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A long-standing debate in the recognition-memory literature concerns which model provides
the best account. Prominent candidates in this debate are the unequal-variance signal detec-
tion model (UVSD), the dual-process model (DPSD), and two versions of the mixture model
(MSD). The present work evaluates a recently proposed ROC-based method for comparing
these models (Dede, Wixted, & Squire, 2014). This method consists of evaluating the pattern
of residuals produced by each model’s best fits to ROC data. Previous results showed that the
DPSD produced systematic residuals while the UVSD did not, a difference that was interpreted
as evidence for the superiority of the latter model. Using a linear mixed model (LMM), we
evaluated each model’s residuals for 883 individual ROCs. LMM results revealed the presence
of systematic residuals in all candidate models, indicating a general failure of these models
to capture some of the regularities found in the data. We discuss different ways that current
signal detection models can be modified or extended in order to meet the challenge that these
systematic residuals represent.
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The ability to recognize previously-experienced informa-
tion or events is one of the most fundamental faculties of
human memory. Not surprisingly, recognition memory is a
central topic in memory research, with several models as-
suming different processes being proposed in the literature
(for a review, see Malmberg, 2008). In the present work, we
will focus on members of the prominent class of of signal
detection models (Green & Swets, 1966) that have been at
the center of the major debates.

One of the models proposed is the unequal-variance sig-
nal detection model (Green & Swets, 1966; Lockhart & Mur-
dock, 1970), which assumes a continuous memory process,
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often termed familiarity, to describe individuals’ memory-
based judgments. A depiction of the model is provided in
Figure 1. Both old and new items evoke some degree of fa-
miliarity, with separate familiarity distributions for old and
new items. The difficulty in discriminating between the two
types of items is determined by the degree of overlap be-
tween the two distributions. Recognition-memory judgments
(e.g., using a confidence scale) are produced by comparing
the familiarity of the test item with one or several criteria
placed along the familiarity axis (see Figure 1). The famil-
iarity distributions are usually assumed to be Gaussian, with
parameters {µo, σo} and {µn = 0, σn = 1} denoting the mean
and standard deviations of the old and new-item distribu-
tions, respectively. Parameter σo is commonly found to be
larger than σn, a difference that is interpreted as the result
of encoding variability during the study phase (e.g., Wixted,
2007).

The dual-process model (DPSD; Yonelinas & Parks,
2007) assumes the combination of a vague continuous
familiarity process (assumed to be equivalent to the UVSD,
only with σo = 1) and a threshold-based episodic retrieval
component, termed recollection. When judging an old
item, an individual can recollect the item with probability
R. It is usually assumed that recollected items are always
recognized with maximum confidence (Yonelinas & Parks,
2007). When recollection fails with probability 1-R the
recognition judgment is based on the item’s familiarity, with
discriminability determined by µo (with σo = σn = 1).
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Figure 1. Depiction of the UVSD, DPSD, and MSD models and an ROC function

When judging a new item, recollection cannot occur and
the item is solely evaluated in terms of its familiarity (see
Figure 1). Recollection and familiarity are assumed to be
independent processes. These processes can be selectively
influenced and in some cases one of them is expected to be
the sole culprit of above-chance performance (e.g., tasks in
which recollection alone drives above-chance performance;
see Yonelinas & Parks, 2007).

The mixture signal detection model (DeCarlo, 2002) is
similar to the UVSD but assumes that the familiarity of stud-
ied items is not described by a single distribution but by a
mixture of two familiarity distributions (see Figure 1). One
distribution (with mean µo) corresponds to the items that
were attended to during study and the other to items that were
unattended (with mean µ∗o). Parameter λ characterizes the
probability of a studied item being attended to during study.
The most common implementation of the MSD (DeCarlo,
2002) assumes that all familiarity distributions have the same
unit standard deviation (with σ∗o = σo = σn = 1). A re-
stricted version of MSD, which we will refer to as MSD0,
also assumes that performance for unattended items is at

chance level (µ∗o = 0; DeCarlo, 2002). Also, note that the
MSD reduces to the DPSD when µo takes on extremely large
values.

