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A Heuristic for Creating MPT Models of Order Constraints

Introduction

This document provides a heuristic for constructing binary MPT models for linear

order constraints such as those presented in Figure 4 of the main document. The

heuristic is based on implementing the vertices of the convex polytope in a different way

than described in the main document to represent more complex order constraints than

those represented in Figure 4. However, whereas it can be shown that this heuristic

preserves the order constraints, we cannot prove for all patterns and their extensions

that it also allows to represent any set of probabilities, although we believe this to be

the case. To circumvent that problem we additionally performed some numerical tests

on the parameterizations presented here and in Table 2 of the main document which are

presented at the end of this document.

Purely Linear Order Constraints

Linear orders of the form A ≥ B ≥ C for MPT models (e.g., Figure 4, pattern I)

can be created by two different methods, either downward (i.e., starting from the largest

element, in this case A) or upward (i.e., starting with the smallest element, in this case

C). Both methods are recursive algorithms which need to be successively applied to the

elements in the order and direction given. Furthermore, both methods require to

consider certain vertices of the polytopes, to determine the minimum or maximum

probability each element can have. In the case of purely linear order constraints the

main vertices we need to consider are minima of the largest and and maxima of the

smallest element which are identical and given by equal probabilities for all elements.

For the example with three elements this vertex is 1⁄3 for each element and in the case of

only two elements, A ≥ B, 1⁄2. Note that these vertices are indeed the minimum for the

largest element (i.e., the former inequality cannot be satisfied if A < 1/3 or the latter not

if A < 1/2) and the maximum for the smallest element (i.e., the former inequality cannot

be satisfied if C > 1/3 and the latter not if B > 1/2).
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Downward Method. The downward method consists of a set of steps which

need to be applied successively from the largest to smallest element: (1) assign the

minimum amount required to fulfill the (current) inequality to the current element, (2)

distribute a freely estimated amount of the remainder in equal proportions to the

current and all larger elements, (3) distribute the remainder of step (2) to the next

element by recursively applying steps (1) and (2) or if the last element is reached, assign

the remainder to the last element. For the case of the simplest inequality with only two

elements A ≥ B this leads to the following tree and probabilities for A and B (note that

for referencing purposes all trees in this document are consecutively numbered):

1⁄2 A

(1 − 1/2)
x1 A

(1 − x1) B
(1)

P (A) = 1/2 + (1 − 1/2)x1

P (B) = (1 − 1/2)(1 − x1)

For the case of three elements A ≥ B ≥ C the obtained tree is somewhat more

complicated given the restrictions in step (2) to distribute the remainder equally among

the current and all larger elements. Furthermore, we need to make sure to correctly

adjust the constant used to distribute the minimum amount in step (1) (i.e., 1⁄3 to A,

but 1⁄2 to B given that in step (1) for B the remaining inequality is only B ≥ C and the
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relevant vertex consequently 1⁄2):

1⁄3 A

(1 − 1/3)

x1 A

(1 − x1)

1⁄2 B

(1 − 1/2)
x2

1⁄2 A

1⁄2 B

(1 − x2) C
(2)

P (A) = 1/3 + (1 − 1/3)x1 + (1 − 1/3)(1 − x1)(1 − 1/2)x21/2

P (B) = (1 − 1/3)(1 − x1)1/2 + (1 − 1/3)(1 − x1)(1 − 1/2)x2(1 − 1/2)

P (C) = (1 − 1/3)(1 − x1)(1 − 1/2)(1 − x2)

It can be shown that the downward method is equivalent to the vertex mixture

method described in the main manuscript and hence we can be sure that it both

imposes the order constraint and allows all ordered set of probabilities to be

represented. For illustration purposes consider that step (1) makes sure that none of the

elements can receive less probability than the boundary conditions defined above. For

the second example P (A) ≥ 1/3. Furthermore, step (2) allows that each element can be

of a freely estimated amount larger than the minimum (e.g., P (A) can be 1) while still

maintaining that the inequality holds (e.g., if x1 = 0 and x2 = 1, P (A) = P (B) = 1/2. In

other words, step (2) allows that any ordered set can be represented, for example if

x1 > 0, A > B. Note that this method can easily extended for order constraints with

more than 3 elements by employing the correct constant in step (1) which corresponds

to the equal probability for all remaining elements and extending the model accordingly.

