equally likely

to be either presented as part of a valid or an invalid syllogism, the

results showed no evidence for an influence of the validity of the

syllogism on participants’ liking ratings (Experiments 3 and 4 by

KS). These results questioned the idea of a fluency mediated

intuitive logic as proposed by MH.

Despite considerable statistical power, the experiments by KS

were somewhat incomplete with regard to one important finding:

They did not replicate the original MH validity effect on liking

ratings. Instead they found an interaction of validity and

believability, discussed in more detail below. This failure was

attributed to potential differences in the subtle affective connota-

tions of the materials when presented in English to native English

speakers (as done by MH) as compared to when presented in

German to native German speakers (as done by KS). One

additional shortcoming was that KS only employed one of the

experimental procedures employed by MH, which may have been

the one most adverse to finding effects of an intuitive logic.

The remainder of this paper is split into two parts. In the first

part we present new data obtained with the original MH material

presented to native English speakers using an experimental

paradigm of MH not employed by KS in which we replicate the

Figure 1. Mean (filled symbols) and individual (nonfilled symbols) liking ratings in Experiments 1 (left panel) and 2 (right panel) as
a function of validity and conclusion believability. A small amount of vertical jitter was added to individual liking ratings to avoid perfect
overlap of two ratings. Error bars show difference adjusted 95% Cousineau-Morey confidence intervals for within-subject designs (i.e., non-
overlapping error bars indicate significant differences [58]).
doi:10.1371/journal.pone.0094223.g001
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original MH validity effect. However, we show that this effect

again disappears when controlling for conclusion content by

randomly assigning the different conclusions to either valid or

invalid syllogisms. In the second part, we reevaluate the evidence

for an intuitive logic gathered within the paradigm developed by

MH with a meta-analysis based on a Bayesian ANOVA [21]

which we present and discuss in detail.

Experiments 1 and 2

In contrast to MH, KS did not find main effects of validity and

believability when presenting the (translated to German) syllogisms

without randomization of conclusions across validity status, but an

interaction of validity and believability. The validity effect

appeared in the expected direction only for the unbelievable

conclusions and the reversed pattern was found for believable

conclusions. Although not a direct replication of MH’s results

pattern, these findings could be interpreted as an effect of validity

on liking ratings. However, KS introduced a condition with

randomized conclusions in which, by reordering the terms in the

premises, each conclusion could appear as a valid or invalid

syllogism. In this condition KS found no evidence of an effect of

validity, but only a main effect of believability (higher liking ratings

for believable conclusions).

In their effort to test the hypothesis of a fluency mediated

intuitive logic, KS replicated (with modifications) MH’s Experi-

ment 4, which both MH and KS considered to be the strongest

test of this hypothesis based on a number of features of its

procedures: Specifically, whereas in MH’s Experiments 1 to 3 the

sequential presentation of the syllogism was self-paced (i.e.,

participants could decide when they would view the next part of

the syllogism) this was not the case in MH’s Experiment 4 and KS

(i.e., each statements remained on the screen for a given time, for

example for 2 seconds, then disappeared and the next statement

appeared automatically). Additionally, in MH’s Experiments 1 to

3 the second premise remained on the screen along with the

conclusion when giving the liking ratings and the conclusions were

prefaced with the word ‘‘therefore’’ (which provides a strong

linguistic marker indicating that the three statements are linked in

an inferential context). This was not the case in MH’s Experiment

4 and KS. In sum, the variations implemented in MH’s

Experiment 4 and KS removed the inferential reasoning context

from the task participants faced and removed the self-paced nature

of the argument presentation. However, it may well be possible

that without any reference to the inferential context or with a fast-

paced presentation schedule, the intuitive logic may not be

‘‘activated’’ and hence either of these variations may have

prevented a genuine effect of validity.

The purpose of Experiments 1 and 2 was (a) to test whether we

can replicate MH’s main effect for validity in a sample of English

speakers and (b) whether more compelling evidence for an

intuitive logic can be found when providing a context that more

strongly cues inferential reasoning. In the present experiments we

therefore employed the procedures used in MH’s Experiment 2 in

a web-based experiment using the original English material. In

Experiment 1 we replicated MH’s Experiment 2 by using the

material with fixed validity. In Experiment 2 we presented the

conclusions with randomized validity. We only used the syllogisms

with believable and unbelievable conclusions (i.e., we omitted the

conditionals with ‘‘abstract’’ conclusions also used by MH and

KS).