These signal-detection models are often compared by
means of Receiver Operating Characteristic (ROC) func-
tions, which plot the individuals’ cumulative confidence re-
sponses (from “sure old” to “sure new”) for new and old
items on the abscissa and ordinate axes respectively (see the
bottom panel of Figure 1). ROCs are widely used in the
psychological literature as a means to test different theories
(Yonelinas & Parks, 2007). The basic familiarity process as-
sumed by the models accounts for the ROC curvature, while
the observed ROC asymmetry is accounted for by encoding
variability (σo > σn) in the case of UVSD, by recollection
(R > 0) in the case of the DPSD, and by attentional shifts
(0 < λ < 1) in the case of the MSD/MSD0. Note that all
these models have the equal-variance signal detection model
(EVSD) as a special case (UVSD: σo = 1, DPSD: R = 0, and
MSD/MSD0: λ = 1). In fact, all these models can be seen
as different ways to extend the EVSD in order to account for
ROC asymmetry.
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Figure 2. Individual and mean Old-New ROC data. A more detailed reference to each dataset is provided in Table 1. Individual ROCs are
plotted with 80% transparency in the background so that overlapping ROCs are displayed darker.

Despite an intensive debate already spanning decades, the
discussion of which model provides the best characterization
of the data is still ongoing (for recent reviews, see; Yonelinas
& Parks, 2007; Wixted, 2007). This unsatisfactory state of
affairs has led researchers to search for alternative ways to
compare models. In the present manuscript we will discuss
one particular approach that was recently proposed by Dede,
Squire, and Wixted (2014), which relies on the residuals pro-
duced by the models’ fits to ROC data.

ROC Residuals

Instead of relying on ROC-fit statistics or related model-
selection indices, Dede et al. (2014) focused on the pattern
of residuals produced by the UVSD and DPSD’s best-fitting
predictions (the MSD and MSD0 were not considered). The
logic underlying Dede et al.’s work is as follows: If one of the
models successfully characterizes the underlying processes,

then the residuals produced when fitting ROC data should
not be systematic. Instead, the average residuals should not
differ systematically from zero for each response category as
these residuals reflect nothing more than sampling variabil-
ity. On the other hand, if a model does not provide a suitable
characterization of the underlying processes, then one should
observe systematic residuals. A reanalysis of previously pub-
lished data showed the presence of systematic residuals in the
DPSD but not in the UVSD.

One limitation of Dede et al.’s (2014) work is that their
analyses relied on ROC data from very few independent
sources. It seems somewhat desirable that general claims
regarding the relative performance of models based on a
new method resort to a larger and richer set of ROC data.
In order to overcome this limitation we analyzed Old-New
ROC mimicry and residuals using an extended set of in-
dividual ROC data obtained from several different sources
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Table 1
Summary of Fitted Data Sets

UVSD DPSD MSD0 MSD

Experiment Participants Summed G2 p < .05 Summed G2 p < .05 Summed G2 p < .05 Summed G2 p < .05

Benjamin et al. (2013) 124 682.22 7% 667.91 4% 670.45 7% 570.11 6%
Dede et al. (2013, control immediate (CI) test) 11 64.98 36% 92.37 36% 49.40 9% 47.46 27%
Dede et al. (2013, control delayed (CD) test) 7 19.68 0% 19.35 0% 18.52 0% 18.50 14%
Dede et al. (2013, impaired (Imp) subjects) 5 23.78 20% 30.19 20% 22.54 20% 22.52 20%
Dube & Rotello (2012, Exp. 1, Pictures (P)) 27 97.76 15% 147.20 15% 101.70 11% 72.39 7%
Dube & Rotello (2012, Exp. 1, Words (W)) 22 92.75 5% 95.67 14% 101.15 14% 70.46 9%
Heathcote et al. (2006, Exp. 1) 16 73.63 12% 94.06 25% 76.01 25% 42.36 12%
Heathcote et al. (2006, Exp. 2) 23 109.07 17% 151.75 35% 142.86 22% 76.75 17%
Jaeger et al. (2012, Exp. 1, no cue) 63 208.12 5% 242.49 5% 222.25 5% 195.78 10%
Jang et al. (2009) 33 111.47 6% 124.64 12% 112.62 6% 89.67 9%
Koen & Yonelinas (2010, pure study) 32 147.64 12% 183.66 19% 115.24 3% 86.32 9%
Koen & Yonelinas (2011) 20 75.46 15% 106.22 20% 82.43 15% 56.62 10%
Koen et al. (2013, Exp. 2, full attention) 48 161.65 8% 191.08 8% 157.32 4% 130.11 8%
Koen et al. (2013, Exp. 4, immediate test) 48 173.80 15% 186.78 12% 180.88 17% 149.03 19%
Onyper et al. (2010, Exp.1, Pictures (P)) 136 1398.49 37% 1081.52 21% 1090.85 21% 670.85 10%
Onyper et al. (2010, Exp.1, Words (W)) 131 966.49 21% 1095.03 25% 809.48 11% 630.34 9%
Pratte et al. (2010) 97 472.47 14% 458.81 18% 483.27 19% 299.53 12%
Smith & Duncan (2004, Exp. 2) 30 96.75 7% 91.84 3% 89.22 10% 70.61 7%
Van Zandt (2000, Exp.1, 50% Old/50% New) 10 108.38 30% 252.92 70% 88.66 30% 77.16 50%