Upward Method. The upward method consists of a number of steps which

needs to be successively applied to all elements starting with the smallest one: (1) take

the maximum amount which can be applied to the current element and (2) assign a

freely estimated amount of this proportion to the current element, (3) distribute the
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remainder from (1) equally among all superordinate elements and assign each element

the same freely estimated amount of (2), (4) apply steps (1), (2), and (3) successively to

the next elements and add the resulting tree to the remainders of steps (2) and (3) or if

the last element is reached assign the remainder of steps (2) and (3) to the last element.

In other words, one takes the maximum amount allowed for the current element, and

assigns a freely estimated amount of this proportion to this element and the same

amount to the superordinate elements (thereby fulfilling the order constraint) then

recursively applies this approach to the remainders leading to the fact that both

remainders contain the same subtrees. For the case of the simplest inequality with two

elements A ≥ B this leads to:

1⁄2

x1 B

(1 − x1) A

(1 − 1/2) A
(3)

P (A) = 1/2(1 − x1) + (1 − 1/2)

P (B) = 1/2 x1

For the case of three elements A ≥ B ≥ C the obtained tree is considerably larger

given that the complete subtree for A ≥ B (corresponding to tree (3) above) exists

thrice, once for the remainder of the first step (2) and twice for the remainder of the

first step (3). Furthermore, we again need to make sure to correctly adjust the constant
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used to distribute the maximum amount in step (1) (i.e., 1⁄3 to C, but 1⁄2 to B):

1⁄3

x2 C

(1 − x2) Tree 3

(1 − 1/3)

1/2

x2 B

(1 − x2) Tree 3

1/2

x2 A

(1 − x2) Tree 3
(4)

P (A) = 1/3(1 − x2)1/2(1 − x1) + 1/3(1 − x2)(1 − 1/2) +

(1 − 1/3)1/2 x2 +

(1 − 1/3)1/2(1 − x2)1/2(1 − x1) + (1 − 1/3)1/2(1 − x2)(1 − 1/2) +

(1 − 1/3)1/2(1 − x2)1/2(1 − x1) + (1 − 1/3)1/2(1 − x2)(1 − 1/2)

P (B) = 1/3(1 − x2)1/2 x1 +

(1 − 1/3)1/2 x2 +

(1 − 1/3)1/2(1 − x2)1/2 x1 +

(1 − 1/3)1/2(1 − x2)1/2 x1

P (C) = 1/3 x2

As was the case for the downward method, the upward method is equivalent to

the vertex mixture method and consequently allows one to both impose the order

constraint and to represent all ordered sets of probabilities. Steps (1) to (3) are crucial

in controlling that the order constraint is not violated. At most, each element receives

the maximum proportion it is allowed to have, for example, P (C) ≤ 1/3,

P (B) ≤ 1/3 × 1/2 + 2/3 × 1/2 ≤ 1/2 (controlled by step (1)). To make sure that no
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superordinate element is smaller than a subordinate, step (3) assigns all superordinate

elements the proportions assigned to subordinate elements. To see that all possible sets

of probabilities are represented one needs to jointly consider steps (2) and (4). Step (2)

allows that of the maximum amount for each element, the amount the element takes is

completely free (i.e., can take any allowed proportion). Furthermore, step (4) makes

sure that in case an element receives no probability, the remaining elements distribute

the complete remaining probability mass according to the constraint (e.g., if x2 = 0 and

x1 = 1, P (A) = P (B) = 1/2). Again, this method can easily be extended for order

constraint with more elements by calculating the correct constant. However, this entails

the cost that for each element added, the size of the tree rapidly grows as the existing

tree is copied multiple times.

