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In order to increase statistical power and precision, many
psychological experiments collect more than one data point
from each participant, often across different experimental
conditions. Such repeated-measures pose a problem to most
standard statistical procedures such as ordinary least-squares
regression or (between-subjects) ANOVA as those proce-
dures assume that the data points are independent and iden-
tically distributed (henceforth iid). The iid assumption is
comprised of two parts: The assumption of identical distribu-
tion simply means that all observations are samples from the
same underlying distribution. The independence assumption
states that the probability of a data point taking on a specific
value is independent of the values taken by all other data
points.1 In this chapter we are mainly concerned with the
latter assumption.

It is easy to see that in the case of repeated measures the
independence assumption is expected to be violated. Obser-
vations coming from the same participant are usually corre-
lated; e.g., they are more likely to be similar to each other
than two observations coming from two different partici-
pants. For example, when measuring response latencies a
participant that is generally slower than her/his peers will
respond comparatively slower across conditions, thus mak-
ing the data points from this participant correlated and non-
independent (i.e., a participant’s rank in one condition is
predictive of their rank in other conditions). More gener-
ally, one can expect violations of the iid assumption if data
are collected from units of observations that are clustered in
groups. Other examples of this are data from experiments
collected in group settings, students within classrooms, or
patients within hospitals. In such situations one would expect
that observations within each cluster (i.e., a specific group,
classroom, or hospital) are more similar to each other than
observations across clusters. Unfortunately, compared to vi-
olations of other assumptions, such as the normality assump-
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tion or the assumption of variance heterogeneity in ANOVA,
standard statistical procedures are usually not robust to vi-
olations of the independence assumption (Judd et al., 2012;
Kenny & Judd, 1986). In a frequentist statistical framework
such violations often lead to considerably increased Type I
errors (i.e., false positives). More generally, such violations
can produce overconfident results (e.g., too narrow standard
errors).

In this chapter we will describe a class of statistical
model that is able to account for most of the cases of non-
independence that are typically encountered in psycholog-
ical experiments, linear mixed effects models (LMM, e.g.,
Baayen et al., 2008), or mixed models for short. Mixed mod-
els are a generalization of ordinary regression that explicitly
capture the dependency among data points via random ef-
fects parameters. Compared to traditional analyses that ig-
nore these dependencies, mixed models provide more accu-
rate (and generalizable) estimates of the effects, improved
statistical power, and non-inflated Type I errors. The reason
for the recent popularity of linear mixed models boils down
to the computational resources required to implement them:
In the absence of such resources, realistic data-analytic meth-
ods had to rely on simpler models that ignored the depen-
dencies in the data, and relied on closed-form estimates and
asymptotic results. Fortunately, today we can easily imple-
ment most linear mixed models using any recent computer
with sufficient RAM.

The remainder of this chapter is structured as follows:
First, we introduce the concepts underlying mixed models
and how they allow to account for different types of non-
independence that can occur in psychological data. Next, we
discuss how to set up a mixed model and how to perform

1Technically, the independence assumption does not pertain to
the actual data points (or marginal distribution), but to the residuals
(or conditional distribution) once the statistical model (i.e., fixed
effects, random effects, etc.) has been taken into account. With this,
we can define independence formally via conditional probabilities.
The probability that any observation i takes on a specific value xi

is the same irrespective of the values taken on by all the other ob-
servations j , i, and a statistical model with parameter vector θ:
P(xi|θ) = P(xi | θ,

⋂
j,i x j).
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statistical inference with a mixed model. Then, we will dis-
cuss how to estimate a mixed model using the lme4 (Bates,
Mächler, et al., 2015) as well as the afex (Singmann et al.,
2017) packages for the statistical programming language R
(R Core Team, 2016). Finally, we will provide an outlook of
how to extend mixed models to handle non-normal data (e.g.,
categorical responses).

Fixed Effects, Random Effects, and Non-Independence

The most important concept for understanding how to es-
timate and how to interpret mixed models is the distinction
between fixed and random effects.2 In experimental settings
fixed effects are often of primary interest to the researcher
and represent the overall or population-level average effect
of a specific model term (i.e., main effect or interaction) or
parameter on the dependent variable, irrespective of the ran-
dom or stochastic variability that is present in the data. A
statistically-significant fixed effect should be interpreted in
essentially the same way as a statistically-significant test re-
sult for any given term in a standard ANOVA or regression
model. Furthermore, for fixed effects one can easily test spe-
cific hypotheses among the factor levels (e.g., planned con-
trasts).

In contrast, random effects capture random or stochas-
tic variability in the data that comes from different sources,
such as participants or items. These sources of stochastic
variability are the grouping variables or grouping factors for
the random effects and always concern categorical variables
(i.e., nominal variables such as condition, participant, item)
– continuous variables cannot serve as grouping factors for
random effects. In experimental settings, it is often useful to
think about the random effects grouping factors as the part of
the design a researcher wants to generalize over. For exam-
ple, one is usually not interested in knowing whether or not
two factor levels differ for a specific sample of participants
(after all, this could be done simply by looking at the ob-
tained means in a descriptive manner), but whether the data
provides evidence that a difference holds in the population of
participants the sample is drawn from. By specifying random
effects in our model, we are able to factor out the idiosyn-
crasies of our sample and obtain a more general estimate of
the fixed effects of interest.3

The independence assumption of standard statistical mod-
els implies that one can only generalize across exactly one
source of stochastic variability: the population from which
each observation (i.e., row in most statistical software pack-
ages) is sampled. In psychology the unit of observation
is usually participants, but occasionally other units such as
items are employed alternatively (e.g., having words as the
unit of observation is fairly common in psycholinguistic re-
search). Importantly, the notion that the unit of observation
represents a random effect is usually only an implicit part of
a statistical model. In contrast, mixed models require an ex-

plicit specification of the random-effects structure embedded
in the experimental design. As described above, the benefit
of this extra step is that one can adequately capture a variety
of dependencies that standard models cannot.

In order to make the distinction and the role of random
effects in mixed models clearer, let us consider a simple ex-
ample (constructed after Baayen et al., 2008 and Barr et al.,
2013). Assume you have obtained response latency data
from I participants in K = 2 difficulty conditions, an easy
condition that leads to fast responses and a hard condition
that produces slow responses. For example, in both condi-
tions participants have to make binary judgments on the same
groups of words: In the easy condition they have to make an-
imacy judgments (whether it is a living thing). In the hard
condition participants have to a) judge whether the object the
word refers to is larger than a soccer ball and b) whether it
appears in the northern hemisphere; participants should only
press a specific key if both judgments are positive. Moreover,
assume that each participant provides responses to the same
J words in each difficulty condition. Thus, difficulty is a
repeated-measures factor, more specifically a within-subjects
factor with J replicates for each participant in each cell of the
design, but also a within-words factor with I replicates for
each word in each cell of the design. Note that the cells of a
designs are given by the combination of all (fixed) factor lev-
els. In the present example there are two cells, corresponding
to the easy condition and the difficult condition, but in a 2 ×
2 design we would have four cells instead.4

Figure 1 illustrates the response latency data from two par-
ticipants (S 1 and S 2) across the easy and hard conditions,
for two words (I1 and I2). The different panels show the
observed data together with the predictions from a specific
model. Going from top to bottom, the complexity of these
models increases. The features of each of these models will
become clear throughout the remainder of this chapter. But
at this point a brief description of the data is in order: First,

2Note that there are different possibilities on how to define fixed
and random effects, ways that are not necessarily compatible with
each other (Bolker, 2015; Gelman, 2005). The definition employed
here is the one most useful for understanding how to specify and
estimate frequentist mixed model as implemented in lme4 (Bates,
Mächler, et al., 2015).