Total 883 5084.0 16% 5313.48 16% 4614.86 13% 3376.56 11%

(Benjamin, Tullis, & Lee, 2013; Dede, Wixted, Hopkins, &
Squire, 2013; Dube & Rotello, 2012; Heathcote, Ditton, &
Mitchell, 2006; Jaeger, Cox, & Dobbins, 2012; Jang et al.,
2009; Koen, Aly, Wang, & Yonelinas, 2013; Koen & Yoneli-
nas, 2010, 2011; Onyper, Zhang, & Howard, 2010; Pratte,
Rouder, & Morey, 2010; Smith & Duncan, 2004; Van Zandt,
2000), for a total of 883 individual Old-New ROCs (492 six-
point ROCs and 391 eight-point ROCs). These individual
ROCs are depicted in Figure 2. Although the composition of
this extended set of data is not exhaustive and corresponds to
a convenience sample, it seems nevertheless appropriate for
testing the suitability of using residual analyses for purposes
of model selection.

Another limitation of Dede et al. (2014) concerns the
criterion used when evaluating residuals: The pattern of
residuals was evaluated using independent t-tests for each
response category and dataset separately. Residuals were
only considered to be systematically different from zero for
a response category when statistically significant differences
(in the same direction; p < .05) were found in each ana-
lyzed dataset. Such an approach is somewhat questionable
given that it assumes that an effect only truly exists when the
null hypothesis is rejected in all studies individually, com-
pletely ignoring the well-known relationship between statis-
tical power and the frequency of statistically significant ef-
fects (Cohen, 1988). In particular, their approach enforces
a decrease in the probability of detecting an effect as more
datasets are included in the analysis (e.g., with 80% power
the probability of always finding a significant effect across 5,
10, and 20 datasets is 33%, 11%, and 1%, respectively). A
perhaps more reasonable approach is employed in the analy-
sis reported below, which consists of a meta-analytic estima-
tion of effects using a linear mixed model (LMM) analysis
that treats the source of the data as a random effect (Barr,

Levy, Scheepers, & Tily, 2013).

Model Fits and Residual Analysis

We first report an analysis of the residuals produced by
the four models when fitting the above-described set of 883
individual ROCs. Old-New ROCs were fitted using MPTinR
(Singmann & Kellen, 2013) via the maximum-likelihood
method. Goodness-of-fit results are provided in Table 1.
Details on the specification of the models and the analysis
scripts can be found in the Supplemental Material.1 The
goodness-of-fit results reported in Table 1 show that for the
models with a smaller number of parameters (i.e., exclud-
ing MSD), the best-fitting model was the MSD0, followed
by the UVSD and the DPSD. However, in terms of overall
fit performance the MSD was significantly better than the
DPSD and MSD0 (smallest summed ∆G2 = 1238.30, largest
p < .0001)2

Although these results can be interpreted as a victory for
the MSD0 and a clear rejection of the DPSD (when only
looking at models with the same number of parameters), such
a conclusion is perhaps premature at this point given that the
goodness-of-fit performance of these models is not being cor-
rected for their respective flexibilities. According to model-
selection statistics coming from the Minimum Description
length (MDL) framework, the DPSD is less flexible than the
UVSD and MSD0 in the case of ROC data, despite the fact

1The supplemental materials including data and analysis scripts
are avilable at: https://osf.io/p2eq8/

2The MSD reduces to one of these two models when one of its
parameters is restricted to be at a boundary (µ∗o = 0 and µo = ∞ for
the MSD0 and the DPSD, respectively). In such cases the sampling
distribution of the ∆G2 statistic is a mixture of χ2 distributions (Self
& Liang, 1987).