Representing more Complex Constraints. We have seen that both methods

lead to equivalent but different parametrization of linear order constraints which begs

the question why we introduced both methods. The reason for this is that both

methods form the building blocks for different types of order constraints. As discussed

in the main document, for some of the patterns of constraints presented in Figure 4, the

vertex mixture representation is overparameterized, that is there are more vertices than

independent data points. The heuristic described here can help in finding a binary MPT

representation for order constraints that is not overparameterized. More specifically, the

downward method can be used for cases in which the order constraint forms a fork-like

structure (e.g., A ≥ B and A ≥ C as in patterns V, VI, IX, and X; i.e., those patterns

for which the vertex mixture representation is overparameterized). In cases in which the

linear order constraint forms an inverted fork-like structure (e.g., A ≥ C and B ≥ C as

in patterns II, III, IV, and V) the upward method should be used. Note that in line

with the discussion of the vertex mixture method, no parameterization for the

cross-over pattern VII can be construed given the heuristic sketched in this document.

Additionally, we couldn’t find a parameterization using the heuristic for pattern VIII.
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Fork-Like Order Constraints

Consider a binary fork-like constraint with A ≥ B and A ≥ C with no constraint

between B and C (similar to Figure 4, pattern X). For simplicity we call A head and B

and C tails. For this case it seems that one needs to employ a variant of the downward

method. Again, an important step is to identify the minima and maxima vertices

(which differ from each other for more complex constraints as those discussed from now

on). As with purely linear order constraints, a lower bound for the minimum value of

the largest element is given by an equal distribution, P (A) = P (B) = P (C) = 1/3.

However, the maximum amount of the smaller elements cannot easily be given as the

equal distribution P (A) = P (B) = P (C) = 1/3 as well as P (A) = P (B) = 1/2 or

P (A) = P (C) = 1/2 are possible values.

To build a model for a fork-like structure, the following steps need to be applied:

(1) the head receives the minimum to fulfill the inequality; (2) distribute the remainder

in equal parts according to the number of remaining tails; (3) for each element of step

(2), one tail receives a freely estimated amount; (4) for the remainder from each step (3),

recursively apply steps (1) to (3) but this time by only considering the order structure

without the current and superordinate tails, reusing the parameters from superordinate

step (3) for each element, or if only the head remains, assign the remainder to the head.

For the case of the example above with three elements, this corresponds to the following
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model (we omit the equations from now on for sake of brevity):

1⁄3 A

(1 − 1/3)

1⁄2

x1 B

(1 − x1)

1⁄2 A

(1 − 1/2)
x2 C

(1 − x2) A

(1 − 1/2)

x2 C

(1 − x2)

1⁄2 A

1⁄2

x1 B

(1 − x1) A
(5)

Again the question arises whether or not this parametrization imposes the order

constraint and if all possible ordered sets of probabilities can be represented. As for the

cases discussed before, the parametrization is equivalent to the one described in the

appendix of the main document and hence both conditions are met. The order

constraint is satisfied because the probability for each tail cannot exceed the probability

of the head, given that step (1) is applied recursively and consequently each amount

going into a tail also goes into the head. In other words, for each remainder from a step

(2) the following step (1) controls that the inequality cannot be violated. Furthermore,

it is easy to see that this method allows to represent the critical minima and maxima

vertices. Furthermore, the proportion of the probability mass that is not bound by

order constraint (i.e., by steps (1)) free parameters freely distribute the remainder

which we believe allows to represent all possible sets of probabilities that follow the

constraint. For example, in case there is no C (i.e., x2 = 0), x1 can completely control

what proportion B can have with the extreme that in case of x1 = 1,
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P (A) = P (B) = 1/2 (note that if x1 = x2 = 1, P (A) = P (B) = P (C) = 1/3).