3It should be noted that this distinction, fixed effects as variables
of interests versus random effects as nuisance variables one wants
to generalize over, is a simplification. Fixed effects can also serve
as nuisance variables (e.g., when including a fixed effect to “statis-
tically control” for it) and random effects (e.g., intra-class correla-
tions) can be of primary interest.

4For simplicity the example assumes perfect balance (i.e., all
cells have the same number of participants, items, and observa-
tions). In principle, the methods discussed here generalize to non-
balanced data sets, but numerical or other issues often arise if the
imbalance is not small. Furthermore, imbalance can considerably
impact power (Judd et al., 2017).
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note that there is a general individual difference across condi-
tions, with Participant 1 being overall slower than Participant
2. Also, the two participants differ in terms of the slowing-
down effect observed between the easy and hard conditions,
with the increase in response latency being larger for Partic-
ipant 1 than for Participant 2. We also find that responses to
item I1 tend to be generally faster than I2, a difference that
is smaller in the hard condition. The models discussed be-
low will differ in their ability to account for these differences
observed across subjects and items.

Fixed-Effects-Only Model

Let us first consider the ordinary regression model that
completely ignores the non-independence in the data. Such
a model could be specified in the following manner:

yi, j,k = β0 + βδXi, j,k + εi, j,k,

i = 1, 2, . . . , I, j = 1, 2, . . . , J, k = 1, 2,

ε ∼ N(0, σ2
ε ),

(1)

where yi, j,k denotes the dependent variable (here observed re-
sponse latencies) for the ith participant and jth item in the
kth condition. Parameter β0 is the intercept and grand mean,
βδ corresponds to the effect of the difficulty condition, and
Xi, j,k is an indicator variable which takes on value 1 in the
easy condition and -1 in the hard condition (thus 2× βδ is the
difference between the conditions). Finally, εi, j,k is the resid-
ual error. The third row states that the vector of all residual
errors, ε (non-scalar variables such as vectors or matrices are
printed in bold font), is assumed to follow a normal (i.e.,
Gaussian: N) distribution with mean 0 (i.e., zero-centered)
and residual variance σ2

ε . This distribution of residuals im-
plies the iid assumption, which is clearly violated for the
given data. For example, the fact that Subject 1’s response
in the easy condition for item I1 is slower than Subject’s 2
response to the same item is predictive of their relative speed
in the hard condition. Overall, the fixed-effects model pro-
vides a poor account of the data as it completely precludes
any of the dependencies that are present in it (see Figure 1,
top row).

Random-Intercepts Model

As noted above, independence is violated if we can learn
something about a specific data point by knowing the value
of a different data point (after taking the structure of the
statistical model into account). A natural assumption here
would be that data points from one participant are more simi-
lar to each other than data points from other participants. One
way to interpret this assumption is to assume that each par-
ticipant has an idiosyncratic overall response latency; some
participants are slower than the average and some are faster

than the average. At this point, the shortcomings of the sta-
tistical model described in Equation 1 becomes clear: it only
assumes a single intercept β0 to characterize all participants.

In order to allow for idiosyncratic average response laten-
cies per participant we need to introduce effects that capture
the displacement of each participant from the grand mean
(i.e., the intercept β0). Such a model could be specified as:

yi, j,k = β0 + S 0,i + βδXi, j,k + εi, j,k,

i = 1, 2, . . . , I, j = 1, 2, . . . , J, k = 1, 2,

ε ∼ N(0, σ2
ε ),

S0 ∼ N(0, σ2
S 0

),

(2)

where S 0,i corresponds to the idiosyncratic effect associated
to participant i. Furthermore, we assume that the vector of
the idiosyncratic effects, S0, follows a zero-centered normal
distribution with variance σ2

S 0
. The individual S 0,i values can

be either positive and negative, summing up to zero. These
values allow individual participants to have their own “grand
means” (see Figure 1, second row), which are assumed to be
normally distributed around β0.

Because this model adjusts the grand mean or intercept
β0 for each participant, this model is commonly referred
to as a random-intercepts model. In this particular case
the traditional fixed-effects model is augmented with by-
participant random intercepts (i.e, participant is the random
effects grouping factor for which we estimate random inter-
cepts). Note that the random-intercepts model is sufficient to
account for correlations across data points that are brought
about by differences in overall levels of performance such
as some participants being generally slower and some being
generally faster.

From the model expressed in Equation 2 it is relatively
easy to see the differences between the fixed effects and the
random effects. The fixed effects parameters are the tradi-
tional regression parameters β0 and βδ. Both of these are
scalar values; there is exactly one value for β0 which repre-
sents the grand mean across all participants (for our example
the total mean response time) and one value for βδ which
represents the difference between the two condition across
all participants. In contrast, the random effects vector S0 in-
cludes all the idiosyncratic displacements S 0,i that are added
to the grand mean for each participant. It is is important to
keep in mind that this model only has four parameters: β0,
βδ, σ2

ε , and, σ2
S 0

. This number does not change as a func-
tion of the number of individuals (e.g., more parameters as
sample size increases). In order to specify the random in-
tercepts, it suffices to introduce the variance parameter σ2

S 0
.

The participant-level displacements captured by S0 do not
correspond to parameters that were estimated (e.g., unlike
β0). Instead, they correspond to conditional modes (some-
times referred to as posterior mean values) obtained when
conditionalizing on the data and the above-described param-
eters (see Bates, Mächler, et al., 2015, Pinheiro & Bates,
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Figure 1. Example data and the predictions from different models. The complexity of the models increases across rows (top
row being the simplest model). Note that this is an illustration only; a model that perfectly describes the data as shown in the
bottom row is non-identifiable as it has more parameters than data points.
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2000; the individual displacements are also known as best
linear unbiased predictions or BLUPs, but this terminology
is somewhat outdated).

Random-Intercepts-and-Slopes Model

The random-intercepts model expressed in Equation 2
does not, however, account for all potential dependencies in
the data brought about by the different participants. The rea-
son for this is the presence of the within-subjects factor ‘dif-
ficulty’. The two previous models assume that the difference
between the difficulty conditions is equal for all participants,
but that does not necessarily have to be the case. It is easy
to imagine that this difference is larger for some participants
but smaller for other participants (or even takes on a different
direction). For example, imagine that for some participants
the conjunctive task associated to the hard condition is partic-
ularly challenging, leading to larger differences between the
two conditions. This situation would lead to dependencies
that would be unaccounted by the models discussed so far:
by knowing the values in a pair of data points from such a
participant (one from each condition), we know something
about other possible pairs of data points.