https://osf.io/p2eq8/
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Figure 3. Model residuals for six-point ROCs. Residuals correspond to the difference between predicted and observed response proportions.
For values above 0 the models overestimate the observed response proportions. The left panels depict observed mean residuals per exper-
iment. If the residuals of one response category systematically deviate from zero in the LMM analysis then this is indicated by asterisks
(. = p < .1, * = p < .05, ** = p < .01, and *** = p < .001). The right panels depict estimated marginal mean residuals and (more
conservative) confidence intervals with simultaneous coverage probability of 95%. We restricted the Type I error probability to .05 for each
model. ΣG2 is the summed G2 of the model fit for the depicted data. RMSE is the root-mean-squared error and MAD the median absolute
deviation of the estimated marginal mean residuals from the LMM (i.e., estimates of the amount of deviation).

that all models have the same number of parameters (Kellen,
Klauer, & Bröder, 2013; Klauer & Kellen, 2015). These dif-
ferences in flexibility, which are due to the functional form
of the models, are not captured by common model-selection
indices such as the Akaike and Bayesian information criteria
and can have a large impact in model comparison results. In
fact, a MDL-based meta-analysis conducted by Klauer and
Kellen (2015) shows that the DPSD — when flexibility due
to functional form is taken into account — tends to outper-
form models like UVSD or MSD0.

The old- and new-item residuals (i.e., predicted minus

observed response proportions) from the UVSD, DPSD,
MSD0, and MSD (depicted in Figures 3 and 4) were ana-
lyzed with LMMs (Barr et al., 2013) using “Experiment” as
a random effect. We chose this analysis in order to be able
to estimate the overall residual pattern across studies while
taking into account the idiosyncrasies of each of them (e.g.,
Singmann, Klauer, & Kellen, 2014). To evaluate whether
the residuals systematically deviate from 0 we fitted separate
LMMs to the residuals from the four models using R package
lme4 (Bates, Mächler, Bolker, & Walker, 2014). Each LMM
had a fixed effect for the response categories of both old and
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Figure 4. Model residuals for eight-point ROCs. See Figure 3 for more details.

new items (i.e., twelve levels in the case of six-point ROCs
and sixteen levels in the case of eight-point ROCs). Addi-
tionally, each LMM was established in a way that controls
for the sample size of each single study (this ensured that
studies were not equally weighted), as traditionally done in
meta-analytic studies (e.g., Hedges & Olkin, 1985). This was
achieved by also adding a fixed effect with the sample size
of each study (centered at the weighted mean sample size)
and the respective interaction with “Response Category”.3

Furthermore, we allowed the effects to vary across experi-
ments by estimating random slopes for factor “Response Cat-
egory” (adding the corresponding random slopes for partici-
pants would lead to an oversaturated model). We did not es-
timate an overall intercept nor random intercepts for “Exper-
iment” nor for “Participant” given that the mean of the resid-
uals is zero a priori (as observed and predicted proportions
sum to one per item type). To avoid local minima each LMM

was estimated with all available optimization algorithms us-
ing function allFit from package afex (Singmann, Bolker,
& Westfall, 2015).

For each of the eight LMMs (two per model) the fixed ef-
fect for “Response Category” was significant using a Wald
test, with the smallest effect occurring in the case of the
MSD0 residuals for the six-point ROCs (χ2(12) = 82.10, p <
.0001) and the MSD residuals for the eight-point ROCs
(χ2(16) = 167.73, p < .0001). These results indicate that
every model produced residuals that systematically deviated
from zero. If one would have used Dede et al.’s (2014) ap-
proach instead the presence of systematic residuals would
not have been detected for any response category in any of
the models in the case of six-point ROCs, but for at least

3We are grateful to Jake Westfall for suggesting this. However,
we note that the results do not hinge on this weighting.
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three different response categories in all models in the case
of eight-point ROCs.

We used the LMMs to estimate the marginal effects of
each response category. To evaluate whether each of these
categories significantly differed from zero we used z-tests. In
order to control for the probability of Type I errors we used a
generalization of the Bonferroni-Holm method that takes the
correlation of the LMM’s parameter estimates into account
(Bretz, Hothorn, & Westfall, 2010)4, restricting the overall
Type I error probability to .05 for all tests conducted within
each LMM. To quantify the amount of residuals we used the
marginal LMM estimates to calculate the root-mean-squared
error (RMSE) and the median absolute deviation (MAD).
The results are depicted in Figures 3 and 4.

As can be seen in Figures 3 and 4, significant differences
emerged for all models across several response categories.
Furthermore, the residuals for old items were virtually a mir-
ror image of the new-item residuals. This symmetry con-
trasts with Dede et al.’s (2014) claim that no systematic resid-
uals could be found in the case of new items. Furthermore,
the magnitude of the residuals reflected the models’ misfits
as quantified by the G2 statistic, a situation that is expected
given that all these statistics are based on the divergence be-
tween observed and expected values.