Method
Ethics Statement. The ethical principles as formulated in the

WMA Declaration of Helsinki guided our research project. If

research objectives do not refer to issues regulated by law (e.g., the

German Medicine Act [Arzneimittelgesetz, AMG], the Medical

Devices Act [Medizinproduktegesetz, MGP], the Stem Cell

Research Act [Stammzellenforschungsgesetz, StFG] or the Med-

ical Association’s Professional Code of Conduct [Berufsordnung

der Ärzte]), then no ethics approval is required for social science

research in Germany. Our study has no such objectives; therefore,

no approval was required. Participation was entirely voluntary,

data were collected anonymously over the internet and could only

be accessed by the first author and subjects were fully informed

about the study purpose and their anonymitiy before proceeding

to answer the questionnaire. As the questionnaire could reasonably

be assumed not to cause subjects any harm or distress, written

consent was not obtained but subjects’ decision to participate was

considered to imply their consent. This procedure was in

accordance with the German Society for Psychology’s research

standards (Grundsätze der Forschung am Menschen, C.III, para.

6).

Participants. Participants were recruited via CrowdFlower.-

com (a service similar to Mechanical Turk) and had to live within

the UK (which was ensured via IP filtering). Twenty-six

participants completed Experiment 1 (three additional participants

did not finish the experiment). Of those, we excluded four

participants who indicated that English was not their first

language. The remaining twenty-two participants had a mean

age of 28 years (SD = 9.02, ranging from 16 to 50 years) and came

from diverse background (two high school students, four university

students, eleven employees/working, and five unemployed/

homemaker).

Sixty-nine participants completed Experiment 2 (nine additional

participants did not finish the experiment). Of those, we excluded

twelve participants who indicated that English was not their first

language. The remaining fifty-seven participants had a mean age

of 34.1 years (SD = 10.61, ranging from 18 to 71) and came from

diverse background (five university students, thirty-nine employ-

ees/working, and seventeen unemployed/homemaker or ‘‘other’’).

All participants received a small monetary compensation for

participation.

Materials and Procedure. We used the 8 believable and 8

unbelievable syllogisms from MH’s Experiment 2 in the present

Experiment 1 and versions of those syllogisms in which we

randomized the validity status of the conclusions in the present

Experiment 2 (as in the above Examples 1 and 3; see KS,

Experiment 3, for more details). The procedure otherwise closely

followed MH’s Experiment 2 (normal font condition, only liking

ratings): For each syllogism, the first premise was presented first.

After clicking on ‘‘Next’’, the first premise disappeared and the

second premise appeared. After clicking on ‘‘Next’’ again, the

conclusion appeared including ‘‘Therefore’’ as first word (while the

second premise remained on the screen) and participants had to

indicate how much they liked the final statement by clicking on

one of five smileys/sad faces arranged in a 5-point scale ranging

from ‘‘Don’t like it at all’’ to ‘‘Like it very much’’. The items were

presented in randomized order and the randomization (including

the randomization of conclusion validity in Experiment 2) was

done anew for each participant. We presented an additional

warm-up syllogism based on a different content prior to the 16

experimental syllogisms, which was not analyzed. Each experi-

ment implemented a within-subjects design with two factors:

believability (believable and unbelievable) and validity (valid and

invalid).

Intuitive Logic Revisited
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Results and Discussion
For each experiment we analyzed the data using a separate

within-subjects ANOVA with factors believability and validity.

(When analyzing both data sets together, a significant interaction

of validity and experiment emerged, F(1,77)~5:66,

g2
G~:01,p~:02. Note, g2

G (generalized eta-squared) is the recom-

mended effect size for repeated measures designs according to

[22].) Results are displayed in Figure 1.

Experiment 1. When validity was not randomly assigned to

the different conclusions we replicated MH’s main findings. We

found a main effect of validity, F (1,21)~5:94,g2
G~:05,p~:02,

indicating that participants gave higher ratings to valid than

invalid syllogisms. Additionally, we found a main effect for

believability, F(1,21)~8:21,g2
G~:13,p~:009, indicating that

participants gave higher liking ratings to believable than to

unbelievable conclusions. The interaction of validity and believ-

ability did not reach significance, Fv1.

Experiment 2. In line with KS, we did not find an effect of

validity, nor an interaction of validity with believability when

randomly assigning validity to the different conclusions, both

Fv1. However, the main effect of believability (higher liking

ratings for believable than unbelievable conclusions) was signifi-

cant, F (1,56)~5:69,g2
G~:03,p~:02.

Discussion. The results are relatively clear cut. When

replicating MH with native English speakers their results were

replicated, including the main effect of validity that KS did not

replicate: There were higher liking ratings of valid than invalid

conclusions. However, interpreting these results as evidence for an

intuitive logic again seems premature. When controlling for

possible effects of content by randomly assigning the different

conclusions to either valid or invalid syllogisms (Experiment 2), the

validity effect disappears. This strongly indicates that the

procedural variations implemented in MH’s Experiment 4 and

KS compared to MH’s Experiments 1 to 3 were not responsible

for the failure to replicate evidence for an intuitive logic.

Furthermore, the fact that we could replicate the original validity

main effect, whereas KS found interactions of validity and

believability, supports the assumption that differences in cultural

norms and subtle affective connotations to the material between

English and German participants influence the liking ratings (this

is only apparent in the data when non-randomly assigning

conclusion validity).