Two further important notes apply to the method presented here for fork-like

structures. First, this method can easily be used to model order constraints with more

than two tails, however, in this case, the size of the model again grows rather rapidly.

We implemented this method for a model with three tails in Appendix A (this

constraint corresponds to pattern X). Second, this method can be extended for example

in case we combine purely linear order constraints with the fork-like structure such that

F ≥ A ≥ B and F ≥ A ≥ C (i.e., pattern VI). One way would be to preface the model

(Tree 5) with the following structure using the initial downward method (this is

necessary to allow P (F ) = 1 and P (A) = P (B) = P (C) = 0):

1⁄4 F

(1 − 1/4)
x0 F

(1 − x0) ...
(6)

Furthermore, in case of applying step (1) recursively (i.e., except for the first

application) the two instances of A in Tree 5 would need to be replaced by a fork

distributing the minimum amount for both F and A equally among F and A (i.e. in

contrast to 1⁄2 to A, 2⁄3 × 1⁄2 to each F and A). In addition, after considering F (Tree 6)

and the two tails, in other words if only the heads remain (we consider both A and F to

be head in this case), a simple order restriction enforcing F ≥ A (Tree 1) would need to

replace the remaining two instances of A alone (the full model is given in Appendix B):

1⁄2 F

(1 − 1/2)
x0 F

(1 − x0) A
(7)
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Note that again, this model not only satisfies the order restriction (i.e., A cannot

be larger than F ) it seems to allows for all possible sets of probabilities as exemplified

by only considering F and A (i.e., x1 = x2 = 0 and consequently P (B) = P (C) = 0). As

already said above, in the case of x0 = 1, P (F ) = 1 and P (A) = 0. Values of x0 smaller

than 1 allow for all possible combinations of F and A while satisfying the order

constraint. For example, if x0 = 0, P (F ) = P (A) = 1/2; if x0 = 1/2, P (F ) = 37/48 and

P (A) = 11/48.

Inverted Fork-Like Order Constraints

Consider a binary inverted fork-like (or joining) order constraint with A ≥ C and

B ≥ C with no constraint between A and B (similar to Figure 4, pattern II). For

simplicity we again call the upper elements A and B heads and the lower element C

tail. To build such an order constraint using the heuristic discussed here we need to

employ the upward method; in other words we need to consider the tail first. As before

the relevant vertex is the maximum amount the tail (the smallest element) is allowed to

obtain which corresponds to P (A) = P (B) = P (C) = 1/3. Furthermore, an important

observation is again that to obey the order restriction, the elements A and B need to

receive at least the same amount as C. However, as there is no ordering between A and

B the steps simplify to the following: (1) take the maximum amount which can be

applied to the smallest element and (2) assign a freely estimated amount of this

proportion to the smallest element, (3) distribute the remainder from (1) equally among

all superordinate elements and assign each element the same freely estimated amount of

(2), (4) distribute the remainder of (3) freely among all superordinate elements. This

simplification of the upward method leads to the following simplification of Tree 4 (i.e.,
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the three element upward tree) in which Tree 3 is replaced by a simple binary branching:

1⁄3

x2 C

(1 − x2)
x1 A

(1 − x1) B

(1 − 1/3)

1/2

x2 B

(1 − x2)
x1 A

(1 − x1) B

1/2

x2 A

(1 − x2)
x1 A

(1 − x1) B
(8)

Similarly to the case of the purely linear order constraint this parameterization

obeys the constraint as the smallest element cannot receive more than 1⁄3 and the

amount alloted to the smallest element is also alloted to the superordinate elements.

Furthermore, this parameterization is equivalent to the vertex parameterization

discussed in the main document (Section “Extensions”). This method can be easily

extended to inverted fork-like structures with more than two heads. In this case only

the branching in step (3) and the constant in step (1) need to be adapted. We

exemplified this for pattern II of Figure 4 in Appendix C.