In order to account for such dependencies at the level
of a given factor, we once again introduce a new random
effect corresponding to the participant-level displacements
from the condition effect βδ:

yi, j,k = β0 + S 0,i + (βδ + S δ,i)Xi, j,k + εi, j,k,

i = 1, 2, . . . , I, j = 1, 2, . . . , J, k = 1, 2,

ε ∼ N(0, σ2
ε ),(

S0
Sδ

)
∼ N

([
0
0

]
,

[
σ2

S 0
ρS 0,S δ

σS 0σS δ

ρS δ,S 0σS 0σS δ
σ2

S δ

])
,

(3)

where S 0,i is the displacement of participant i from β0, and
S δ,i is displacement of the same participant i from the dif-
ficulty effect βδ (see Figure 1, third row). We now estimate
two random-effect vectors, the random intercept S0 and a ran-
dom effects term added to the condition effect, Sδ. Further-
more, we assume that the two random effects come from a
zero-centered multivariate normal distribution for which we
estimate both variances, σ2

S 0
and σ2

S δ
, as well as the corre-

lation, ρS δ,S 0 = ρS 0,S δ
. Estimating the correlation allows us

to account for dependencies that arise when both random ef-
fects are correlated. For example, participants that are overall
slow could also have an overall larger condition effect which
would result in a positive correlation. Because the regression
parameters besides the intercept are usually called slopes, Sδ
is also known as a random slope. Thus, the model in Equa-
tion 3 is a mixed model with by-participant random-intercept
and by-participant random slopes as well as a correlation
among the by-participant random effects.

We have now established the fundamental distinction be-
tween fixed and random effects in mixed models, and dis-

cussed the different types of random effects that can be added
to a model: random intercepts, random slopes, and corre-
lations among random effects for a specific random effects
grouping factor. The random effects are added to a model
so that it can provide a more accurate account of the data-
generating process that takes into account the heterogeneity
observed across participants as well as the dependencies that
are expected in the data. The shortcomings of the random-
intercepts model expressed in Equation 2 and the extension
expressed in Equation 3 clarifies the need to include a ran-
dom slope per factor in order to account for the possibility
that the differences observed across the levels of a factor can
vary across participants. Failure to add such random slopes
can lead to considerably increased Type I error rates as dis-
cussed in greater detail below (Barr et al., 2013; Schielzeth
& Forstmeier, 2009).

It is important to keep in mind that random effects do not
alter the interpretation of the fixed effects. If we are in-
terested in knowing whether a specific factor has an over-
all effect, this is only possible by investigating the fixed ef-
fects. The random effects only tell us whether or not there is
variation in a fixed effect for the different levels of the ran-
dom effects term (from this it follows that it is rare to in-
clude a random effects parameter, but not the corresponding
fixed effect). But given that the variation is zero-centered,
the random effects cannot adjust the overall effect. They
are added with the sole purpose of accounting for the non-
independence present in the data due to observing multiple
observations from a given random-effects level. Also impor-
tant to note is the fact that the introduction of random effects
does not necessarily translate into a considerable increase in
the number of parameters to be estimated (one variance pa-
rameter per effect). However, the same does not hold when
the correlations across effects are also estimated. The model
in Equation 3 including random intercepts and random slopes
only introduces one correlation to be estimated. But as the
number of random effects increases, the number of correla-
tions to be estimated can explode. For a model with r random
effects, r(r − 1)/2 correlations could be estimated (e.g., for
r = 5, the number of correlations is 10).

There is one more angle from which to view random ef-
fects, namely how they allow us to improve estimation on
an individual level. The simplest model to for the example
data was the simple regression model given in Equation 1. If
one ignores all individual variability and dependencies and
estimates the complete data set with this model one employs
complete pooling, with all data points being treated as inde-
pendent observations, which violates the iid assumption. An
alternative analysis strategy that takes the dependencies and
individual variability into account would be to fit the data
of each individual participant separately with the model in
Equation 1. With this approach, one would obtain an in-
dividual set of regression parameters for each participant,
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which could then be analyzed in a second step. This ap-
proach, designated as no pooling, would not violate the iid
assumption. However, this no-pooling approach has a few
downsides: a) It does not easily lend itself to mixed designs
with both between- and within-subjects factors, b) one has to
decide on how to analyze the individual parameter estimates,
and c) it requires sufficient data on the individual level for
obtaining reliable parameter estimates. Mixed models, with
both fixed and random effects, provide a principled compro-
mise via what is known as partial pooling: The random ef-
fects allow each individual participants to basically have an
individual parameter estimate, as in the no pooling approach.
However, the normality assumption underlying the random
effects provides additional structure which ensures that the
estimation of each individual participants’ data is informed
by the complete data set. Mixed models therefore acknowl-
edge the presence of individual differences, but at the same
time take into account the fact that individuals are similar
to a certain degree. The normality assumption also leads to
what is known as hierarchical shrinkage: the individual pa-
rameter estimates for individuals for which the data diverges
considerably from the rest are adjusted towards the mean.
As a consequence – and in contrast with traditional ANOVA
models – the predicted cell means of mixed models do not
necessarily coincide with the observed cell means.

Crossed and Nested Random Effects

One important characteristic of mixed models is that they
allow random effects for multiple, possibly independent, ran-
dom effects grouping factors. Figure 2 provides an overview
over the different random effects grouping factor types dis-
cussed in this chapter. In the models expressed in Equations
2 and 3 we only introduced by-participant random effects
(Figure 2a). However, participants were not the only source
of stochastic variability in the example experiment. The task
was to judge words and each presented word can also be seen
as a sample from the population of all words. Therefore, the
sample of presented words can be seen as another source of
stochastic variability (Clark, 1973). Figure 1 (second and
third row) illustrates how the fixed-effects model could have
been extended with random intercepts and slopes for items
rather than for subjects. However, in experiments in which
both participants and items are sampled, there is interest in si-
multaneously generalizing across the two sources of stochas-
tic variability and not only one of them.

Generalization across both participants and items can be
easily achieved by adding by-item random effects in addition
to the by-participant random effects. Note that in the example
experiments, condition varies within words (i.e., each word
appears in each difficulty condition) and we thus not only
want to have by-item random intercepts but also by-item ran-

y1 y2 y3 y4 y5 y6 . . . yN−2 yN−1 yN

P1 P2 . . . PM

(a) Single Random Effect

y1 y2 y3 y4 y5 y6 . . . yN−2 yN−1 yN

P1 P2 . . . PM

I1 I2 IK

(b) Crossed Random Effects

y1 y2 y3 y4 y5 y6 . . . yN−2 yN−1 yN

P1 P2 . . . PM

G1 . . . GL

(c) Nested Random Effects
Figure 2. Different Types of Random Effects. Observations
are labeled from y1 to yN . Different participants are labeled
from P1 to PM . Different items are labeled from I1 to IK . Dif-
ferent groups (where each participant is in exactly one group)
are labeled from G1 to GL.

dom slopes (Figure 2b). The full mixed model is given by:

yi, j,k = β0 + S 0,i + I0, j + (βδ + S δ,i + Iδ, j)Xi, j,k + εi, j,k,

i = 1, 2, . . . , I, j = 1, 2, . . . , J, k = 1, 2,

ε ∼ N(0, σ2
ε ),(

S0
Sδ

)
∼ N

([
0
0

]
,

[
σ2

S 0
ρS 0,S δ

σS 0σS δ

ρS δ,S 0σS 0σS δ
σ2

S δ

])
,(

I0
Id

)
∼ N

([
0
0

]
,

[
σ2

I0
ρI0,IδσI0σIδ

ρIδ,I0σI0σIδ σ2
Iδ

])
,

(4)

where I0 is the by-item random intercept and Iδ the by-
item random slope for the difficulty effect for the J differ-
ent words. As before, for each by-item random effect we
estimate the corresponding variance, here σ2

I0
and σ2

Iδ
, as
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well as their correlation ρI0,Iδ . Because each item appears
for each participant, the corresponding random effects are
known as crossed (this would also be the case if each par-
ticipant worked on a random subset of the items). In the ex-
ample shown in Figure 1, the crossed random effects model
including random intercepts and slopes for participants and
items is able to perfectly capture the data.5

