• Bayesian Ensembles of Cognitive Models

    Singmann, H., Kellen, D., Mizrak, E., & Öztekin, I. (2018). Using Ensembles of Cognitive Models to Answer Substantive Questions. CogSci Proceedings.

  • Belief-Bias ROC Meta-Analysis

    Trippas, D., Kellen, D., Singmann, H., et al. (2018). Characterizing belief bias in syllogistic reasoning: A hierarchical Bayesian meta-analysis of ROC data. Psychonomic Bulletin & Review, 25(6), 2141–2174.

  • ROC residuals in SDT models

    Kellen, D., & Singmann, H. (2016). ROC residuals in signal-detection models of recognition memory. Psychonomic Bulletin & Review, 23, 253-264.

  • Classic-Probability Account of QQ-Equality

    Kellen, D., Singmann, H., & Batchelder, W. H. (2017). Classic-Probability Accounts of Mirrored (Quantum-Like) Order Effects in Human Judgments. Decision.

All materials and exercises of my 2-day course on mixed models are on



  • MPT models

    Multinomial Processing Tree (MPT) models are cognitive measurement models for categorical data. They describe observed response frequencies from a finite set of response categories (i.e., responses following a multinomial distribution) with a finite number of latent states. Each latent state is reached by particular combinations of cognitive processes; processes that are assumed to take place in an all-or-nothing fashion.

  • Reasoning

    Reasoning is the ability to infer propositions from given propositions. The psychological research is concerned with the cognitive processes underlying human reasoning. An influential way of addressing this question has been to compare observed reasoning performance with normative systems such as bivalent logic or probability theory with the goal to infer that underlying processes somehow mimic or reproduce normative systems.

  • Recognition Memory Models

    Recognition memory is concerned with the ability to discriminate between previously encountered information and new information. A central question is how to disentangle response tendencies (e.g., the tendency to respond "old") from memory performance (i.e., the ability to discriminate between old and new information). Several measurement models with markedly different assumptions about the underlying memory process exist.

  • Mixed Models

    Mixed models (aka multilevel or hierarchical models) are statistical models containing both fixed- and random-effects terms. They are useful when multiple measurements exist for each unit of observation (e.g., participant or item), or for hierarchical data. Linear mixed models (LMMs) are used for normally distributed dependent variables, generalized linear mixed models (GLMMs) are applicable to other distributions (e.g., binomial data).