A Bayesian Mixed Model Meta-Analysis

The experiments by KS and our new data have painted a

relatively pessimistic picture regarding MH’s claims of a fluency

mediated intuitive logic. When controlling for content effects by

randomly assigning the conclusions to valid or invalid syllogisms,

there was no evidence for this hypothesis. However, there are also

reasons why abandoning MH’s idea of a fluency mediated intuitive

logic may be premature.

First, the notion of an intuitive logic is theoretically interesting

as it is one of many recent approaches dealing with the question of

how analytic and heuristic processes interact to come to a single

response in a given reasoning situation [23–25]. Given that it is

one of those approaches that runs counter more mainstream

theories of reasoning, it runs the risk of being discounted just

because of having an outsider status. Additionally, proponents cite

a range of evidence that is not addressed by the current discussion

([13] for an overview) and support MH’s ideas of an intuitive logic

even after KS published their results [25,26].

Second, providing evidence against the notion of an intuitive

logic as proposed by MH in the framework of null-hypothesis

significance testing (NHST) is difficult [27], because NHST can

provide evidence against a null hypothesis more compellingly than

evidence in favor of a null hypothesis as was attempted here. Only

relatively recently have alternatives to NHST been proposed that,

based on Bayesian statistics, can provide evidence in favor of the

null hypothesis [28]. An additional statistical issue arises from KS’

and our findings that the content of the conclusions plays a major

role in participants’ liking ratings. Ignoring these item effects by

simply averaging across items can also severely distort the results

[29], an issue long known in psycholinguistics [30]. Given these

methodological critics and the intriguing claims of an intuitive

logic, it seems appropriate to reanalyze the data gathered so far

using the most up-to-date statistical methodology. Additionally,

analyzing all data sets together should uncover even very small

effects.

Bayesian Statistics
Although many of the problems surrounding the use of null-

hypothesis significance testing (NHST) and p-values have been

known for a long time [27,31,32], their discussion has been

rekindled due to the recent availability of alternative statistical

methods [28,33]. One of the core criticisms against NHST

concerns the fact that p-values can only state evidence against the

established null hypothesis in cases like the one addressed here.

This severely constrains the type of inferences that can be made

from data given that accepting the null hypothesis only means that

there is a lack of evidence against the null but does not imply that

there is evidence in favor of it. One immediate consequence of this

asymmetry in NHST is that it does not support the testing of

invariances, invariances which in many cases represent core

properties of scientific theories (e.g., [34]). In the present case,

theories that do not postulate the existence of intuitive logic predict

an invariance for the liking ratings of valid and invalid syllogisms.

Moreover, NHST is also biased towards overstating the

evidence against the null hypothesis, leading researchers to reject

the latter in cases where there is actually very little evidence

against it. For example, Wetzels, Matzke, Lee, Rouder, Iverson, &

Wagenmakers [35] showed that several p-values between.05

and.01 reported in the literature actually correspond to cases

where evidence against the null hypothesis was little more than

anecdotal.

A principled alternative to NHST can be found in Bayesian

modeling [36], a framework that allows for the quantification of

evidence in favour of different hypotheses. The core principle

underlying statistical inference in the Bayesian framework is Bayes’

theorem, which indicates how prior beliefs towards different

models or hypotheses (the two terms are interchangeable) can be

updated on the basis of observed evidence. In the Bayesian

framework, beliefs can be expressed by means of probabilities.

Let Mi denote a model among a set of I candidate models, i

the set of parameters in model Mi. Given that the present paper is

focused on ANOVA-type models, parameters correspond to the

different effects that decompose data from a particular experi-

mental design such as main effects or interactions [37]. Finally, let

D denote the observed data. According to Bayes’ theorem, the

(posterior) probability of model Mi given the observed data D is

given by:

P(MijD)~
P(DjMi)P(Mi)

P(D)
~

P(DjMi)P(Mi)

PI
j~1

P(DjMj)P(Mj)

:
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The first term in the numerator corresponds to the so-called

marginal likelihood, the likelihood of the data according to model Mi

when integrating across the latter’s parameter space Hi, so that

P(DjMi)~

ð
P(DjMi,Hi)P(Hi) dHi,

where P(Hi) denotes the prior probability (densities) associated to the

model’s parameter space. P(Mi) denotes the prior probability of

model Mi, which will be for all practical purposes ignored, as

discussed below. Prior P(D) corresponds to the probability of the

observed data, which according to the Law of Total Probability

corresponds to the weighted sum of each model’s marginal

likelihood.