The mixed model in Equation 4 with crossed random ef-
fects for participants and items and by-participant and by-
item random intercepts as well as random slopes for the diffi-
culty effect as well as correlation among the by-item random
effects and correlation among the by-participant random ef-
fects implements the maximal random effects structure justi-
fied by the design.6 As already alluded to earlier, by virtue
of being able to accommodate different forms of heterogene-
ity that can be found in the data, the maximal model is the
mixed model that is the most likely to provide the accurate
description of the data generating process in the mixed model
framework and the model that in principle provides the best
protection against inflated Type I errors (Barr et al., 2013;
Schielzeth & Forstmeier, 2009). It is therefore always a good
idea to start a mixed model analysis of a new data set with
the maximal model. We will return to the question what to
do should this model not converge successfully below.7

One common problem in designs with crossed-random
effects is the identification of the maximal random effects
structure. For the by-participant random effects grouping
factor the maximal structure is simply the combination of
all within-subjects factors (i.e., main effects and all interac-
tions). For identifying the maximal structure for a (crossed)
by-item random effects grouping factor it is important to tem-
porarily ignore the different participants. The maximal struc-
ture of the random item effect is then simply the combina-
tion of all factors varying within items. More specifically,
if a specific item appears in all levels of a given factor (in-
dependent of whether that happens within one participant or
across participants) this factor varies within items and the
corresponding random slope is part of the maximal random
effects structure. And if two different factors are both within-
item factors, the random slope of the interaction of the factors
is also part of the maximal random effects structure. Note
further that for unbalanced designs (e.g., if the items for each
participant are selected randomly from a pool of items) to be
able to estimate by-item random slopes for a specific fixed
fixed effect it is not necessary that this fixed effect varies
among all levels of the item effect. In other words, mixed
models can deal with missing values on the level of the ran-
dom effects. If there is too much missing data the variance
of the random effects will simply be estimated to be zero.

Some random effects are not crossed, but nested; this is
the case if some levels of one random effects grouping factor
only appear in one level of a second random effects grouping
factor (Figure 2c). For example, if participants are tested in

groups, participants are nested within groups, and if differ-
ent groups are tested by different experimenters, groups it-
self would again be nested within experimenters. In such de-
signs, the lower level grouping factors (i.e., participants) are
sometimes called “Level 1”, the second lowest (i.e., groups)
“Level 2”, etc., and statistical models with nested random
effects are also called multilevel or hierarchical models. It
is important to realize that in terms of the statistical model,
crossed and nested random effects do not behave differently.
One can only add random intercepts, random slopes, and
their correlations for any random effects grouping factor.
For example, if in our study participants were collected in
groups, we could add a by-group random effects such as by-
group random intercepts, by-group random slopes, and their
correlation to the model presented in Equation 4 to account
for potential correlations among participants that were tested
in the same group. In contrast to experimental designs with
crossed random effects in which the random effects can often
be considered nuisance parameters and are not of primary
interest, researchers are often interested in the values of the
random effects parameters in nested designs. More specif-
ically, researchers are often interested in the intraclass cor-
relation coefficient (ICC) which is a measure of the degree
of similarity within the levels of the random effect. A com-
prehensive overview about the specific type of statistical and
substantive questions that are of interest in nested designs is
provided by Snijders and Bosker (2012).8

5Please note that more data points than shown in Figure 1 are
necessary for uniquely identifying the parameters of the model and
a perfect description of the data is usually not possible for a model
with identifiable parameters, see below for details.

6If we had replicates for each combination of participant and
item, we could additionally estimate random effects for the random
effects grouping factor resulting from the participant-by-item inter-
action, potentially with random slopes for all fixed effects. With
such data, such a model would constitute the maximal model. As
the example experiment however did not include this data, this ef-
fect is confounded with the residual variance and cannot be esti-
mated.

7It should be noted that the modeling of crossed-random ef-
fects supersedes remedial approaches that are commonly used by
researchers. Prominent among these, particularly in the psycholin-
guistic literature, is the separate testing of effects when aggregat-
ing data across participants versus aggregating across items (Clark,
1973). Instead of checking the robustness of an effect when relying
on alternative aggregation procedures (e.g., F1 vs. F2 tests), linear
mixed models do not rely on aggregation at all and estimate the
different dependencies in the data directly. This not only avoids
ambiguities on how to best integrate the different analysis, but also
provides a better protection against inflated Type I errors (Barr et al.,
2013).

8Note that not all computer programs fully support all types of
random effects. Specifically, older programs or specialized and/or
niche programs sometimes only support nested random effects and
do not support (or at least not fully) crossed random effects (e.g.,
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You should now have a clear understanding of the differ-
ence between fixed and random effects, but let us sum this
up once again. Random effects (or random effects parame-
ters) are zero centered offsets or displacements that are added
to the fixed effect parameters in order to control for depen-
dencies in the data, ultimately providing a more accurate de-
scription of the data-generating process. An important rule
of thumb is that a random effects can only be specified prac-
tically for grouping factors which have at least five or six dif-
ferent levels (Bolker, 2015). With fewer levels the estimation
of the variance of the random effects will be very imprecise
which can lead to numerical problems in the estimation pro-
cess. Random effects with a low number of levels also have
an extremely detrimental effect on statistical power (Westfall
et al., 2014). This goes so far that for crossed random effects
the random effects grouping factor with the lower number
of levels provides an upper bound of the maximally attain-
able power. For example, in an experiment with crossed ran-
dom effects for participants and items but only 8 different
items the maximally attainable power is below .5 even un-
der otherwise favorable conditions and with unlimited par-
ticipants (Judd et al., 2017, Figure 2). Westfall et al. (2014)
provide two rules of thumb for power in mixed models (pp.
2033): (1) “it is generally better to increase the sample size of
whichever random factor is contributing more random vari-
ation to the data” and (2) “if one of the two sample sizes
is considerably smaller than the other, there is generally a
greater power benefit in increasing the smaller sample size
compared to the larger sample size”. In line with the rec-
ommendation of Simmons et al. (2011) that each between-
subjects condition should have at least 20 participants we
recommend that each random effects grouping factor should
have at least 20 levels, otherwise the power is likely too low.

Another important aspect is that one can only estimate a
specific random effects parameter if there are multiple obser-
vations for each level of the random effects grouping factor
and the fixed effects parameter to which one wants to add
the random effects parameter. If this is not the case (i.e.,
there is only one observation for each level of the random ef-
fects grouping factor), the random effects parameter is con-
founded with the residual variance and cannot be uniquely
identified (see also Footnote 6). For example, if each par-
ticipant provides only one observation in total (i.e., a com-
pletely between-subjects design) one cannot even estimate
by-participant random intercepts and consequently no mixed
model. Likewise, if one only has one observation of each par-
ticipant in each within-subject condition (as is the case in a
traditional repeated-measures ANOVA), one cannot estimate
by-participant random slopes for that condition. Mixed mod-
els require replicates (i.e., multiple observations) for each
level of the random effects grouping factor and each factor
that varies within the random effect.

Setting up a Mixed Model

Before discussing the software implementations for fitting
mixed models, we still need to discuss a few issues: How to
perform statistical inference, how to set up the random effects
structure, how to deal with categorical independent variables
(i.e., factors), and effect sizes.