For six-point ROCs the DPSD exhibited the largest mis-
fit (∆G2 > 400). DPSD also showed the most pronounced
residuals (∆RMSE ≈ .003), clearly mispredicting response
categories 3 and 5 and to a lesser degree 1. The other mod-
els showed somewhat smaller residuals albeit also system-
atically mispredicting at least two or three response cate-
gories. In the case of eight-point ROCs, the largest misfit
was observed for the UVSD (∆G2 > 200). Here the UVSD
showed the most pronounced residuals (∆RMSE ≈ .001),
clearly mispredicting response category 2, but systematically
mispredicting almost all categories. In contrast, the other
models showed less extreme and less systematic residuals,
mispredicting only two response category per item type.

Taken together, the LMM results are not consistent with
Dede et al.’s (2014) findings. We found evidence for system-
atic residuals in all models and not only for the DPSD. Ad-
ditionally, while the DPSD residuals were most pronounced
for the six-point ROCs this was not the case for eight-point
ROCs, which suggests that relative model performance is
somewhat dependent on features of the experimental design
such as the length of the confidence-rating scale used. How-
ever, note that the residual patterns for “new” judgments in
both old and new items (i.e., for the three/four leftmost re-
sponse categories for both old and new items in Figures 3 and
4) are quite similar for both six and eight-point ROCs. Also,
the UVSD, MSD0, and MSD’s systematic residuals tend to
be more prevalent in these “new” judgments.

Residual Analysis of Model-Generated Data

We followed Dede et al. (2014) and checked how the
residuals of each model related to the predictions of the other
models. Consider a scenario in which one of the models
(e.g., DPSD), when fitting data generated by another model
(e.g., UVSD), produces residuals that are similar to the ones
obtained with real data. However, this similarity between
residuals is not found when the models exchange roles (e.g.,
when the UVSD fits DPSD-generated data). Under these cir-
cumstances, one could argue that one of the models is closer
to the true data-generating processes than the other one (e.g.,
the UVSD is closer).

In order to investigate this possibility we fitted each model
to the predicted frequencies of the other models. These pre-
dictions were obtained from the model fits to the real data.
We restricted this analysis to the models having the same
number of parameters, UVSD, DPSD, and MSD0. The resid-
uals produced by fitting these model’s predictions are shown
in Figure 5 for the six-point ROC data and Figure 6 for the
eight-point ROC data. The LMMs on the residuals revealed
significant effects of “Response Category” for all twelve fits
to model predictions (i.e., the six sets of residuals for the six-
point ROCs in Figure 5 plus the six sets for the eight-point
ROCs in Figure 6); smallest χ2(12) = 34.31, p = .0006 and
χ2(16) = 382.44, p < .0001 for six and eight-point ROCs,
respectively. These results indicate that as in the case of
the real data, every model produced residuals that system-
atically deviated from zero when fitting the predicted val-
ues of other models. The pairwise comparisons show an
almost perfect mirror pattern of residuals. This result sim-
ply reflects the generating-model’s residuals to the original
data. For example, take the case of the UVSD and the DPSD:
The UVSD systematically underestimates response category
2 for both six-point and eight-point ROCs while DPSD does
not make any systematic misprediction (see Figure 5 and
Figure 6). This difference leads to DPSD overestimating
category 2 when fitting UVSD-generating data. The resid-
uals coming from UVSD fits to MSD0 predictions (and vice
versa) were more moderate given the considerable similarity
between the two models’ mispredictions of the original data.
Again our results are not consistent with Dede et al. (2014)
as the residuals obtained when fitting model-generated data
did not resemble the residuals obtained with real data. In-
stead, they merely reflected the differences between the mod-
els’ (mis)predictions.

Discussion

The present analysis showed that systematic biases can
be found in the models’ residuals to ROC data, contradict-
ing Dede et al.’s (2014) claim that only the DPSD produces

4Method “free” implemented in R package multcomp.
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Figure 5. Model residuals of fits to predicted values for six-point ROCs. In each plot, the residuals of the pairwise comparison in both
directions are plotted in different colors (e.g., the topmost panels show residuals of DPSD fits to predicted values of the UVSD in black
and residuals of UVSD fits to predicted values of the DPSD in gray). Significant deviations from zero are indicated by symbols in the
corresponding color on either the top or bottom of the plot. As before, probability of Type I errors is restricted to .05 for each fit. See Figure
3 for more details.

systematic residuals. This result shows that the mere pres-
ence of systematic residuals does not constitute a suitable
criterion for selecting between the present candidate mod-
els. At this point the following question should be posed:
is the systematicity of ROC residuals important at all? The
answer is unequivocally “yes” given that the systematic pat-
terns found across studies clearly indicate that the models
are consistently failing to characterize some of the behav-
ioral regularities present in the data. The critical issue here is
not that all models fail at some point given sufficient data but
the fact that each model fails in a systematic fashion across
a diverse set of studies. These results cannot be overstated
given that the debate surrounding the merit of these models

has been pretty much driven by their ability to account for
ROC data.

