Overview: Statistical Models in R

1. Identify probability distribution of data (more correct: of conditional distribution of the response)
2. Make sure variables are of correct type via `str()`
3. Set appropriate contrasts (orthogonal contrasts if model includes interaction): `afex::set_sum_contrasts()`
4. Describe statistical model using `formula`
5. Fit model: pass `formula` and `data.frame` to corresponding modeling function (e.g., `lm()`, `glm()`)
6. Check model fit (e.g., inspect residuals)
7. Test terms (i.e., main effects and interactions): Pass fitted model to `car::Anova()`
8. Follow-up tests:
 - Estimated marginal means: Pass fitted model to `lsmeans::lsmeans()` or `emmeans::emmeans()`
 - Specify specific contrasts on estimated marginal means (e.g., `contrast()`, `pairs()`)
8. Follow-up tests:
 - `afex` combines fitting (5.) and testing (7.):
 - ANOVAs: `afex::aov_car()`, `afex::aov_ez()`, or `afex::aov_4()`
 - (Generalized) linear mixed-effects models: `afex::mixed()`

R Formula Interface for Statistical Models: ~

- R `formula` interface allows symbolic specification of statistical models, e.g. linear models:
  ```r
  lm(y ~ x, data)
  ```
- Dependent variable(s) left of ~ (can be multivariate or missing), independent variables right of ~:

<table>
<thead>
<tr>
<th>Formula</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ x or ~1+x</td>
<td>Intercept and main effect of x</td>
</tr>
<tr>
<td>~ x-1 or ~0 + x</td>
<td>Only main effect of x and no intercept (questionable)</td>
</tr>
<tr>
<td>~ x+y</td>
<td>Main effects of x and y</td>
</tr>
<tr>
<td>~ x:y</td>
<td>Interaction between x and y (and no main effect)</td>
</tr>
<tr>
<td>~ x*y or ~ x+y+x:y</td>
<td>Main effects and interaction between x and y</td>
</tr>
</tbody>
</table>

- Formulas behave differently for continuous and categorical covariates!!
 - Always use `str(data)` before fitting: `int` & `num` is continuous, `Factor` or `character` is categorical.
 - Categorical/nominal variables have to be `factors`. Create via `factor()`.
- Categorical variables are transformed into numerical variables using contrast functions (via `model.matrix()`; see Cohen et al., 2002)
 - If models include interactions, orthogonal contrasts (e.g., `contr.sum`) in which the intercept corresponds to the (unweighted) grand mean should be used: `afex::set_sum_contrasts()`
 - Dummy/treatment contrasts (R default) lead to simple effects for lower order effects.
 - For linear models: Coding only affects interpretation of parameters/tests not overall model fit.
- For models with only numerical covariates, suppressing intercept works as expected.
- For models with categorical covariates, suppressing intercept or other lower-order effects often leads to very surprising results (and should generally be avoided).
Tests of Model Terms/Effects with \texttt{car::Anova()}

- \texttt{car::Anova(model, type = 3)} general solution for testing effects.
- Type II and III tests equivalent for balanced designs (i.e., equal group sizes) and highest-order effect.
- Type III tests require orthogonal contrasts (e.g., \texttt{contr.sum}); recommended:
 - For experimental designs in which imbalance is completely random and not structural,
 - Complete cross-over interactions (i.e., main effects in presence of interaction) possible.
- Type II are more appropriate if imbalance is structural (i.e., observational data; maybe here).

Follow-up Tests with \texttt{lsmeans/emmeans}

- \texttt{lsmeans(model, ~factor)/emmeans(model, ~factor)} produces estimates marginal means (or least-square means for linear regression) for model terms (e.g., \texttt{lsmeans(m6, ~education*gender)}).
- Additional functions allow specifying contrasts/follow-up tests on the means, e.g.:
 - \texttt{pairs()} tests all pairwise comparisons among means.
 - \texttt{contrast()} allows to define arbitrary contrasts on marginal means.
 - For more examples see vignettes: \url{https://cran.r-project.org/package=emmeans}

\texttt{ANOVAs with afex}

- \texttt{afex} ANOVA functions require column with participant ID:
 - \texttt{afex::aov_car()} allows specification of ANOVA using \texttt{aov}-like formula. Specification of participant id in Error() term. For example:
 \begin{verbatim}
 aov_car(dv ~ between_factor + Error(id/within_factor), data)
 \end{verbatim}
 - \texttt{afex::aov_4()} allows specification of ANOVA using \texttt{lme4}-like formula. Specification of participant id in random term. For example:
 \begin{verbatim}
 aov_4(dv ~ between_factor + (within_factor|id), data)
 \end{verbatim}
 - \texttt{afex::aov_ez()} allows specification of ANOVA using characters. For example:
 \begin{verbatim}
 aov_ez("id", "dv", data, between = "between_factor", within = "within_factor")
 \end{verbatim}

Repeated-Measures, IID Assumption, & Pooling

- Ordinary linear regression, between-subjects ANOVA, and basically all standard statistical models share one assumption: Data points are \textit{independent and identically distributed} (iid).
 - Independence assumption refers to residuals: After taking structure of model (i.e., parameters) into account, probability of a data point having a specific value is independent of all other data points.
 - Identical distribution: All observations sampled from same distribution.
- For repeated-measures independence assumption often violated, which can have dramatic consequences on significance tests from model (e.g., increased or decreased Type I errors).
- Three ways to deal with repeated-measures:
 1. \textit{Complete pooling}: Ignore dependency in data (often not appropriate, results likely biased)
 2. \textit{No pooling}: Separate data based on factor producing dependency and calculate separate statistical model for each subset (decreases precision of parameter estimates, combining results can be non-trivial)
 3. \textit{Partial pooling}: Analyse data jointly while taking dependency into account (gold standard, e.g., mixed models)
Mixed Models

- Mixed models extend regular regression models via **random-effects parameters** that account for dependencies among related data points.