Statistical Inference in Mixed Models

Statistical inference (i.e., obtaining p-values concerning
null hypotheses) in the context of mixed models is far from
being a trivial endeavor. The main problem is, again, the
existence of dependencies within levels of a random effects
grouping factor. This prevents a simple counting of the de-
nominator degrees of freedom via the number of observed
data points, as done in standard ANOVA. As a consequence,
the standard R function for mixed models, lmer, does not
report any p-values (Bates, 2006). However, we now have
several methods that allow for us to obtain p-values (for an
overview see https://bbolker.github.io/mixedmodels-misc/

glmmFAQ.html#testing-hypotheses). Here, we mainly focus
on those methods that compare two nested models. Nested
models means that one of the two models, the reduced model,
needs to be a special case of the other model, the encompass-
ing model (i.e., the reduced model corresponds to the encom-
passing model when one or several parameters from the latter
are 0). Specifically, in order to test a specific effect (i.e., main
effect or interaction) the encompassing model is usually the
full model that includes all parameters and the reduced model
is the one in which the parameters corresponding to that ef-
fect are withheld (i.e., fixed to 0). More specifically, the
fixed effects parameters and not the random effects param-
eters are withheld. We generally recommend the Kenward-
Roger approximation (Halekoh & Højsgaard, 2014; Ken-
ward & Roger, 1997), which is based on a modified F test
and also estimates the denominator degrees of freedom, as
it is known to provide the best control of Type I errors with
the limited sample sizes that are common in experimental de-
signs in psychology. However, the Kenward-Roger approx-
imation is the most expensive method in terms of computa-
tional resources. Especially with complicated random-effect
structures (i.e., many random slopes and correlations among
random parameters) it may require amounts of RAM that can
exceed what is available in normal computers. An alternative
that is less expensive in terms of RAM, but quite similar in
terms of Type I error control, is the Satterthwaite approxima-
tion (Kuznetsova et al., 2016; Satterthwaite, 1941).

in R this is true for package nlme). For the software discussed here
there is usually no necessity to treat crossed and nested random ef-
fects differently as long as the levels of each random effects group-
ing factor receive unique identifiers (e.g., the identifier “participant
1” only exists exactly once and not in two different groups).

https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#testing-hypotheses
https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#testing-hypotheses
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An alternative that does not rely on approximating the
denominator degrees of freedom is the likelihood ratio test
(LRT). The LRT is a standard statistical test for comparing
the goodness of fit of two nested models. This test consists
of the ratio of the maximum likelihoods of the encompass-
ing and reduced models.9 The test statistic of the LRT fol-
lows asymptotically the χ2-distribution with degrees of free-
dom equal to the difference in number of parameters between
encompassing and reduced model. In other words, only in
the limit with unlimited levels for the random effects group-
ing factors does the LRT adequately control for Type I er-
rors. With limited sample sizes the LRT tends to be anti-
conservative (i.e., gives significant p-values although the null
hypothesis is true; e.g., Pinheiro & Bates, 2000) and we can
only recommend its use if the number of levels for each ran-
dom effects grouping factor is considerable (e.g., > 40 or 50).

In case one does not want to rely on the asymptotic na-
ture of the LRT, a further alternative is parametric boot-
strap. The parametric bootstrap procedure simulates syn-
thetic datasets from the reduced model and then fits both
models to the synthetic data which produces a reference dis-
tribution of likelihood-ratio values under the null-hypothesis.
The parametric bootstrap p-value corresponds to the percent-
age of simulated likelihood-ratio values that are larger than
the observed likelihood-ratio value. One potential problem
with the parametric bootstrap is that for complex models,
calculating the sampling distribution of the likelihood-ratio
test under the null hypothesis can be quite time consuming.
However, it should be able to control for Type I error better
than the LRT. Note that parametric bootstrap and the LRT
are procedures that can also be used to test the parameters
associated to the random effects (Matuschek et al., 2017; see
also Scheipl et al., 2008).

Another alternative is to simply compare the t-statistic of
the parameter estimates with the z distribution (e.g., Baayen,
2008; the rule of thumb is that values larger than 2 indicate
statistical significance). Unfortunately, this approach has two
problems. First, it can only be used with factors with two
levels. As soon as a factor has more than two levels, in-
specting the parameter estimates becomes very challenging
and essentially useless if the factor is part of an interaction.
Second, this approach does the worst job in controlling for
Type I errors. We therefore cannot generally recommend to
perform statistical inference for mixed models using this “t
as z” approach.

Specifying the Random Effects Structure

Perhaps more important than the choice of method for
evaluating statistical significance is the correct specification
of the random-effects structure. Omitting a random effect
when there is in fact variability in this effect across the levels
of a random effects grouping factor can dramatically increase
Type I errors as shown in a number of independent simula-

tion studies (Barr et al., 2013; Judd et al., 2012; Schielzeth &
Forstmeier, 2009). This means that in most cases one should
initially start with the maximal random effects structure justi-
fied by the design as recommended by Barr et al. (2013). The
maximal model is the model that includes random effects pa-
rameters for all sources of stochastic variability (i.e., random
effects grouping factors). Specifically, it contains random in-
tercepts as well as random slopes for all fixed effects that vary
within the levels of a given random effects grouping factor,
plus the correlations among the random effects.

For the limited sample sizes that are common in psy-
chology and related disciplines a common problem is that
the maximal model is not fully identified (Bates, Kliegl, et
al., 2015), especially for mixed models with complicated
random effects structures. Even though the optimization
algorithm converges to the optimum (i.e., the maximum-
likelihood estimate for a given data set) the variance-
covariance matrix of the random effects parameters at the
optimum is degenerate or singular. At least for models esti-
mated with lme4 this is often signified by convergence warn-
ings. Other signs of singular fits are variance estimates of or
near zero and correlation estimates of ±1. The occurrence of
such situations is due to the fact the parameters associated to
random effects (e.g., σ2

S δ
) are more difficult to estimate than

fixed effects (e.g., βδ). Additional ways to detect degenerate
fits are discussed in Bates, Kliegl, et al. (2015).

In the case of a singular fit, it is in principle recommended
to reduce the random effects structure given that degenerate
or overparameterized models can reduce the statistical power
of any tests conducted with them (Matuschek et al., 2017).
As a first step, it seems advisable to remove the correlations
among random slopes as these contribute the largest num-
ber of random effects parameters if the number of variance
parameters for a given random effects grouping factor ex-
ceeds three. Additionally, the correlation parameters appear
to be even more difficult to estimate than the variance param-
eters, at least in a frequentist framework (Bates, Kliegl, et al.,
2015). If a model still shows problems after removing corre-
lations, other random-effects parameters could be removed,
starting with the highest-order random effects parameter with
the lowest estimated variance. Empirical-based approaches
to address this question and obtain the optimal random ef-
fects are provided by Matuschek et al. (2017) and Bates,
Kliegl, et al. (2015). However, following these recommen-
dation usually requires the researcher to choose a specific
model selection procedure and criterion. The consequence
of this is that researchers that decide to report results based
on a reduced model should make this explicit to the reader
and be prepared to defend their choices. In any case, we
recommend that one should always start with the maximal

9Note that the Kenward-Roger approximation requires a
model to be fitted with restricted maximum-likelihood estimation
(REML), for details see (Bates & DebRoy, 2004).



10 SINGMANN AND KELLEN

model and reduce random effects instead of starting with a
minimal model and gradually include random effects.