The marginal likelihood’s integration across the model’s

parameter space corresponds to an evaluation of the likelihood

of the data across data patterns in which data that are consistent

with the model receive high weights. For example, consider an

idealized dataset where all effects across the factorial design are

perfectly additive (i.e., there are no interactions). If you consider

the likelihood of this dataset across an ANOVA-model that

includes interactions, the data will be very unlikely in many

regions of the parameter space where interaction effects are

assumed (i.e., the likelihood will be low in these regions). In

comparison, larger likelihoods are obtained across the parameter

space of a model assuming no interactions, leading to a larger

marginal likelihood. The prior P(Hi) determines the weight given

to each region of the parameter space; for example if the prior

reflects the expectation of small effects then a greater weight will

be given to the likelihoods correspoding to regions of the

parameter space where small effects are assumed. Taken together,

the marginal likelihood of a model is not only affected by its ability

to match the observed data pattern but also by the match between

the observed data and the model’s whole range of predictions, a

range that is weighted by the parameter priors. This has important

consequences in terms of model selection as discussed below.

The representation of the posterior probabilities of two models,

let us say Mx and My, in terms of posterior odds provides a

convenient way of comparison:

P(MxjD)

P(MyjD)
~

P(Mx)

P(My)
|

P(DjMx)

P(DjMy)
:

The first term on the right side of the equation corresponds to

the models’ prior odds, while the second term, known as the Bayes

factor (BF) [38], quantifies the relative evidence for each model.

The Bayes factor can be interpreted as the change from prior odds

to posterior odds that is brought about by the observed data. For

example, BFx,y= 10 indicates that the posterior odds are shifted by

a factor of 10 towards model Mx upon having obtained the data.

Table 1 provides some guidelines on how to interpret Bayes

factors. Furthermore, Bayes factors provide a quantification of

evidence that is consistent across model comparisons. For

example, if the Bayes factor for models Mz and My (BF ) is

20, then the Bayes factor for models Mx and Mz is

BFx ~BF =BF ~0:5. In other words, Bayes factors can

be compared across models.

Bayes factors quantify the evidence for each model independent

of each model’s prior odds, which can radically differ depending

on the nature of the problem being discussed. For example, in the

present discussion one could argue that the hypothesis of intuitive

logic is less likely a priori than the hypothesis that there is no such

thing as intuitive logic (given that it does not follow from any

major theory of reasoning). Others could neverthless attempt to

make the opposite case and argue that intuitive logic is very likely.

Because Bayes factors quantify the change in evidence brought

about by the data, irrespective of each model’s prior odds, one can

sidestep this debate and the inevitable subjectiveness associated to

it.

Although Bayes factors are independent of each models’ prior

odds, they are sensitive to each model’s range of predictions as well

as to the parameter priors. The Bayes factor penalizes models that

are able to account for unobserved data patterns: For example, the

marginal likelihood of the above-mentioned idealized dataset is

larger under a model that only assumes main effects than under a

model that assumes interactions as well. This characteristic of

Bayes factors indicates that they naturally penalize more complex

and flexible models, especially when that flexibility does not make

any substative contribution. This penalization embodies a

principle of parsimony also known as Occam’s Razor [39,40].

The same principle of parsimony applies to the case of

parameter priors: Let us assume that the main effects in the

idealized dataset are small. The Bayes factor will penalize models

with priors that do not incorporate any expectations regarding the

size of the effect (e.g., completely non-informed priors assuming

that large effects are as probable as small effects) in comparison to

models with priors that reflect the small size of the effects. The

impact of parameter priors is particularly relevant when testing a

small effect against a null hypothesis given that an uninformed

prior will reduce to a certain extent the relative evidence in favour

of an effect.

In terms of traditional hypothesis testing, both the null and

alternative hypotheses correspond to models (Mx and My,

respectively) for which evidence is quantified. In contrast with p-

values, Bayes factors can provide both evidence against and in

favor of the null hypothesis. Rouder and colleagues [21] provided

algorithms for computing Bayes factors in ANOVA designs. These

algorithms are currently available in the BayesFactor package [41]

for the statistical programming language R [42].

Participant and Item Effects
Another important addition to the statistical toolkit are mixed

models (also known as mixed-effects, hierarchical, or multilevel

models) [29,43,44] which allow for what is known as crossed random

Table 1. Evidence Categories for the Bayes Factor.

Evidence BFx,y log(BFx,y)

Extreme (for Mx) w100 w4:61

Very strong (for Mx) w30 w3:40

Strong (for Mx) w10 w2:30

Substantial (for Mx) w3 w1:10

Anecdotal (for Mx) w1 w0

none 1 0

Anecdotal (for My) v1 v0

Substantial (for My) v1=3 v{1:10

Strong (for My) v1=10 v{2:30

Very strong (for My) v1=30 v{3:40

Extreme (for My) v1=100 v{4:61

Note. Evidence categories as introduced by Jeffreys [59] (as cited by [40]).
doi:10.1371/journal.pone.0094223.t001
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effects. A random effect or factor is often understood as a factor

whose levels are considered to be sampled from a larger

population with the intention to generalize across all levels of

the factor. Classical statistical procedures based on the general

linear model, such as ANOVA, can only handle one random

effect, usually the participants (i.e., one tries to generalize across

participants).