Fixed Effects
- Overall or **population-level average** effect of specific model term (i.e., main effect, interaction, parameter) on dependent variable
- Independent of stochastic variability controlled for by random effects
- Hypothesis tests on fixed effect interpreted as hypothesis tests for terms in standard ANOVA or regression model
- Possible to test specific hypotheses among factor levels (e.g., planned contrasts)
- **Fixed-effects parameters**: Overall effect of specific model term on dependent variable

Random Effects
- **Random-effects grouping factors**: Categorical variables that capture random or stochastic variability (e.g., participants, items, groups, or other hierarchical-structures).
- In experimental settings, random-effects grouping factors often part of design one wants to generalize over.
- Random-effects factor out idiosyncrasies of sample, thereby providing a more general estimate of the fixed effects of interest.
- **Random-effects parameters**:
 - Provide each level of random-effects grouping factor with idiosyncratic parameter set.
 - zero-centered offsets/displacements for each level of random-effects grouping factor
 - added to specific fixed-effects parameter
 - assumed to follow normal distribution which provides **hierarchical shrinkage**, thereby avoids over-fitting
 - should be added to each parameter that varies within the levels of a random-effects grouping factor (i.e., factor is **crossed** with random-effects grouping factor)

Random-Effects Parameters in lme4/afex

<table>
<thead>
<tr>
<th>Formula</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1</td>
<td>s)</td>
</tr>
<tr>
<td>(1</td>
<td>s) + (1</td>
</tr>
<tr>
<td>(a</td>
<td>s) or (1+a</td>
</tr>
<tr>
<td>(a*b</td>
<td>s)</td>
</tr>
<tr>
<td>(0+a</td>
<td>s)</td>
</tr>
<tr>
<td>(a</td>
<td>s)</td>
</tr>
</tbody>
</table>

*Note. Suppressing the correlation parameters via || works only for numerical covariates in lmer and not for factors. afex provides the functionality to suppress the correlation also among factors if argument expand_re = TRUE in the call to mixed() (see also function lmer_alt()).

Examples:
mixed(dv ~ within_s_factor * within_i_factor + (within_s_factor|s) + (within_i_factor|i), data, method = "S")
mixed(dv ~ within_s_factor + (within_s_factor||s), data, method = "S", expand_re = TRUE)
Hypothesis-Tests for Mixed Models

- **lme4::lmer** does not include \(p \)-values.
- **afex::mixed** provides four different methods:
 2. Satterthwaite (method="S"): Similar to KR, but requires less RAM.
 3. Parametric-bootstrap (method="PB"): Simulation-based, can take a lot of time (can be speed-up using parallel computation).
 4. Likelihood-ratio tests (method="LRT"): Provides worst control for anti-conservative results. Can be used if all else fails or if all random-effects grouping factors have many levels (e.g., over 50).
- **afex::mixed** uses orthogonal contrasts per default. Necessary for categorical variables in interactions.

Random-Effects Structure

- Omitting random-effects parameters for model terms which vary within the levels of a random-effects grouping factor and for which random variability exists leads to non-iid residuals (i.e., \(\epsilon \)) and anti-conservative results (e.g., Barr, Levy, Scheepers, & Tily, 2013).
- Safeguard is **maximal model justified by the design**.
- If maximal model is overparameterized, contains degenerate estimates, and/or singular fits, power of maximal model may be reduced and a reduced model may be considered (Bates et al., 2015; Matuschek et al., 2017); however, reducing model introduces unknown risk of anti-conservativity, and should be done with caution.
- Steps for running a mixed model analysis:
 1. Identify desired fixed-effects structure
 2. Identify random-effects grouping factors
 3. Identify which factors/terms vary within levels of each random-effects grouping factor: maximal model
 4. Choose method for calculating \(p \)-values and fit maximal model
 5. Iteratively reduce random-effects structure until all degenerate/zero-variance random-effects parameters are removed.
- If the maximal model shows critical convergence warnings, reduce random-effects structure:
 - Start by removing the correlation among random-effects parameters
 - Remove random-effects parameters for highest-order effects with lowest variance
 - It can sometimes help to try different optimizers
 - Compare \(p \)-values/fixed-effects estimates across models (\(p \)-values from degenerate/minimal models are not reliable)

GLMMs: Mixed-models with Alternative Distributional Assumptions

- Not all data can be reasonably described by a Normal distribution.
- Generalized-linear mixed models (GLMMs; e.g., Jaeger, 2008) allow for other distributions. For example:
 - Binomial distribution: Repeated-measures logistic regression
 - Poisson distribution for count data
 - Gamma distribution for non-negative data (e.g., RTs)
- GLMMs require specification of the conditional distribution of the response (family) and link function.
- Link function determines how values on untransformed scale are mapped onto response scale.
- Specification of random-effects structure conceptually identical as for LMMs.
- GLMMs only allow two methods for hypothesis testing: "LRT" or "PB".
- Inspection of residuals/model fit more important for GLMMs than for LMMs: R package **DHARMa**
- Fit with **lme4::glmer** or **afex::mixed**, both require family argument (e.g., family = binomial):
  ```r
  mixed(prop ~ a * b + (a|s) + (b|i), data, weights = data$n, family = binomial, method = "LRT")
  ```
 (Note: data$n * data$prop must produce integers; number of successes.)