The main challenge now is to understand whether these
systematic residuals reflect a violation of the models’ core
principles (e.g., independent recollection and familiarity pro-
cesses) or auxiliary distributional assumptions (e.g., Gaus-
sian familiarity distributions, response mapping of recollec-
tion, and mixtures of distributions). In order to test these
possibilities it is necessary to consider modified or extended
versions of these models, which can be developed in several
ways: Let us first consider the familiarity distributions as-
sumed by all four models. One possible explanation is that
the Gaussian assumption adopted in all four models does not
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Figure 6. Model residuals of fits to predicted values for eight-point ROCs. See Figure 3 and Figure 5 for more details.

constitute a suitable representation and should be replaced by
other distributional assumptions. The use of alternative dis-
tributional assumptions has been discussed since the intro-
duction of SDT (see DeCarlo, 1998; Green & Swets, 1966;
Killeen & Taylor, 2004), and the need to compare them has
been pointed out long ago (e.g., Lockhart & Murdock, 1970).
One important feature of non-Gaussian distributions is that
many are able to account for ROC asymmetry without in-
voking additional processes such as encoding variability (as
done by the UVSD), recollection (DPSD), or attention fail-
ure (MSD/MSD0; see DeCarlo, 1998 for an example using
extreme-value distributions). This means that exploration of
alternative distributional assumptions might lead to superior
accounts of data but also accounts that provide distinct (per-
haps even more parsimonious) characterizations of the un-
derlying processes.

Moreover, the exploration of different assumptions should

take into account the exact data for which the systematic
residuals are found. For instance, most of the UVSD, MSD0,
and MSD’s systematic residuals are found in the “new” re-
sponses. One possible cause for these mispredictions is that
the familiarity of new items comes from a mixture of distri-
butions (Chechile, 2013), which when unaccounted for can
lead to distorted predictions, especially at the level of “new”
judgments (which mostly occur for new items). Chechile
(2013) recently proposed a test for detecting the presence of
mixtures for new items and found evidence consistent with it
(see also DeCarlo, 2007).

In the case of the DPSD one possibility is to relax the
assumptions on how recollection is mapped onto the confi-
dence scale. Recollection is expected to produce recognition
judgments with high confidence. This assumption is usu-
ally implemented by enforcing the prediction that all recol-
lected items are mapped onto the maximum-confidence “old”
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response (Wixted, 2007; Yonelinas & Parks, 2007). This
enforcement is unreasonably restrictive given that it com-
pletely excludes the possibility of other confidence levels be-
ing used. Different confidence levels can be used for sev-
eral reasons, ranging from the mere occurrence of random er-
rors to individuals’ differential use of idiosyncratic response
styles. A perhaps more reasonable assumption is that rec-
ollection is preferentially mapped onto high-confidence re-
sponses (for a review, see Klauer & Kellen, 2010). One
important aspect of this DPSD extension is that it releases
the model from confidence-rating ROC predictions that have
been taken for granted in the literature at large, namely the
prediction of ROC linearity when recollection is assumed to
be the only process contributing to an above-chance perfor-
mance (Wixted, 2007; Yonelinas & Parks, 2007).

However, the evaluation of these different possibilities is
far from trivial: First, one needs to take into account their
relative flexibility in a sensible manner, something that is not
accomplished by model-selection statistic that use the num-
ber of free parameters as a proxy for model flexibility (Kellen
et al., 2013; Klauer & Kellen, 2015). Second, some of the
different model extensions or modifications proposed might
require focused validation tests. For instance, a relaxed
recollection process in the DPSD can be validated by test-
ing the conditional independence of recollection’s response-
mapping probabilities (Province & Rouder, 2012). Irrespec-
tive of which model will turn out to be the most successful
one, sensible model comparisons should rely on a set of di-
verse criteria that go beyond overall fit and model-selection
statistics and incorporate information on how exactly models
are failing.
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