However, often one can also view items as random factors. For

example, in research on syllogisms one usually does not want to

make inferences on only the specific syllogisms studied but on the

population of all syllogisms. To be able to do so requires the

researcher to treat stimuli as random effects as well. Traditionally,

this was only possible by performing two separate analysis for

participants and items (i.e., what is known as the F1 and F2

analysis; see e.g., [45] for an example in the reasoning domain).

Only recently have procedures allowing for simultaneously

analyzing multiple or crossed random effects, been made available

[21,43].

An important distinction in the literature on mixed models is

between random intercepts and random slopes [46]. Random intercepts

are usually added for all random factors and add a separate offset

to the overall intercept (i.e., grand mean) for each level of a

random factor and thereby capture the variance that is associated

with the overall heterogeneity of the different levels of a random

factor. For example, random intercepts for participants estimate

the deviation of each participant’s mean response from the overall

mean, thereby allowing for an individual mean for each

participant that may deviate from the grand mean. Random

slopes can be added for each factor that varies across the levels of a

random factor: For participants, random slopes can be added for

within-subjects factors. For items, random slopes can be added for

those factors that vary across the items (e.g., validity when it is

randomized across items). Random slopes add a separate offset or

deviation to the overall fixed effect for each level of the random

factor and capture the variance that is associated with the

heterogeneity of the fixed effect across levels of the random factor.

For example, random slopes for believability for participants

estimate the deviation of each participant’s believability effect from

the overall believability effect, thereby allowing for an individual

believability effect of each participant. As all random effects only

estimate offests or deviations from overall effects, they are usually

assumed to be normally distributed with a mean of 0.

Besides the theoretically appealing idea of allowing for a

simultaneous generalization across both participants and items,

mixed models offer two important statistical advantages [29,46].

First, the main rationale for using mixed models is that they

capture systematic variance in the data which, if ignored, distorts

the estimation of the parameters of interest. For example, ignoring

possible item effects can dramatically increase the probability of

obtaining false positive results (up to empirical Type 1 error rates

of.6 compared to the nominal.05; [29], Table 2). Second, whereas

classical analysis only allows for a single observation per

participant and cell of an experimental design, mixed models do

not. In all experiments discussed so far there were exactly four

trials (or replicates) for each participant and cell of the

experimental design (e.g., there were four believable and valid

syllogisms presented to each participant) which were aggregated

prior to the analysis. This aggregation has the negative

consequences that it decreases the precision of the statistical tests,

specifically it reduces the precision with which the parameters

were estimated.

Method
To reassess the evidence for a fluency mediated intuitive logic as

proposed by MH, we performed a meta-analysis on the three

experiments that obtained liking ratings for valid and invalid

syllogisms in which the validity of the items was randomly assigned

to the different contents (Experiments 3 and 4 of KS; Experiment

2 this manuscript). In total, 287 participants entered the analysis

which was performed on the raw data (i.e., the four data points per

participants and cell of the experimental design were not

aggregated).

We performed the analysis by comparing a null or denominator

model which only contained an overall intercept, random effects

for participants, and a fixed effect for the experiment (with three

levels, one for each experiment; Appendix S1 contains an

alternative analysis in which experiment is treated as a random

effect), designated as M0, to models representing different

hypotheses via Bayes factors obtained with the methods proposed

by Rouder, Morey, and colleagues [21]. The models differed in

both their random effects and fixed effects structure. Specifically,

we implemented five different fixed effects structures: a model

which contained no fixed effect over and above the effect of

experiment which was present in all models (labeled ‘‘none’’ in

Table 2), a model with only a main effect of believability, a model

with only a main effect of validity, a model with both a main effect

of validity and believability (labeled ‘‘validity z believability’’),

and finally a model with both main effects and an interaction of

validity and believability (labeled ‘‘validity | believability’’). If

MH’s hypothesis were true, models containing a main effect of

validity should be more likely (i.e., have a higher Bayes factor) than

models without such an effect.

In terms of the random effects structure we manipulated two

factors: (a) Whether or not the models included a random effect for

the content of the conclusion or not (i.e., an item effect as discussed

above). Note that English and German conclusions were treated as

different items. (b) Whether the random effect had only random

intercepts (i.e., no random slopes), additionally random slopes for

believability, or additionally random slopes for believability,

validity, and their interactions (if present, the item effect was only

allowed to have random slopes for validity because items are

nested within believability; a given conclusion can only be either

believable or unbelievable). In total this amounted to six different

random effects structures, the two versions of (a) times the three

versions of (b). Furthermore, when there was a random slope for

one of the fixed effects (believability or validity) across a random

effect (item or participants), the corresponding slope for experi-

ment was also included. The model which included random

participant and item effects and random slopes for believability,

validity, and their interactions corresponds to the model with

maximal random effects structure recommended by Barr et al.