One problem that may arise from an iterative procedure
for determining the random effects structure is that some-
times it might not be possible to reduce the random-effects
structure such that all problematic random effects parame-
ters can be removed (e.g., in cases when there is random
variability in higher-order effects, but not in lower-order ef-
fects). From the pragmatic standpoint that false positives are
in principle more dangerous for scientific progress than false
negatives, we suggest that in those cases one can accept a
few problematic or degenerate parameters (e.g., variances
of zero). This strategy strikes us as more reasonable (i.e.,
more conservative) than simply removing justifiable random
effects and inflating Type I error rates to an unknown degree.
It is clear that a model with such problematic or degenerate
parameters is not the most adequate from a purely statistical
standpoint, but it can nevertheless be a reasonable solution if
the focus is ultimately on the fixed effects. In any case, one
should compare the fixed-effects estimates and the hypoth-
esis tests regarding the fixed effects across all the estimated
models. It is often the case that the testing of fixed effects in
highly overparameterized models with degenerate estimates
diverge from analogous tests applied to reduced models. In
those cases, one should report the results for the reduced
model.

One further alternative for addressing convergence prob-
lems is to switch to Bayesian estimation (Gelman et al.,
2013), for example as implemented in packages rstanarm
(function stan_lmer(); Gabry & Goodrich, 2016), blme
(Chung et al., 2013), or MCMCglmm (Hadfield, 2010). In
line with the literature (Bates, Kliegl, et al., 2015; Kimball
et al., 2016) we believe that the regularization provided by
the priors in a Bayesian framework (as long as the priors are
not completely non-informative) is often enough to avoid the
problems associated with degenerate or singular fits (e.g., the
posteriors of correlation parameters which cannot be identi-
fied given a specific data set will simply be extremely wide
and include 0, see Bates, Kliegl, et al., 2015, Figure 3). Ad-
ditionally, the identification of actual convergence problems
is comparatively simple via visual inspection of the chains.
However, Bayesian approaches require even more care when
choosing a contrast scheme, as the prior distribution should
ideally be equal for all factor levels, which is not the case for
the simple sum-to-zero contrast discussed below (see Rouder
et al., 2012, p. 363). Furthermore, there is currently no con-
sensus on how to perform hypothesis testing for hierarchical
models in a Bayesian framework, especially when a factor
contains more than two levels. Consequently, we currently
cannot wholeheartedly recommend Bayesian approaches as
the default or off-the-shelf procedure for estimating mixed
models (but see Singmann et al., 2014). We are hopeful this
will change in the next years.

Random Effects Structures for Traditional ANOVA
Designs. The estimation of the maximal model is not pos-
sible when there is only one observation per participant and
cell of a repeated-measures design (i.e., designs typically
analyzed using a repeated-measures ANOVA). In this kind
of design, the random slopes for the highest-order interac-
tion are perfectly confounded with the residual error term (in
more technical language, the model is only identifiable up to
the sum of these two variance components). To nevertheless
analyze such designs with mixed models the most reasonable
decision is to remove the highest-order random slope (e.g.,
the random slope for the highest order-interaction). Even
though the maximal-random effects structure is not identified
in this case, the variability of the random variability of the
non-identified effect is added to the residual error term and
also incorporated into the standard errors in the appropriate
way. We have shown this by simulation elsewhere.10. In any
case, we strongly recommend researchers to consider this is-
sue before collecting any data. More data and replicates at
the level of the cell are always a good idea when estimating
mixed models.11

Parameterization of Categorical Covariates

All regression-type models, including mixed models, can
only be estimated with numerical independent variables.
Consequently, factors with m levels need to be transformed
into m−1 numerical contrast variables according to a contrast
scheme (for an extensive treatment see Cohen et al., 2002).
Often the choice of contrast scheme does not matter, but there
are two situations when it does: For the interpretation of pa-
rameters estimates (especially if models include interactions)
and for so-called Type III sums of squares tests.12

The definitions of the different types of sums of squares
revolve around whether or not to test lower order effects in
the presence (= Type III) or absence (= Type II) of higher
order effects. In the statistical literature there is fierce dis-
cussion on the “correct” type of sums of squares that we do
not want to reiterate here (see Hector et al., 2010, for an
overview). In most cases this only matters for unbalanced
designs (i.e., for balanced data the different types of sums of

10http://wp.me/p4Y5u1-83
11It should be noted again that the discussion in the current para-

graph is specifically about a situation in which the number of repli-
cates per cells of the design and units of observation (i.e., levels of
the random effects grouping factor) is as low as it can be (i.e., 1).
This is different from a situation in which the number of levels of
one random effects grouping factor is low (e.g., 6 or lower). How-
ever, in such a situation we recommend treating that effect as fixed
(other effects that can be specified as random should remain so).

12Please do not confuse the type of sums of squares (here we
discuss only Type II and Type III) with the nomenclature used for
distinguishing the different types of inferential errors (e.g., Type I
and Type II).

http://wp.me/p4Y5u1-83
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squares produce identical results). In the psychological liter-
ature on experimental designs (e.g., Howell, 2013; Maxwell
& Delaney, 2004) Type III are usually recommended because
they are more reasonable under two conditions that are com-
monly met in psychological experiments: (1) Type III tests
assume the imbalance in the data occurs randomly and is not
a result of differences in the population (i.e., Type III tests
“correct” the imbalance by assuming all cells have the same
size). (2) Lower order effects need to be possible in light
of interactions (i.e., the pattern of the higher order effect is
such that it cancels itself out completely, such as for a perfect
cross-over interaction). Consequently, we also recommend
to use Type III tests as a default.

A common contrast scheme, which is the default in R,
is called treatment contrasts (i.e., contr.treatment; also
called dummy coding). With treatment contrasts the first
factor level serves as the baseline whereas all other levels
are mapped onto exactly one of the contrast variables with
a value of 1. As a consequence, the intercept corresponds
to the mean of the baseline group and not the grand mean.
When fitting models without interactions, this type of con-
trast has the advantage that the estimates (i.e., the parame-
ters corresponding to the contrast variables) indicate whether
there is a difference between the corresponding factor level
and the baseline. However, when including interactions,
treatment contrasts lead to results that are often difficult to in-
terpret. Whereas the highest-order interaction is unaffected,
the lower-order effects (such as main effects) are estimated at
the level of the baseline, ultimately yielding what are known
as simple effects rather than the usually expected lower-order
effects. Importantly, this applies to both the resulting param-
eter estimates of the lower order effects as well as their Type
III tests. In other words, a mixed model (or any other regres-
sion type model) that includes interactions with factors using
treatment contrasts produces parameter estimates as well as
Type III tests that often do not correspond to what one wants
(e.g., main effects are not what is commonly understood as
a main effect). Therefore we generally recommend to avoid
treatment contrasts for models that include interactions. Note
that this issue is independent of whether or not the design is
balanced.

Contrasts schemes that enable an interpretation of both
higher- and lower-order effects are orthogonal in balanced
designs (i.e., the sum of each variable across observations
is zero and the sum of the product of all variable pairs is
also zero). In such schemes, the intercept corresponds to the
grand mean (or the unweighted grand mean in case of unbal-
anced data) and lower-level effects are estimated at the level
of the grand mean. In what follows, we will use one such
contrasts known as effects coding (i.e., contr.sum). In ef-
fects coding the last factor level receives a value of −1 on all
contrast variables whereas all other factor levels are mapped
onto exactly one contrast variable with a value of 1. In the

case of a factor with only two levels, the effect-coded param-
eter value is equal to half of the difference between the two
conditions.