The present approach can also be extended by adding further linear order

constraints. For example, to parameterize pattern III of Figure 4, which adds a further

element below C so that the final ordering is A ≥ C ≥ D and B ≥ C ≥ D, one can

simply start by applying the upward method to D and then paste Tree 8 to the

remainders. Naturally we need to use the appropriate constant for C in this case and
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observe again a dramatic growth in tree size:

1⁄4

x0 D

(1 − x0) Tree 8

(1 − 1/4)

1/3

x0 C

(1 − x0) Tree 8

1/3

x0 B

(1 − x0) Tree 8

1/3

x0 A

(1 − x0) Tree 8
(9)

Combining Inverted and Normal Fork

As a final example, let us consider pattern V in which a fork is combined with an

inverted fork for the following constrain, A ≥ B ≥ D and A ≥ C ≥ D. Again it is

important to consider the relevant vertices. At a minimum A needs to receive 1⁄4 and

the maximum amount for D is also 1⁄4. For building this model we first need to apply

the downward method on A and then, before implementing structures for B and C,

apply the upward method to D. This approach leads to the following partial tree which
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we will then combine with a subtree described in more details below:

1⁄4 A

(1 − 1/4)

1/3

x1 D

(1 − x1) Tree 11

(1 − 1/3)

1/2

x1 B

(1 − x1) Tree 11

1/2

x1 C

(1 − x1) Tree 11

(10)

This partial tree implements the two major constraints just discussed. A receives

at least 1⁄4 and D receives at maximum 1⁄4. Before implementing the subtree which will

be joined with the partial tree, we now need to consider some vertices again. When only

considering the upper (inverted fork) part of the constraint, we see that now the

minimum for A is 1⁄3 instead of 1⁄4. To ensure this, A needs to receive, in addition to the

already alloted 1⁄4, 1/3 − 1/4 = 1/12 = 3/4 × 1/9 of the remainder. As only 3⁄4 or (1 − 1/4)

enter this part of the tree, the constant needs to be set to 1⁄9. With the exception of this

new constant, the subtree is essentially identical to the regular tree for a fork-like
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structure (Tree 5):

1⁄9 A

(1 − 1/9)

1⁄2

x2 B

(1 − x2)

1⁄2 A

(1 − 1/2)
x3 C

(1 − x3) A

(1 − 1/2)

x3 C

(1 − x3)

1⁄2 A

(1 − 1/2)
x2 B

(1 − x2) A
(11)

As before, we are confident that this model enforces the constraint and allows one

to represent all possible sets of probabilities to be represented. To exemplify this

consider the following cases representing some of the relevant vertices. If

x1 = x2 = x3 = 1, P (A) = P (B) = P (C) = P (D) = 1/4. If x1 = 0 and x2 = x3 = 1,

P (A) = P (B) = P (C) = 1/3 and P (D) = 0. If x1 = x2 = 0 and x3 = 1,

P (A) = P (C) = 1/2 and P (B) = P (D) = 0. Furthermore, if for example, x1 = 1/2,

x2 = 0, and x3 = 1, P (A) = P (C) = 9/24 and P (B) = P (D) = 3/24. This shows that

relevant vertices and values in between can be successfully captured with this model.

Numerical Tests

In order to ensure the appropriateness of the parameterizations presented here

and in Table 2 of the main document we performed some numerical test on them. First,

we tested the parameterizations of the vertex method presented in Table 2. Those

parameterizations surely constrain the predicted multinomial distributions to follow the
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order constraint as they simply represent a mixture of the vertices. However, we did not

prove for all parameterizations whether or not they allow all ordered set of probabilities

to be represented (but see Appendix of main document). We fitted all possible ordered

sets of probabilities for each of the parameterizations presented in Table 2 using a .005

grid (i.e., in 1⁄2 percentage steps). To minimize the impact of the numerical

optimization routine used, we multiplied each set with 1000 before fitting the data (i.e.,

a set of P (A)P (B) = P (C) = P (D) = .25 was transformed into a value of 250 each).