[46].

In total we computed thirty different versions of the model, 29

of which were compared to the null or denominator model

designated as M0. The analysis was performed using the

BayesFactor package [42] for the statistical programming

language R [38]. The R scripts for the analysis including the

raw data are available in Appendix S2. We used the Laplace

approximation to obtain estimates of the marginal likelihoods [21].

We used the g-priors proposed by Rouder et al. [21] with a scale

factor r~0:5 (for the fixed effects) which is recommended for small

effect sizes.

Results and Discussion
The results of the meta-analysis are presented in Table 2. A first

inspection reveals that the random effects structure had an extreme
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influence on the Bayes factors in two ways. First, models without a

random item effect (i.e., Models 1 to 14) were at least 1010 or 10

billion times less likely than models that included a random item

effect. This is extreme evidence for heterogeneity among the items.

Second, models that included random slopes for validity (i.e.,

Models 10 to 14 and 25 to 29) were also dramatically less likely

than models that did not include such slopes indicating that there

is evidence against heterogeneity of an effect of validity across

participants and items.

In fact, there was evidence against any effect of validity. The

model that provided the overall best account, Model 20, included

a random effect for item and random slopes for believability but no

further fixed effects, in particular no further effects of validity. The

evidence for this model compared to the best model that included

an effect of validity (i.e., Model 22) was very strong,

BF20,22 ~ 2:78|1050 =8:93|1048 ~ e116:15{112:71 ~31:19.

Furthermore, within all blocks with equal random effects structure

the best model was always a model that did not include validity

Table 2. Results from the Bayesian Mixed Model Meta-Analysis.

# Fixed Effects BF log(BF)

Participants

1 believability 4:81|1014 33.81

2 validity 0:42 23.18

3 validity+believability 2:00|1013 30.63

4 validity | believability 4:52|1012 29.14

Participants plus slopes for believability

5 none 1:39|1010 23.35

6 believability 1:06|1014 32.30

7 validity 5:86|1008 20.19

8 validity+believability 4:49|1012 29.13

9 validity | believability 1:15|1012 27.77

Participants plus slopes for believability | validity

10 none 8:28|10{ 216.31

11 believability 7:21|10{ 27.23

12 validity 4:81|10{ 219.15

13 validity+believability 4:19|10{ 210.08

14 validity | believability 2:44|10{ 212.92

Participants and items

15 none 7:23|1048 112.50

16 believability 3:23|1048 111.70

17 validity 2:32|1047 109.06

18 validity+believability 1:04|1047 108.26

19 validity | believability 2:17|1046 106.69

Participants and items plus slopes for believability

20 none 2:78|1050 116.15

21 believability 1:72|1050 115.67

22 validity 8:93|1048 112.71

23 validity+believability 5:55|1048 112.24

24 validity | believability 1:34|1048 110.81

Participants and items plus slopes for believability | validity

25 none 8:06|1026 61.95

26 believability 5:33|1026 61.54

27 validity 6:59|1025 59.45

28 validity+believability 4:36|1025 59.04

29 validity | believability 3:47|1024 56.51

Note. All models are compared against the denominator model, M0 , with only the random effect for participants and a fixed effect for experiment (BF for this model

against the intercept only model: 3:05|107). In addition to the effects mentioned, all models contain a fixed effect for experiment (potentially with slopes for
believability and validity). The random-effects structure is given above each block of models. The analysis is based on the raw data from Klauer and Singmann ([20],
Experiments 3 and 4) and Experiment 2 from the present manuscript. BF = Bayes factor. validity+believability = main effects for believability and validity. validity |

believability = main effects for believability and validity plus their interaction.
doi:10.1371/journal.pone.0094223.t002
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and the evidence in favor of the best model within each block

compared to the best model that included an effect of validity was

at least strong. The smallest Bayes factor of such a within-block

comparison was BF25,27 ~12:18.

The results regarding an effect of believability are somewhat

more diverse. The overall best model did include random slopes

for believability but no further fixed effect of it. However, the

evidence for Model 20 compared to Model 21, which additionally

included a fixed effect for believability, was only anecdotal:

BF20,21 ~1:62. This pattern, slightly higher BFs for models

without fixed effect for believability, is apparent for all three sets of

models that include a random item effects. However, comparing

the overall best model with the best model without any effect of

believability (i.e., also without random believability slopes) ‘‘only’’

provided very strong evidence for an effect of believability,

BF20,15 ~38:37. This indicates that there is evidence for

heterogeneity of the believability effect across participants but

slight evidence against a main effect of believability.

To further inspect the results we obtained 1000 samples for each

parameter from the posterior distribution of the largest model

(Model 29). We chose this model as it included all relevant fixed

and random effects (i.e., it realized the maximal random effects

structure [46]) and hence estimation of all effects should have been

the most precise. The densities and 95% credible intervals of the

posterior samples of the relevant fixed effects parameters are

displayed in Figure 2 which shows the same pattern as the BF

analysis. The mean fixed effect parameter for validity was virtually

0 ({0:02) and the credible interval very narrow and included 0.