One additional complication arises when a regression
model includes continuous covariates that interact with other
variables included (Cohen et al., 2002). For type III tests with
appropriate orthogonal contrasts, the lower-order effects of
variables that interact with the continuous covariates are per-
formed at the origin of this covariate (i.e., where it is zero).
A common way to deal with this is to center the continuous
covariate such that the test of the lower order effect is per-
formed at its mean (e.g., Dalal & Zickar, 2012). However,
this might not make sense in all situations. If the zero-point
is already meaningful on its own and present in the data, cen-
tering is usually not necessary. Another alternative consists
of scaling the continuous covariate such that the zero-point
becomes meaningful (e.g., to the midpoint of a scale). Note
that some authors recommend specific centering schemes for
mixed models, mainly for models with nested random effects
(e.g., Wang & Maxwell, 2015).

Effect Sizes For Mixed Models

One standardized effect size for categorical fixed effects in
mixed models has been developed by Westfall et al. (2014).
More specifically, they present formulas for calculating d for
mixed models with a single fixed effect with two levels and
various random effects structures (see also Judd et al., 2017).
In principle, their approach can also be extended to account
for designs with factors with more than two levels and/or
interactions (Westfall, 2015, pp. 19-21). However, we are
currently not aware of any implementation of this approach.

Fitting Mixed Models in R

The gold standard for fitting mixed models in R is func-
tion lmer() in the lme4 package (Bates, Mächler, et al.,
2015). As for most modeling functions in R, the data need to
be in a data.frame in the long format (also known as tidy
data; Wickham & Grolemund, 2017): Each observation cor-
responds to one row with one column containing the depen-
dent variable and the other columns containing information
pertaining to the identity of the observation (e.g., participant
id, item number, conditions). In order to specify the mixed
model, lmer() needs to be called with a formula and the
data as arguments. Table 1 provides an overview of different
ways to specify terms in formulas. In the mixed effect for-
mula the dependent variable is on the left side of ~ and the
random effects are enclosed in parentheses wherein the pipe
symbol “|” separates the random effects parameters (on the
left) from the random effects grouping factor (on the right).
Table 2 provides an overview of different ways for specify-
ing random effects structures. The complete formula for the
maximal model described above (i.e., Equation 4) could be:



12 SINGMANN AND KELLEN

Table 1
Model formulas in R

formula meaning

a + b main effects of a and b (and no interaction)
a:b only interaction of a and b (and no main effects)

a * b main effects and interaction of a and b (expands to: a + b + a:b)
(a+b+c)ˆ2 main effects and two-way interactions, but no three-way interaction (expands to: a + b + c + a:b + b:c

+ a:c)
(a+b)*c expands to: a + b + c + a:c + b:c
0 + a 0 suppresses the intercept resulting in a model that has one parameter per level of a (identical to: a - 1)

Note. Whitespace is ignored in formulas (i.e., a + b is identical to a+b). The default behavior of R is to prevent models with
higher order effects in the absence of lower order effects. Thus, a+a:b has the same number of parameters as a*b, albeit with
different parametrization (i.e., R will add an additional parameter to a+a:b that is not part of the formula).

y ~ difficulty + (difficulty|participant) +
(difficulty|item)

Note that formulas automatically include an intercept, unless
it is specifically suppressed via 0 or -1 (which rarely makes
sense).

Using lmer() to directly fit a mixed model is associated
with the problems already noted above. First, lmer() does
not provide p-values so that one needs to perform an addi-
tional inferential step. Second, the default contrast codes
in R are such that model with categorical covariates (i.e.,
factors) produce parameter estimates that do not accurately
represent lower-order effects (e.g., main effects) if higher-
order effects (i.e., interactions) are present. This latter fact is
the reason that some people recommend to transform factors
into numerical covariates by hand. However, this is not nec-
essary; R contains coding schemes that are orthogonal and do
not have this problem. The easiest way to change the coding
globally is via the afex function set_sum_contrasts():

library("afex") # this loads afex
# library("afex") equivalent to require("afex")
set_sum_contrasts()

Note that the global coding scheme affects all R modeling
functions (e.g., lm, glm) and not only lmer(). But as al-
ready mentioned above, for experimental designs orthogo-
nal sum-to-zero contrasts are often a more reasonable default
than treatment contrasts.

The afex package (Singmann et al., 2017) contains
function mixed() that is built on top of lmer() and
avoids both of the problems mentioned in the previous
paragraph. It uses orthogonal sum-to-zero contrasts in
the default settings and calculates p-values for the terms
in the mixed model using the methods discussed above:
Kenward-Roger (method="KR", the default), Satterthwaite
(method="S"), LRTs (method="LRT"), and parametric
bootstrap (method="PB").13 An example analysis could be
(assuming the data is in a data.frame called d):

library("afex")
set_sum_contrasts() # not strictly necessary
## but always a good idea
m1 <- mixed(y ~ difficulty +

(difficulty|participant) +
(difficulty|item), d)

m1

Note that loading afex also loads lme4, but at the same
time replaces the original lme4 lmer() function with a func-
tion of the same name from package lmerTest (Kuznetsova
et al., 2016). The only difference between the lmerTest
versions of lmer() compared to the original lme4 version is
that the output of the former includes p-values based on the
Satterthwaite approximation in the standard output. Further-
more, the result can be passed to the anova function which
then reports p-values for the effects. Note again, that one
needs to be careful and use appropriate (sum-to-zero) con-
trasts whenever lmer() is invoked directly and parameters
estimated interpreted or the type III tests calculated.

When fitting mixed models with complicated random ef-
fects structures, convergence warnings appear frequently. It
is important to distinguish between the warnings that in-
dicate that the results are not to be trusted and those that
suggest there is a problem, but the results may still be in-

13Contrary to the description given above, p-values for the first
two methods are calculated directly from the full model using Wald
tests in which the parameters corresponding to the specific effects
are set to 0 (Fox, 2015). This is faster than explicitly comparing
nested models, but equivalent for those two methods. For the lat-
ter two methods, the p-values are calculated via the comparison
of nested models; mixed() fits an encompassing model with all
parameters and one reduced model corresponding to each of the
model terms in which the parameters corresponding to the term are
withhold from the full model (all fits are performed with lmer()).
Estimating the different models can be distributed across different
CPU cores to speed up the overall fitting process. After estimat-
ing all necessary models the p-values are calculated with the corre-
sponding method.
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Table 2
Random effects in lmer

random term meaning

(1|s) random intercepts for s (i.e., by-s random intercepts), Equation 2
(1|s) + (1|i) by-s and by-i random intercepts

(a|s) by-s random intercepts and by-s random slopes for a plus their correlation (identical to (1+a|s)),
Equation 3

(a*b|s) by-s random intercepts and by-s random slopes for a, b, and the a:b interaction plus correlations
among the by-s random effects parameters

(0+a|s) by-s random slopes for a and no random intercept
(a||s) by-s random intercepts and by-s random slopes for a, but no correlation (expands to: (0+a|s) +

(1|s))
Note. Suppressing the correlation parameters via || works only for numerical covariates in lmer and not for factors. afex pro-
vides the functionality to suppress the correlation also among factors if argument expand_re = TRUE in the call to mixed()
(see also function lmer_alt()).

terpretable. All warnings from the optimization algorithm
(the default one is bobyqa) belong into the former category.
One such message notes that the convergence code is 1
and/or specifies that the “maximum number of function
evaluations [was] exceeded”. One way to address this
warning is to increase the maximum number of function eval-
uations and rerun the model. The following code increases
the maximum number of iterations to 1 million:

mixed(..., control =
lmerControl(optCtrl =

list(maxfun = 1e6)))