Furthermore, we performed 20 optimization runs for each set of probabilities with

different random starting values. The results showed that the maximum deviation

between observed and predicted values across all sets was .001 or 1⁄5000 of the step size

used. This shows that, at least for the chosen grid size of .005, the presented

parameterization is able to represent all possible ordered sets of probabilities. The

analysis scripts for those tests can be found in file test_orderings.R.

Next, we tested some of the parameterizations presented in this manuscript.

Specifically we tested those parameterizations for which we did not show their

equivalence to the parameterization presented in the main text, namely binary inverted

fork (Tree 8), ternary inverted fork (Trees 9 and 8), combination of forks (Trees 10 and

11), and binary fork plus linear order above (Appendix B). For these parameterizations

we not only tested all possible ordered sets of probabilities to show that the

parameterizations are able to represent these, but also all sets of ordered probabilities

that are not consistent with the order constraint to show that the parameterizations are

not able to represent those. As these dramatically increased the sample size we reduced

the grid (or step) size to .01. Again we multiplied all probabilities with 1000 before

fitting them and performed 20 fitting runs with different random starting values for

each set of probabilities. Fitting the possible sets of probabilities showed that the

maximum deviation of observed and predicted values was .0006 or 1⁄16667 of the step size,

again showing that the parameterizations are able to represent all possible sets of

probabilities. Fitting the sets of probabilities not consistent with the order constraint

showed that the minimum summed absolute deviations of observed and predicted
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responses (i.e., summed across all probabilities in one set) was 10 which corresponded to

the step size or to the minimum deviation from the allowed set of ordered probabilities.

This latter result showed that the parameterizations presented here enforce the order

constraint. The analysis scripts for those tests can be found in file

test_orderings_supplemental.R.
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Appendix A

Model for ternary fork-like structure with A ≥ B, A ≥ C, A ≥ D, and no further

constraints (i.e., pattern X, Figure 4, main document).

1⁄4

A

(1 − 1/4)

1⁄3

x1

B

(1 − x1)

1⁄3

A

2⁄3

1⁄2

x2

C

(1 − x2)

A

1⁄2

x3

D

(1 − x3)

A

1⁄3

x2

C

(1 − x2)

1⁄3

A

2⁄3

1⁄2

x1

B

(1 − x1)

A

1⁄2

x3

D

(1 − x3)

A

1⁄3

x3

D

(1 − x3)

1⁄3

A

2⁄3

1⁄2

x1

B

(1 − x1)

A

1⁄2

x2

C

(1 − x2)

A
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Appendix B

Model for a combination of a purely linear order constraint with a fork-like order

constraint: F ≥ A ≥ B and F ≥ A ≥ C (i.e., pattern VI, Figure 4, main document).

1⁄4

F

(1 − 1/4)

x0

F

(1 − x0)

1⁄3

A

(1 − 1/3)

1⁄2

x1

B

(1 − x1)

2⁄3

1⁄2

A

1⁄2

F

(1 − 2/3)

x2

C

(1 − x2)

1⁄2

F

(1 − 1/2)

x0

F

(1 − x0)

A

(1 − 1/2)

x2

C

(1 − x2)

2⁄3

1⁄2

A

1⁄2

F

(1 − 2/3)

x1

B

(1 − x1)

1⁄2

F

(1 − 1/2)

x0

F

(1 − x0)

A
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Appendix C

Model for ternary inverted fork-like structure with A ≥ D, B ≥ D, C ≥ D, and no

further constraints (i.e., pattern II, Figure 4, main document).

1⁄4

x1 D

(1 − x1)

x2 A

(1 − x2)
x3 B

(1 − x3) C

(1 − 1/4)

1/3

x1 C

(1 − x1)

x2 A

(1 − x2)
x3 B

(1 − x3) C

1/3

x1 B

(1 − x1)

x2 A

(1 − x2)
x3 B

(1 − x3) C

1/3

x1 A

(1 − x1)

x2 A

(1 − x2)
x3 B

(1 − x3) C