For the fixed effect parameters for believability the pattern is

somewhat different: the credible intervals are wider, although all

include 0. The mean parameter values for believable and

unbelievable items were, in line with prior expectations, positive

for believable items, 0:16, and negative for unbelievable items,

{0:12.

To assess the magnitude of the random slopes, we calculated the

mean parameter values for each individual slope parameter (i.e.,

one per participant or item) from the posterior samples. The

densities of those mean parameter values for the participant slopes

are displayed in Figure 3 and again replicate the BF analysis. For

validity the density is rather narrow (SD = 0.08) indicating little

heterogeneity in the validity effect. In contrast, for believability

there is considerable heterogeneity in the random slopes, at least

for believable and unbelievable items (both SDs = 0.16, SD for

abstract items = .10).

To test the robustness of the results we repeated the analysis

reported here with the following changes: In one analysis the

factor experiment was treated as a random effect. In another

analysis we changed the scaling factor of the g-priors for the fixed

effects to the very small value r~0:2. Neither of the changes

affected the overall pattern of results with one exception: When

the g-priors were very small, models with only a fixed effect for

believability had (at least slightly) larger BFs than the model with

the same random effects structure but without any fixed effects.

The corresponding results tables can be found in Appendix S1.

As suggested by an anonymous reviewer, we also estimated an

additional non-Bayesian mixed model analysis of the data. This

analysis, however, only used the believable and unbelievable trials

as there were no abstract trials in Experiment 2 (this manuscript).

Figure 2. Density of 1000 posterior samples for the relevant fixed effects of Model 29. The | below each plot depicts the mean. The 95%
credible intervals are depicted by two vertical lines. The tiny black points at the 0 line show the position of the samples. The plot for validity shows
the fixed effect for valid inferences, the corresponding plot for invalid inferences would be mirrored at 0.
doi:10.1371/journal.pone.0094223.g002
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In other words, the factor ‘‘believability’’ had 3 levels (believable,

unbelievable, & abstract) for most of the data (and in the Bayesian

meta-analysis), but not for Experiment 2. Because of these

differences in the experiments, a joint analysis of all data in a

classical linear model approach required dropping the abstract

trials. In accordance with the results from the Bayesian analysis,

the classical analysis also revealed no effect of validity,

F (1,62:05)~0:20, p~:65. The difference between invalid and

valid trials was estimated to be 0:02, whereas it was estimated to be

0:04 in the Bayesian analysis. Similar to when using a very narrow

prior of r~0:2, there was evidence for an effect of believability,

F (1,34:42)~6:91, p~:01. However, given our sample size this

evidence can be considered somewhat weak (see also [47]). The

difference between believable and unbelievable items was

estimated to be 0:30, which agrees with the estimate from the

Bayesian analysis which was 0:28. No further effects reached

significance, all Fv1. More details on this analysis and a full

results table can be found in Appendix S1.

Taken together, this meta-analysis provided three main results:

there was very strong evidence against the hypothesis of a fluency

mediated intuitive logic, there was extreme evidence for item

heterogeneity, and there was strong evidence for heterogeneity of

an effect of believability of the conclusion but hardly any evidence

for an overall effect of believability.

General Discussion

The results presented in this paper allow one to make a stronger

inference concerning the evidence for a fluency mediated logic in

the paradigm developed by MH: When controlling for effects of

the content of the conclusion, as done in three experiments with

287 participants, there is not only no evidence for an influence of

validity of the syllogism on the liking ratings of the conclusion, but

there is very strong evidence against such an effect as expressed in

the Bayesian analysis.

The inference drawn here is not only stronger, but also extends

the results of KS in another way. The new experiments presented

here adopted some procedural changes that should have made it

more likely to observe intuitive logic as the context provided by the

task more strongly suggested inferential reasoning. Additionally,

the presentation of the syllogism was self-paced, which was also the

case in most of the experiments reported by MH. As we still did

not find evidence for an intuitive logic, these limitations to the

results discussed by KS do not apply anymore. However, it should

be noted that we only used rather complicated inferences and our

results cannot be extended to really simple syllogisms which were

also used by MH or [48].

Furthermore, our results do not entail that fluency or other

transient affective or cognitive effects do not affect how individuals

rate the likeability of sentences. For example, in MH’s Experiment

3 participants were listening to classical music while rating the

likeability of the conclusions and, employing a misattribution

paradigm, when led to believe that this music would influence

their emotional reaction, showed a reduced ‘‘validity’’ effect (as we

have shown here this effect was not a validity effect but due the

affective connotations of the content of the conclusions). This

suggests that fluency experiences and how they are attributed play

a role in liking ratings of the conclusion. In fact, it is well known

that factors such as grammatical complexity, readability, familiar-

ity, or prior exposure have an impact on affective reactions toward

Figure 3. Density of mean individual parameter estimates for the relevant random participant slopes of Model 29. The | depicts the
mean. The plot for validity shows the random slopes for valid inferences, the corresponding plot for invalid inferences would be mirrored at 0.
doi:10.1371/journal.pone.0094223.g003
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sentences that is mediated by effects of fluency (see [49] for a

current overview). What we have shown here is that the logical

form is no source of perceived fluency with which the syllogisms

are parsed.