Note that the same argument could also be used in the call to
lmer(). A warning unique to mixed() indicating that the
results cannot be trusted is reported if a nested model pro-
vides a better fit than a superordinate (i.e., the full) model.
As such a pattern is logically impossible, such a warning
indicates the presence of a severe problem caused by the
present combination of data, model, and optimization algo-
rithm. One way to address this problem is to change the
optimization algorithm or trying a variety of optimization
algorithms (by setting all_fit=TRUE). However, it is our
experience that changing the optimizer sometimes does not
always solve this kind of problem, as the warning may in-
dicate that there is too few data for estimating the desired
random-effects structure (Bates, Kliegl, et al., 2015).

lmer() also performs a variety of convergence checks on
the obtained results that may result in a warning (indicated
by ‘In checkConv(...)’). These warnings do not neces-
sarily indicate that the results cannot be trusted. It is possible
that these warnings are false positives and the model con-
verged successfully. In this case, the warnings can be safely
ignored. Another possible reason for these warnings is that
some of the (usually random effects) parameters have iden-
tifiability or other numerical problems and the fit is singular
or degenerate. However, this does not necessarily affect the

tests of fixed effects (but see Matuschek et al., 2017). As
mentioned above, variance estimates of 0 and correlations
at the boundary are clear indications of degenerate parame-
ter estimates. In this case one could try to refit the model
without the problematic random effects parameters. A good
strategy is often to start by removing the correlation among
the random effects parameters. mixed allows the user to sup-
press the correlation for random effects (even for factors) if
expand_re=TRUE. When setting expand_re=TRUE, the ran-
dom effects factors are transformed into numerical covariates
for which the correlation parameters are then suppressed.
For example, the following code suppresses the correlations
among the by-id random effects parameters, but not among
the by-item random effects parameters:

mixed(y~x1*x2+(x1*x2||id)+(x1|item),
expand_re=TRUE)

Some more advice on how to address and diagnose conver-
gence warnings are provided by lme4 author Ben Bolker14

and in Bates, Kliegl, et al. (2015). Again, it is important to
keep in mind that there is no guarantee that a given data set
converges for a desired random effects structure as random
effects parameters are more difficult to estimate than fixed
effects parameters.15

One final note regarding lmer and mixed is that models
fitted with both functions can be directly used for follow-up
tests, planned contrasts, or plotting with the methods imple-
mented in package lsmeans (Lenth, 2015) or effects (Fox,
2003). Importantly, these methods take the dependencies in
the data into account. A comprehensive example analysis
for a factorial design with crossed-random effects that also

14see https://rpubs.com/bbolker/lme4_convergence and https://
rpubs.com/bbolker/lme4trouble1

15“The combination of some data and an aching desire for an
answer does not ensure that a reasonable answer can be extracted
from a given body of data.” (Tukey, 1986, pp. 74)

https://rpubs.com/bbolker/lme4_convergence
https://rpubs.com/bbolker/lme4trouble1
https://rpubs.com/bbolker/lme4trouble1
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includes follow up-tests is provided at https://cran.r-project.
org/package=afex/vignettes/afex_mixed_example.html.

Beyond Linear Mixed Models and the Identity Link
Function

All models discussed in this chapter so far share one com-
monality, namely the assumption that the residuals follow a
normal distribution with variance σ2

ε . This is the normal-
ity assumption that linear mixed models share with ordi-
nary linear regression and ANOVA models. However, not all
data can be reasonably described under such an assumption.
For example, a common dependent variable in experimen-
tal designs is accuracy (i.e., one binary response per trial)
which follows a binomial distribution and should therefore
not be analyzed with models assuming a normal distribution
(Dixon, 2008). One adequate procedure to analyze categori-
cal data like the one following a binomial distribution is lo-
gistic regression, which is a member of the class of gener-
alized linear models (GLMs; McCullagh & Nelder, 1994).
GLMs differ from ordinary linear models by allowing the
specification of the residual distribution and the link func-
tion that maps the model predictions – which are defined on
a real scale – onto the (dependent variable’s) outcome space.
In the case of logistic regression, the residual distribution is
binomial and the link function the logistic function. Another
GLM for binomial data that is common in economics is pro-
bit regression. It again assumes a binomial residual distribu-
tion but instead uses the probit function (i.e., the cumulative
distribution function of the normal distribution) as a the link
between the model predictions and the dependent variable’s
outcome space. Other residual distributions such as the Pois-
son (suitable for handling count data) are also possible. How-
ever, unlike ordinary linear regression – which can be seen
as a special case of GLMs with normal residual distribution
and identity link function – there are no repeated-measures
variants of GLMs. Hence, standard GLMs cannot account
for non-independence due to repeated measures and cannot
be used for within-subject designs.

Fortunately, linear mixed models can be extended to gen-
eralized linear mixed models (GLMMs) that also allow to
specify the residual distribution and link function, but also
allow for the inclusion of random effects. Several of the is-
sues discussed for LMMs (such as the specification of ran-
dom effects and factor codings) apply in exactly the same
way to GLMMs. Furthermore, GLMMs can also be es-
timated with function mixed by passing a family argu-
ment and an appropriate method for testing such as LRT
(e.g., mixed(..., family=binomial(link="logit"),
method = "LRT")). However, due to the nonlinear nature
of most link functions, the interpretations of most model pre-
dictions, specifically of lower-order effects in factorial de-
signs, can be quite challenging. Additionally, specifically
binomial GLMMs can be quite prone to producing singular

fits or other convergence problems due to the limited amount
of information provided by each data point (i.e., 0 or 1;
see Eager & Roy, 2017). A comprehensive introduction to
GLMMs is beyond the scope of the current chapter so we
refer the interested reader to further literature on this matter
(e.g., Bolker, 2015; Jaeger, 2008).

Summary

Mixed models are a modern class of statistical models
that extend regular regression models by including random
effects parameters to account for dependencies among re-
lated data points. More specifically, these random effects
parameters control for the stochastic variability associated
with the levels of a random effects grouping factor (e.g., par-
ticipant, item, group) by adjusting the fixed effects param-
eters with idiosyncratic displacements or offsets. This es-
sentially gives each level of the random grouping factor its
own set of regression parameters under the restriction of hi-
erarchical shrinkage implementing an efficient data analysis
strategy also known as partial pooling. Importantly, mod-
ern mixed model implementations allow to simultaneously
control for multiple independent (i.e., crossed) sources of
stochastic variability. The goal of this chapter was to pro-
vide a general introduction to the concepts underlying mixed
models and to walk through the steps necessary to set up a
mixed model in R with a special focus on common hurdles
researchers may encounter. To reiterate, the most important
step for researchers is to identify the maximal random effects
structure which is given by random intercepts for each source
of random variation (i.e., random effects grouping factor),
random slopes for all fixed effects that vary within the lev-
els of a random effects parameter, and correlations among
all random effects parameters for a given grouping factor.
Once the appropriate random effects structure for a design
has been identified, tests of fixed effect (assuming appropri-
ate contrasts) take the stochastic variability into account, but
can be interpreted as tests of effects in a regular ANOVA. For
more information on specifying the random effects structure
we recommend Barr et al. (2013). Aspects of mixed models
that go beyond the issues discussed here are given in Bolker
(2015) and Snijders and Bosker (2012). An even more pow-
erful class of models than discussed here, generalized addi-
tive mixed models (GAMMs), is described in Baayen et al.
(2017).
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