Additionally, our analysis showed that participants did not

respond randomly in the task. The Bayesian meta-analysis

provides extreme evidence for participant and even more strongly

for item effects. In fact, a simple model with only random

intercepts for participants and items (plus a fixed effect of

experiment), Model 15, is among the best models overall. This

model is only further improved by considering believability.

However, while there is heterogeneity of the believability effects

among participants (i.e., higher BFs for models with random

believability slopes, see also Figure 3), there is hardly any evidence

for an overall main effect of believability. Additionally, the results

of Experiments 1 and 2 compared to the results of KS indicate that

affective connotations of the materials, which obviously differed

between a German and an English sample, are an important

predictor of participants’ liking ratings.

We consider the fact that the specific items played such an

important role as one of the additional take home messages of our

study as item effects are rarely taken into account in reasoning

research. It is well known that a failure to do so can lead to

dramatically distorted statistics [29] which is also apparent in our

analysis. When properly controlling for participants and item

effects and employing an appropriate random effects structure [46]

our analysis revealed that there is even slight evidence against a

main effect of believability. Consequently, we highly recommend

to explicitly model item effects whenever possible. Either, as was

done here, by explicitly including item as a random effect with the

appropriate random effects structure (i.e., on the same level as

participant, so creating crossed random effects). Alternatively,

especially when the number of items is small, item can be included

as a fixed effect into the model ([50] for an example).

Our analysis revealed one important aspect to consider when

performing a Bayesian mixed model analysis. When estimating a

non-Bayesian mixed model, Barr and colleagues [46] made a very

strong point for always employing the maximal random effects

structure. Their main rationale for this recommendation is (a) that

omitting a relevant random slope produces more biased estimates

and generates more wrong conclusions compared to introducing a

superfluous random slope and (b) that there does not exist a

generally applicable data-driven approach (e.g., forward versus

backward selection) to obtain the optimal random effects structure.

Whereas argument (a) holds for Bayesian and non-Bayesian mixed

models, argument (b) is mainly a problem for non-Bayesian

analysis – although some frequentist testing approaches have been

discussed [51] – as Bayes factors employ a sort of automatic

Occam’s razor and punish models with overly complex random

effects structures. Hence, although we agree with Barr et al. that

the maximal random effects structure should always be among the

compared models, it makes sense to include other random effects

structures as well. Bayes factors can help to determine the optimal

random effects structure thereby uncovering which effects differ

among the random effects in the model. The fact that Bayes

factors are consistent when comparing across different models

makes this approach even more convenient and appealing. As our

analysis has shown, it also makes sense to include random slopes

without the corresponding fixed main effects, as both cover

different aspects of the data.

Finally, we would like to go beyond our data and address the

idea of an intuitive logic in general. At their core, the accounts of

MH and De Neys [13] share a similar notion of intuitive logic.

However, both accounts were developed independently and are

differently motivated. More specifically, employing a range of tasks

(e.g., base-rate neglect [15] or the bat-and-ball problem [52]) and

measures (e.g., eye- and gaze tracking [15] or memory probing

[53]) De Neys and colleagues observed that participants, although

giving the heuristic or biased response, seemed to show some

sensitivity to their errors. Based on these findings De Neys

hypothesized that individuals are able to intuitively detect the

normatively correct response according to standard logic or

according to standard probability theory (e.g., [13], pp. 28 and p.

35). This stands in stark contrast with the majority of contempo-

rary theories on reasoning and decision making according to

which theories cannot be built around standard logic and

probability theory as normative systems [6,7,54–56]. Given this

discrepancy, we think that the evidence provided by proponents of

intuitive logic needs to be extraordinary strong – ‘‘extraordinary

claims require extraordinary evidence’’ ([57], p. 429) – and

proponents should take care to rule out alternative explanations,

using, for example, procedural techniques as implemented here

(randomization of contents) and by KS (use of pseudo-problems).

Supporting Information

Appendix S1 Alternative analyses of the meta-analysis.
The document contains results tables of four different versions of

the meta-analysis reported in the manuscript: (a) the original

analysis as reported in the manuscript, (b) an alternative analysis in

which experiment is treated as random effect (as compared to as a

fixed effect as was done in the original analysis), (c) an alternative

analysis with g-priors of r~0:2, and (d) a non-Bayesian mixed

model analysis of the data.

(PDF)

Appendix S2 Data and analysis script for the meta-
analysis.
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